Three-Phase Heterojunction NiMo-Based Nano-Needle for Water Splitting at Industrial Alkaline Condition
Corresponding Author: Shibin Yin
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 20
Abstract
Constructing heterojunction is an effective strategy to develop high-performance non-precious-metal-based catalysts for electrochemical water splitting (WS). Herein, we design and prepare an N-doped-carbon-encapsulated Ni/MoO2 nano-needle with three-phase heterojunction (Ni/MoO2@CN) for accelerating the WS under industrial alkaline condition. Density functional theory calculations reveal that the electrons are redistributed at the three-phase heterojunction interface, which optimizes the adsorption energy of H- and O-containing intermediates to obtain the best ΔGH* for hydrogen evolution reaction (HER) and decrease the ΔG value of rate-determining step for oxygen evolution reaction (OER), thus enhancing the HER/OER catalytic activity. Electrochemical results confirm that Ni/MoO2@CN exhibits good activity for HER (ƞ-10 = 33 mV, ƞ-1000 = 267 mV) and OER (ƞ10 = 250 mV, ƞ1000 = 420 mV). It shows a low potential of 1.86 V at 1000 mA cm−2 for WS in 6.0 M KOH solution at 60 °C and can steadily operate for 330 h. This good HER/OER performance can be attributed to the three-phase heterojunction with high intrinsic activity and the self-supporting nano-needle with more active sites, faster mass diffusion, and bubbles release. This work provides a unique idea for designing high efficiency catalytic materials for WS.
Highlights:
1 Three-phase heterojunction can adjust the ∆G of H/O-intermediates to boost catalytic activity.
2 At ± 1000 mA cm−2, Ni/MoO2@CN exhibits low hydrogen/oxygen evolution reaction overpotentials (267/420 mV).
3 Ni/MoO2@CN used as bifunctional electrodes can work at 1000 mA cm−2 for 330 h in 6.0 M KOH + 60 °C condition.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Zhu, L.S. Hu, P.X. Zhao, L.Y.S. Lee, K.Y. Wong, Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 120(2), 851–918 (2020). https://doi.org/10.1021/acs.chemrev.9b00248
- T. Schuler, T. Kimura, T.J. Schmidt, F.N. Büchi, Towards a generic understanding of oxygen evolution reaction kinetics in polymer electrolyte water electrolysis. Energy Environ. Sci. 13(7), 2153–2166 (2020). https://doi.org/10.1039/d0ee00673d
- J.H. Cao, K.X. Wang, J.Y. Chen, C.J. Lei, B. Yang et al., Nitrogen-doped carbon-encased bimetallic selenide for high-performance water electrolysis. Nano-Micro Lett. 11, 67 (2019). https://doi.org/10.1007/s40820-019-0299-4
- A. Ali, P.K. Shen, Recent progress in graphene-based nanostructured electrocatalysts for overall water splitting. Electrochem. Energy Rev. 3, 370–394 (2020). https://doi.org/10.1007/s41918-020-00066-3
- F. Dionigi, Z.H. Zeng, I. Sinev, T. Merzdorf, S. Deshpande et al., In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat. Commun. 11, 2522 (2020). https://doi.org/10.1038/s41467-020-16237-1
- J. Kim, H. Jung, S.M. Jung, J. Hwang, D.Y. Kim et al., Tailoring binding abilities by incorporating oxophilic transition metals on 3D nanostructured Ni arrays for accelerated alkaline hydrogen evolution reaction. J. Am. Chem. Soc. 143(3), 1399–1408 (2021). https://doi.org/10.1021/jacs.0c10661
- K. Chen, Z.M. Wang, L. Wang, X.Z. Wu, B.J. Hu et al., Boron nanosheet-supported Rh catalysts for hydrogen evolution: a new territory for the strong metal-support interaction effect. Nano-Micro Lett. 13, 138 (2021). https://doi.org/10.1007/s40820-021-00662-y
