Hybrid Reduced Graphene Oxide with Special Magnetoresistance for Wireless Magnetic Field Sensor
Corresponding Author: Jin Zhang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 69
Abstract
Very few materials show large magnetoresistance (MR) under a low magnetic field at room temperature, which causes the barrier to the development of magnetic field sensors for detecting low-level electromagnetic radiation in real- time. Here, a hybrid reduced graphene oxide (rGO)-based magnetic field sensor is produced by in situ deposition of FeCo nanoparticles (NPs) on reduced graphene oxide (rGO). Special quantum magnetoresistance (MR) of the hybrid rGO is observed, which unveils that Abrikosov’s quantum model for layered materials can occur in hybrid rGO; meanwhile, the MR value can be tunable by adjusting the particle density of FeCo NPs on rGO nanosheets. Very high MR value up to 21.02 ± 5.74% at 10 kOe at room temperature is achieved, and the average increasing rate of resistance per kOe is up to 0.9282 Ω kOe−1. In this paper, we demonstrate that the hybrid rGO-based magnetic field sensor can be embedded in a wireless system for real-time detection of low-level electromagnetic radiation caused by a working mobile phone. We believe that the two-dimensional nanomaterials with controllable MR can be integrated with a wireless system for the future connected society.
Highlights:
1 Cost-effective and time-efficient process for hybrid reduced graphene oxide (rGO) nanosheets with special magnetoresistance properties was fabricated.
2 The prepared hybrid rGO nanosheets have large magnetoresistance at low magnetic field at room temperature and used in wireless magnetic field sensors for quick detection of low electromagnetic radiation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Engels, N.L. Schneider, N. Lefeldt, C.M. Hein, M. Zapka et al., Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird. Nature 509, 353–356 (2014). https://doi.org/10.1038/nature13290
- M.J. Abramson, G.P. Benke, C. Dimitriadis, I.O. Inyang, M.R. Sim et al., Mobile telephone use is associated with changes in cognitive function in young adolescents. Bioelectromagnetics 30, 678–686 (2009). https://doi.org/10.1002/bem.20534
- T.I.S. Group, Brain tumour risk in relation to mobile telephone use: results of the INTERPHONE international case–control study. Int. J. Epidemiol. 39, 675–694 (2010). https://doi.org/10.1093/ije/dyq079
- C. Sun, X. Wei, Y. Fei, L. Su, X. Zhao et al., Mobile phone signal exposure triggers a hormesis-like effect in Atm+/+ and Atm−/− mouse embryonic fibroblasts. Sci. Rep. 6, 37423 (2016). https://doi.org/10.1038/srep37423
- M. Sudan, J. Olsen, T. Sigsgaard, L. Kheifets, Trends in cell phone use among children in the Danish national birth cohort at ages 7 and 11 years. J. Expo. Sci. Environ. Epidemiol. 26, 606–612 (2016). https://doi.org/10.1038/jes.2016.17
- E. Van Rongen, E.W. Roubos, L.M. van Aernsbergen, G. Brussaard, J. Havenaar et al., Mobile phones and children: Is precaution warranted? Bioelectromagnetics 25, 142–144 (2004). https://doi.org/10.1002/bem.10200
- B.B. Levitt, H. Lai, Biological effects from exposure to electromagnetic radiation emitted by cell tower base stations and other antenna arrays. Environ. Rev. 18, 369–395 (2010). https://doi.org/10.1139/A10-018
- J.S. Moodera, L.R. Kinder, T.M. Wong, R. Meservey, Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995). https://doi.org/10.1103/PhysRevLett.74.3273
- S. Parkin, J. Xin, C. Kaiser, A. Panchula, K. Roche et al., Magnetically engineered spintronic sensors and memory. Proc. IEEE 91, 661–680 (2003). https://doi.org/10.1109/JPROC.2003.811807
- J. Daughton, J. Brown, E. Chen, R. Beech, A. Pohm et al., Magnetic field sensors using GMR multilayer. IEEE Trans. Magn. 30, 4608–4610 (1994). https://doi.org/10.1109/20.334164
- K. Gopinadhan, Y.J. Shin, R. Jalil, T. Venkatesan, A.K. Geim et al., Extremely large magnetoresistance in few-layer graphene/boron–nitride heterostructures. Nat. Commun. 6, 8337 (2015). https://doi.org/10.1038/ncomms9337
- H. Gu, H. Zhang, J. Lin, Q. Shao, D.P. Young et al., Large negative giant magnetoresistance at room temperature and electrical transport in cobalt ferrite-polyaniline nanocomposites. Polymer 143, 324–330 (2018). https://doi.org/10.1016/j.polymer.2018.04.008
- B. Song, K. Moon, C Wong (2016) Recent developments in design and fabrication of graphene-based interdigital micro-supercapacitors for miniaturized energy storage devices. IEEE Trans. Compon. Packag. Manuf. Technol. 6, 1752–1765 (2016). https://doi.org/10.1109/TCPMT.2016.2585162
- M.S. Purewal, Y. Zhang, P. Kim, Unusual transport properties in carbon based nanoscaled materials: nanotubes and graphene. Phys. Status Solidi B 243, 3418–3422 (2006). https://doi.org/10.1002/pssb.200669193
- Y.P. Liu, S. Zhang, J. He, Z.M. Wang, Z.W. Liu, Recent progress in the fabrication, properties, and devices of heterostructures based on 2D materials. Nano-Micro Lett. 11, 13 (2019). https://doi.org/10.1007/s40820-019-0245-5
- S. Syama, P.V. Mohanan, Comprehensive application of graphene: emphasis on biomedical concerns. Nano-Micro Lett. 11, 6 (2019). https://doi.org/10.1007/s40820-019-0237-5
- A.L. Friedman, J.L. Tedesco, P.M. Campbell, J.C. Culbertson, E. Aifer et al., Quantum linear magnetoresistance in multilayer epitaxial graphene. Nano Lett. 10, 3962–3965 (2010). https://doi.org/10.1021/nl101797d
- Z. Liao, H. Wu, S. Kumar, G.S. Duesberg, Y.-B. Zhou et al., Large magnetoresistance in few layer graphene stacks with current perpendicular to plane geometry. Adv. Mater. 24, 1862–1866 (2012). https://doi.org/10.1002/adma.201104796
- K. Gopinadhan, Y.J. Shin, I. Yudhistira, J. Niu, H. Yang, Giant magnetoresistance in single-layer graphene flakes with a gate-voltage-tunable weak antilocalization. Phys. Rev. B 88, 195429 (2013). https://doi.org/10.1103/PhysRevB.88.195429
- G. Abellán, H. Prima-García, E. Coronado, Graphene enhances the magnetoresistance of FeNi3 nanoparticles in hierarchical FeNi3–graphene nanocomposites. J. Mater. Chem. C 4, 2252–2258 (2016). https://doi.org/10.1039/C5TC04445F
- V.B. Mohan, R. Brown, K. Jayaraman, D. Bhattacharyya, Characterisation of reduced graphene oxide: effects of reduction variables on electrical conductivity. Mater. Sci. Eng. B 193, 49–60 (2015). https://doi.org/10.1016/j.mseb.2014.11.002
- F. Ortmann, A. Cresti, G. Montambaux, S. Roche, Magnetoresistance in disordered graphene: the role of pseudospin and dimensionality effects unraveled. EPL 94, 47006 (2011). https://doi.org/10.1209/0295-5075/94/47006