- A. Hossain, K. Sakthipandi, A.K.M.A. Ullah, S. Roy, Recent progress and approaches on carbon-free energy from water splitting. Nano-Micro Lett. 11, 103 (2019). https://doi.org/10.1007/s40820-019-0335-4
- H. Gao, H.H. Yue, F. Qi, B. Yu, W.L. Zhang et al., Few-layered ReS2 nanosheets grown on graphene as electrocatalyst for hydrogen evolution reaction. Rare Met. 37, 1014–1020 (2018). https://doi.org/10.1007/s12598-018-1121-z
- A. Saad, D.Q. Liu, Y.C. Wu, Z.Q. Song, Y. Li et al., Ag nanoparticles modified crumpled borophene supported Co3O4 catalyst showing superior oxygen evolution reaction (OER) performance. Appl. Catal. B 298, 120529 (2021). https://doi.org/10.1016/j.apcatb.2021.120529
- L. Yan, B. Zhang, J.L. Zhu, Y.Y. Li, P. Tsiakaras et al., Electronic modulation of cobalt phosphide nanosheet arrays via copper doping for highly efficient neutral-pH overall water splitting. Appl. Catal. B 265, 118555 (2020). https://doi.org/10.1016/j.apcatb.2019.118555
- T.Y. Kou, S.W. Wang, Y. Li, Perspective on high-rate alkaline water splitting. ACS Mater. Lett. 3(2), 224–234 (2021). https://doi.org/10.1021/acsmaterialslett.0c00536
- Y.L. Xu, C. Wang, Y.H. Huang, J. Fu, Recent advances in electrocatalysts for neutral and large-current-density water electrolysis. Nano Energy 80, 105545 (2021). https://doi.org/10.1016/j.nanoen.2020.105545
- S.C. Zhang, W.B. Wang, F.L. Hu, Y. Mi, S.Z. Wang et al., 2D CoOOH sheet-encapsulated Ni2P into tubular arrays realizing 1000 mA cm−2-level-current-density hydrogen evolution over 100 h in neutral water. Nano-Micro Lett. 12, 140 (2020). https://doi.org/10.1007/s40820-020-00476-4
- W.J. Jiang, T. Tang, Y. Zhang, J.S. Hu, Synergistic modulation of non-precious-metal electrocatalysts for advanced water splitting. Acc. Chem. Res. 53(6), 1111–1123 (2020). https://doi.org/10.1021/acs.accounts.0c00127
- J.M. Cen, E.J. Jiang, Y.Q. Zhu, Z.Y. Chen, P. Tsiakaras et al., Enhanced electrocatalytic overall water splitting over novel one-pot synthesized Ru-MoO3-x and Fe3O4-NiFe layered double hydroxide on Ni foam. Renew. Energy 177, 1346–1355 (2021). https://doi.org/10.1016/j.renene.2021.06.005
- H. Park, E. Lee, M. Lei, H. Joo, S. Coh et al., Canonic-like HER activity of Cr1−xMoxB2 solid solution: overpowering Pt/C at high current density. Adv. Mater. 32(28), 2000855 (2020). https://doi.org/10.1002/adma.202000855
- Y. Liu, S.B. Yin, P.K. Shen, Asymmetric 3d electronic structure for enhanced oxygen evolution catalysis. ACS Appl. Mater. Interfaces 10(27), 23131–23139 (2018). https://doi.org/10.1021/acsami.8b06106
- Y.B. Li, X. Tan, H. Tan, H.J. Ren, S. Chen et al., Phosphine vapor-assisted construction of heterostructured Ni2P/NiTe2 catalysts for efficient hydrogen evolution. Energy Environ. Sci. 13(6), 1799–1807 (2020). https://doi.org/10.1039/d0ee00666a
- Y. Gu, S. Chen, J. Ren, Y.A. Jia, C.M. Chen et al., Electronic structure tuning in Ni3FeN/r-GO aerogel toward bifunctional electrocatalyst for overall water splitting. ACS Nano 12(1), 245–253 (2018). https://doi.org/10.1021/acsnano.7b05971
- D. Lyu, Y. Du, S. Huang, B.Y. Mollamahale, X. Zhang et al., Highly efficient multifunctional Co-N-C electrocatalysts with synergistic effects of Co-N moieties and Co metallic nanoparticles encapsulated in a N-doped carbon matrix for water-splitting and oxygen redox reactions. ACS Appl. Mater. Interfaces 11(43), 39809–39819 (2019). https://doi.org/10.1021/acsami.9b11870