- G. Lu, K. Yu, Z. Wen, J. Chen, Semiconducting graphene: converting graphene from semimetal to semiconductor. Nanoscale 5, 1353–1368 (2013). https://doi.org/10.1039/C2NR32453A
- A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009). https://doi.org/10.1103/RevModPhys.81.109
- A.A. Abrikosov, Quantum magnetoresistance of layered semimetals. Phys. Rev. B 60, 4231–4234 (1999). https://doi.org/10.1103/PhysRevB.60.4231
- A.A. Abrikosov, Quantum linear magnetoresistance. EPL 49, 789–793 (2000). https://doi.org/10.1209/epl/i2000-00220-2
- G. Goncalves, P.A.A.P. Marques, C.M. Granadeiro, H.I.S. Nogueira, M.K. Singh et al., Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth. Chem. Mater. 21, 4796–4802 (2009). https://doi.org/10.1021/cm901052s
- X. Huang, Z. Yin, S. Wu, X. Qi, Q. He et al., Graphene-based materials: synthesis, characterization, properties, and applications. Small 7, 1876–1902 (2011). https://doi.org/10.1002/smll.201002009
- R. Wang, Y. Wang, C. Xu, J. Sun, L. Gao, Facile one-step hydrazine-assisted solvothermal synthesis of nitrogen-doped reduced graphene oxide: reduction effect and mechanisms. RSC Adv. 3, 1194–1200 (2013). https://doi.org/10.1039/C2RA21825A
- B. Jeyadevan, K. Shinoda, R.J. Justin, T. Matsumoto, K. Sato et al., Polyol process for Fe-based hard(fct-FePt) and soft(FeCo) magnetic nanoparticles. IEEE Trans. Magn. 42, 3030–3035 (2006). https://doi.org/10.1109/TMAG.2006.880149
- X. Li, J. Feng, Y. Du, J. Bai, H. Fan et al., One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. J. Mater. Chem. A 3, 5535–5546 (2015). https://doi.org/10.1039/C4TA05718J
- X. Wei, G. Zhu, Y. Liu, Y. Ni, Y. Song et al., Large-scale controlled synthesis of FeCo nanocubes and microcages by wet chemistry. Chem. Mater. 20, 6248–6253 (2008). https://doi.org/10.1021/cm800518x
- K. Zhang, Y. Zhang, S. Wang, Enhancing thermoelectric properties of organic composites through hierarchical nanostructures. Sci. Rep. 3, 3448 (2013). https://doi.org/10.1038/srep03448
- D. Kodama, K. Shinoda, K. Sato, Y. Sato, B. Jeyadevan et al., Synthesis of Fe-Co alloy particles by modified polyol process. IEEE Trans. Magn. 42, 2796–2798 (2006). https://doi.org/10.1109/TMAG.2006.880072
- G.S. Chaubey, C. Barcena, N. Poudyal, C. Rong, J. Gao et al., Synthesis and stabilization of FeCo nanoparticles. J. Am. Chem. Soc. 129, 7214–7215 (2007). https://doi.org/10.1021/ja0708969
- S. Thakur, N. Karak, Green reduction of graphene oxide by aqueous phytoextracts. Carbon 50, 5331–5339 (2012). https://doi.org/10.1016/j.carbon.2012.07.023
- I. Arief, S. Biswas, S. Bose, FeCo-anchored reduced graphene oxide framework-based soft composites containing carbon nanotubes as highly efficient microwave absorbers with excellent heat dissipation ability. ACS Appl. Mater. Interfaces 9, 19202–19214 (2017). https://doi.org/10.1021/acsami.7b04053
- X. Gao, J. Yang, K. Song, W. Luo, S. Dou et al., Robust FeCo nanoparticles embedded in a N-doped porous carbon framework for high oxygen conversion catalytic activity in alkaline and acidic media. J. Mater. Chem. A 6, 23445–23456 (2018). https://doi.org/10.1039/C8TA06382F
- W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, New insights into the structure and reduction of graphite oxide. Nat. Chem. 1, 403 (2009). https://doi.org/10.1038/nchem.281
- D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev et al., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009). https://doi.org/10.1038/nature07872
- B.J. Matsoso, K. Ranganathan, B.K. Mutuma, T. Lerotholi, G. Jones et al., Time-dependent evolution of the nitrogen configurations in N-doped graphene films. RSC Adv. 6, 106914–106920 (2016). https://doi.org/10.1039/C6RA24094A
- I.K. Moon, J. Lee, H. Lee, Highly qualified reduced graphene oxides: the best chemical reduction. Chem. Commun. 47, 9681–9683 (2011). https://doi.org/10.1039/C1CC13312H
- S. Bai, X. Shen, G. Zhu, M. Li, H. Xi et al., In situ growth of NixCo100–x nanoparticles on reduced graphene oxide nanosheets and their magnetic and catalytic properties. ACS Appl. Mater. Interfaces 4, 2378–2386 (2012). https://doi.org/10.1021/am300310d
- H. Zhang, J. Zheng, Y. Chao, K. Zhang, Z. Zhu, Surface engineering of FeCo-based electrocatalysts supported on carbon paper by incorporating non-noble metals for water oxidation. New J. Chem. 42, 7254–7261 (2018). https://doi.org/10.1039/C7NJ04941B
- A.A. Abrikosov, Quantum magnetoresistance. Phys. Rev. B 58, 2788–2794 (1998). https://doi.org/10.1103/PhysRevB.58.2788
- K. Schwarz, P. Mohn, P. Blaha, J. Kubler, Electronic and magnetic structure of BCC Fe-Co alloys from band theory. J. Phys. F: Met. Phys. 14, 2659–2671 (1984). https://doi.org/10.1088/0305-4608/14/11/021
- T. Fang, A. Konar, H. Xing, D. Jena, Carrier statistics and quantum capacitance of graphene sheets and ribbons. Appl. Phys. Lett. 91, 092109 (2007). https://doi.org/10.1063/1.2776887
- M.I. Katsnelson, F. Guinea, A.K. Geim, Scattering of electrons in graphene by clusters of impurities. Phys. Rev. B 79, 195426 (2009). https://doi.org/10.1103/PhysRevB.79.195426
- K. Spilarewicz-Stanek, A. Kisielewska, J. Ginter, K. Bałuszyńska, I. Piwoński, Elucidation of the function of oxygen moieties on graphene oxide and reduced graphene oxide in the nucleation and growth of silver nanoparticles. RSC Adv. 6, 60056–60067 (2016). https://doi.org/10.1039/C6RA10483E
- S. Wall, Z. Wang, T. Kendig, D. Dobraca, M. Lipsett, Real-world cell phone radiofrequency electromagnetic field exposures. Environ. Res. 171, 581–592 (2019). https://doi.org/10.1016/j.envres.2018.09.015
- H. Jonai, M.B.G. Villanueva, A. Yasuda, Cytokine profile of human peripheral blood mononuclear cells exposed to 50 Hz EMF. Ind. Health 34, 359–368 (1996). https://doi.org/10.2486/indhealth.34.359
References
S. Engels, N.L. Schneider, N. Lefeldt, C.M. Hein, M. Zapka et al., Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird. Nature 509, 353–356 (2014). https://doi.org/10.1038/nature13290
M.J. Abramson, G.P. Benke, C. Dimitriadis, I.O. Inyang, M.R. Sim et al., Mobile telephone use is associated with changes in cognitive function in young adolescents. Bioelectromagnetics 30, 678–686 (2009). https://doi.org/10.1002/bem.20534
T.I.S. Group, Brain tumour risk in relation to mobile telephone use: results of the INTERPHONE international case–control study. Int. J. Epidemiol. 39, 675–694 (2010). https://doi.org/10.1093/ije/dyq079
C. Sun, X. Wei, Y. Fei, L. Su, X. Zhao et al., Mobile phone signal exposure triggers a hormesis-like effect in Atm+/+ and Atm−/− mouse embryonic fibroblasts. Sci. Rep. 6, 37423 (2016). https://doi.org/10.1038/srep37423
M. Sudan, J. Olsen, T. Sigsgaard, L. Kheifets, Trends in cell phone use among children in the Danish national birth cohort at ages 7 and 11 years. J. Expo. Sci. Environ. Epidemiol. 26, 606–612 (2016). https://doi.org/10.1038/jes.2016.17
E. Van Rongen, E.W. Roubos, L.M. van Aernsbergen, G. Brussaard, J. Havenaar et al., Mobile phones and children: Is precaution warranted? Bioelectromagnetics 25, 142–144 (2004). https://doi.org/10.1002/bem.10200
B.B. Levitt, H. Lai, Biological effects from exposure to electromagnetic radiation emitted by cell tower base stations and other antenna arrays. Environ. Rev. 18, 369–395 (2010). https://doi.org/10.1139/A10-018
J.S. Moodera, L.R. Kinder, T.M. Wong, R. Meservey, Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995). https://doi.org/10.1103/PhysRevLett.74.3273
S. Parkin, J. Xin, C. Kaiser, A. Panchula, K. Roche et al., Magnetically engineered spintronic sensors and memory. Proc. IEEE 91, 661–680 (2003). https://doi.org/10.1109/JPROC.2003.811807
J. Daughton, J. Brown, E. Chen, R. Beech, A. Pohm et al., Magnetic field sensors using GMR multilayer. IEEE Trans. Magn. 30, 4608–4610 (1994). https://doi.org/10.1109/20.334164
K. Gopinadhan, Y.J. Shin, R. Jalil, T. Venkatesan, A.K. Geim et al., Extremely large magnetoresistance in few-layer graphene/boron–nitride heterostructures. Nat. Commun. 6, 8337 (2015). https://doi.org/10.1038/ncomms9337
H. Gu, H. Zhang, J. Lin, Q. Shao, D.P. Young et al., Large negative giant magnetoresistance at room temperature and electrical transport in cobalt ferrite-polyaniline nanocomposites. Polymer 143, 324–330 (2018). https://doi.org/10.1016/j.polymer.2018.04.008
B. Song, K. Moon, C Wong (2016) Recent developments in design and fabrication of graphene-based interdigital micro-supercapacitors for miniaturized energy storage devices. IEEE Trans. Compon. Packag. Manuf. Technol. 6, 1752–1765 (2016). https://doi.org/10.1109/TCPMT.2016.2585162
M.S. Purewal, Y. Zhang, P. Kim, Unusual transport properties in carbon based nanoscaled materials: nanotubes and graphene. Phys. Status Solidi B 243, 3418–3422 (2006). https://doi.org/10.1002/pssb.200669193
Y.P. Liu, S. Zhang, J. He, Z.M. Wang, Z.W. Liu, Recent progress in the fabrication, properties, and devices of heterostructures based on 2D materials. Nano-Micro Lett. 11, 13 (2019). https://doi.org/10.1007/s40820-019-0245-5
S. Syama, P.V. Mohanan, Comprehensive application of graphene: emphasis on biomedical concerns. Nano-Micro Lett. 11, 6 (2019). https://doi.org/10.1007/s40820-019-0237-5
A.L. Friedman, J.L. Tedesco, P.M. Campbell, J.C. Culbertson, E. Aifer et al., Quantum linear magnetoresistance in multilayer epitaxial graphene. Nano Lett. 10, 3962–3965 (2010). https://doi.org/10.1021/nl101797d
Z. Liao, H. Wu, S. Kumar, G.S. Duesberg, Y.-B. Zhou et al., Large magnetoresistance in few layer graphene stacks with current perpendicular to plane geometry. Adv. Mater. 24, 1862–1866 (2012). https://doi.org/10.1002/adma.201104796
K. Gopinadhan, Y.J. Shin, I. Yudhistira, J. Niu, H. Yang, Giant magnetoresistance in single-layer graphene flakes with a gate-voltage-tunable weak antilocalization. Phys. Rev. B 88, 195429 (2013). https://doi.org/10.1103/PhysRevB.88.195429
G. Abellán, H. Prima-García, E. Coronado, Graphene enhances the magnetoresistance of FeNi3 nanoparticles in hierarchical FeNi3–graphene nanocomposites. J. Mater. Chem. C 4, 2252–2258 (2016). https://doi.org/10.1039/C5TC04445F
V.B. Mohan, R. Brown, K. Jayaraman, D. Bhattacharyya, Characterisation of reduced graphene oxide: effects of reduction variables on electrical conductivity. Mater. Sci. Eng. B 193, 49–60 (2015). https://doi.org/10.1016/j.mseb.2014.11.002
F. Ortmann, A. Cresti, G. Montambaux, S. Roche, Magnetoresistance in disordered graphene: the role of pseudospin and dimensionality effects unraveled. EPL 94, 47006 (2011). https://doi.org/10.1209/0295-5075/94/47006
G. Lu, K. Yu, Z. Wen, J. Chen, Semiconducting graphene: converting graphene from semimetal to semiconductor. Nanoscale 5, 1353–1368 (2013). https://doi.org/10.1039/C2NR32453A
A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009). https://doi.org/10.1103/RevModPhys.81.109
A.A. Abrikosov, Quantum magnetoresistance of layered semimetals. Phys. Rev. B 60, 4231–4234 (1999). https://doi.org/10.1103/PhysRevB.60.4231
A.A. Abrikosov, Quantum linear magnetoresistance. EPL 49, 789–793 (2000). https://doi.org/10.1209/epl/i2000-00220-2
G. Goncalves, P.A.A.P. Marques, C.M. Granadeiro, H.I.S. Nogueira, M.K. Singh et al., Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth. Chem. Mater. 21, 4796–4802 (2009). https://doi.org/10.1021/cm901052s
X. Huang, Z. Yin, S. Wu, X. Qi, Q. He et al., Graphene-based materials: synthesis, characterization, properties, and applications. Small 7, 1876–1902 (2011). https://doi.org/10.1002/smll.201002009
R. Wang, Y. Wang, C. Xu, J. Sun, L. Gao, Facile one-step hydrazine-assisted solvothermal synthesis of nitrogen-doped reduced graphene oxide: reduction effect and mechanisms. RSC Adv. 3, 1194–1200 (2013). https://doi.org/10.1039/C2RA21825A
B. Jeyadevan, K. Shinoda, R.J. Justin, T. Matsumoto, K. Sato et al., Polyol process for Fe-based hard(fct-FePt) and soft(FeCo) magnetic nanoparticles. IEEE Trans. Magn. 42, 3030–3035 (2006). https://doi.org/10.1109/TMAG.2006.880149
X. Li, J. Feng, Y. Du, J. Bai, H. Fan et al., One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. J. Mater. Chem. A 3, 5535–5546 (2015). https://doi.org/10.1039/C4TA05718J
X. Wei, G. Zhu, Y. Liu, Y. Ni, Y. Song et al., Large-scale controlled synthesis of FeCo nanocubes and microcages by wet chemistry. Chem. Mater. 20, 6248–6253 (2008). https://doi.org/10.1021/cm800518x
K. Zhang, Y. Zhang, S. Wang, Enhancing thermoelectric properties of organic composites through hierarchical nanostructures. Sci. Rep. 3, 3448 (2013). https://doi.org/10.1038/srep03448
D. Kodama, K. Shinoda, K. Sato, Y. Sato, B. Jeyadevan et al., Synthesis of Fe-Co alloy particles by modified polyol process. IEEE Trans. Magn. 42, 2796–2798 (2006). https://doi.org/10.1109/TMAG.2006.880072
G.S. Chaubey, C. Barcena, N. Poudyal, C. Rong, J. Gao et al., Synthesis and stabilization of FeCo nanoparticles. J. Am. Chem. Soc. 129, 7214–7215 (2007). https://doi.org/10.1021/ja0708969
S. Thakur, N. Karak, Green reduction of graphene oxide by aqueous phytoextracts. Carbon 50, 5331–5339 (2012). https://doi.org/10.1016/j.carbon.2012.07.023
I. Arief, S. Biswas, S. Bose, FeCo-anchored reduced graphene oxide framework-based soft composites containing carbon nanotubes as highly efficient microwave absorbers with excellent heat dissipation ability. ACS Appl. Mater. Interfaces 9, 19202–19214 (2017). https://doi.org/10.1021/acsami.7b04053
X. Gao, J. Yang, K. Song, W. Luo, S. Dou et al., Robust FeCo nanoparticles embedded in a N-doped porous carbon framework for high oxygen conversion catalytic activity in alkaline and acidic media. J. Mater. Chem. A 6, 23445–23456 (2018). https://doi.org/10.1039/C8TA06382F
W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, New insights into the structure and reduction of graphite oxide. Nat. Chem. 1, 403 (2009). https://doi.org/10.1038/nchem.281
D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev et al., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009). https://doi.org/10.1038/nature07872
B.J. Matsoso, K. Ranganathan, B.K. Mutuma, T. Lerotholi, G. Jones et al., Time-dependent evolution of the nitrogen configurations in N-doped graphene films. RSC Adv. 6, 106914–106920 (2016). https://doi.org/10.1039/C6RA24094A
I.K. Moon, J. Lee, H. Lee, Highly qualified reduced graphene oxides: the best chemical reduction. Chem. Commun. 47, 9681–9683 (2011). https://doi.org/10.1039/C1CC13312H
S. Bai, X. Shen, G. Zhu, M. Li, H. Xi et al., In situ growth of NixCo100–x nanoparticles on reduced graphene oxide nanosheets and their magnetic and catalytic properties. ACS Appl. Mater. Interfaces 4, 2378–2386 (2012). https://doi.org/10.1021/am300310d
H. Zhang, J. Zheng, Y. Chao, K. Zhang, Z. Zhu, Surface engineering of FeCo-based electrocatalysts supported on carbon paper by incorporating non-noble metals for water oxidation. New J. Chem. 42, 7254–7261 (2018). https://doi.org/10.1039/C7NJ04941B
A.A. Abrikosov, Quantum magnetoresistance. Phys. Rev. B 58, 2788–2794 (1998). https://doi.org/10.1103/PhysRevB.58.2788
K. Schwarz, P. Mohn, P. Blaha, J. Kubler, Electronic and magnetic structure of BCC Fe-Co alloys from band theory. J. Phys. F: Met. Phys. 14, 2659–2671 (1984). https://doi.org/10.1088/0305-4608/14/11/021
T. Fang, A. Konar, H. Xing, D. Jena, Carrier statistics and quantum capacitance of graphene sheets and ribbons. Appl. Phys. Lett. 91, 092109 (2007). https://doi.org/10.1063/1.2776887
M.I. Katsnelson, F. Guinea, A.K. Geim, Scattering of electrons in graphene by clusters of impurities. Phys. Rev. B 79, 195426 (2009). https://doi.org/10.1103/PhysRevB.79.195426
K. Spilarewicz-Stanek, A. Kisielewska, J. Ginter, K. Bałuszyńska, I. Piwoński, Elucidation of the function of oxygen moieties on graphene oxide and reduced graphene oxide in the nucleation and growth of silver nanoparticles. RSC Adv. 6, 60056–60067 (2016). https://doi.org/10.1039/C6RA10483E
S. Wall, Z. Wang, T. Kendig, D. Dobraca, M. Lipsett, Real-world cell phone radiofrequency electromagnetic field exposures. Environ. Res. 171, 581–592 (2019). https://doi.org/10.1016/j.envres.2018.09.015
H. Jonai, M.B.G. Villanueva, A. Yasuda, Cytokine profile of human peripheral blood mononuclear cells exposed to 50 Hz EMF. Ind. Health 34, 359–368 (1996). https://doi.org/10.2486/indhealth.34.359