- D.H. Deng, K.S. Novoselov, Q. Fu, N.F. Zheng, Z.Q. Tian et al., Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11, 218–230 (2016). https://doi.org/10.1038/nnano.2015.340
- C. Panda, P.W. Menezes, S. Yao, J. Schmidt, C. Walter et al., Boosting electrocatalytic hydrogen evolution activity with a NiPt3@NiS heteronanostructure evolved from a molecular nickel-platinum precursor. J. Am. Chem. Soc. 141(34), 13306–13310 (2019). https://doi.org/10.1021/jacs.9b06530
- S.S. Wang, Y.C. Xu, R.R. Fu, H.H. Zhu, Q.Z. Jiao et al., Rational construction of hierarchically porous Fe-Co/N-doped carbon/rGO composites for broadband microwave absorption. Nano-Micro Lett. 11, 76 (2019). https://doi.org/10.1007/s40820-019-0307-8
- X. Luo, P.X. Ji, P.Y. Wang, R.L. Cheng, D. Chen et al., Interface engineering of hierarchical branched Mo-doped Ni3S2/NixPy hollow heterostructure nanorods for efficient overall water splitting. Adv. Energy Mater. 10(17), 1903891 (2020). https://doi.org/10.1002/aenm.201903891
- F. Lin, Z.H. Dong, Y.H. Yao, L. Yang, F. Fang et al., Electrocatalytic hydrogen evolution of ultrathin Co-Mo5N6 heterojunction with interfacial electron redistribution. Adv. Energy Mater. 10(42), 2002176 (2020). https://doi.org/10.1002/aenm.202002176
- J.J. Lu, S.B. Yin, P.K. Shen, Carbon-encapsulated electrocatalysts for the hydrogen evolution reaction. Electrochem. Energy Rev. 2, 105–127 (2018). https://doi.org/10.1007/s41918-018-0025-9
- Y.C. Tu, P.J. Ren, D.H. Deng, X.H. Bao, Structural and electronic optimization of graphene encapsulating binary metal for highly efficient water oxidation. Nano Energy 52, 494–500 (2018). https://doi.org/10.1016/j.nanoen.2018.07.062
- A. Saad, H.J. Shen, Z.X. Cheng, R. Arbi, B.B. Guo et al., Mesoporous ternary nitrides of earth-abundant metals as oxygen evolution electrocatalyst. Nano-Micro Lett. 12, 79 (2020). https://doi.org/10.1007/s40820-020-0412-8
- S. Xue, Z.B. Liu, C.Q. Ma, H.M. Cheng, W.C. Ren, A highly active and durable electrocatalyst for large current density hydrogen evolution reaction. Sci. Bull. 65(2), 123–130 (2020). https://doi.org/10.1016/j.scib.2019.10.024
- A. Kumar, V.Q. Bui, J.Y. Lee, A.R. Jadhav, Y. Hwang et al., Modulating interfacial charge density of NiP2-FeP2 via coupling with metallic Cu for accelerating alkaline hydrogen evolution. ACS Energy Lett. 6(2), 354–363 (2021). https://doi.org/10.1021/acsenergylett.0c02498
- A. Manikandan, L. Lee, Y.C. Wang, C.W. Chen, Y.Z. Chen et al., Graphene-coated copper nanowire networks as a highly stable transparent electrode in harsh environments toward efficient electrocatalytic hydrogen evolution reactions. J. Mater. Chem. A 5(26), 13320–13328 (2017). https://doi.org/10.1039/c7ta01767g
- D.T. Tran, H.T. Le, V.H. Hoa, N.H. Kim, J.H. Lee, Dual-coupling ultrasmall iron-Ni2P into P-doped porous carbon sheets assembled CuxS nanobrush arrays for overall water splitting. Nano Energy 84, 105861 (2021). https://doi.org/10.1016/j.nanoen.2021.105861
- Y.T. Wu, H. Wang, S. Ji, B.G. Pollet, X.Y. Wang et al., Engineered porous Ni2P-nanoparticle/Ni2P-nanosheet arrays via the Kirkendall effect and Ostwald ripening towards efficient overall water splitting. Nano Res. 13, 2098–2105 (2020). https://doi.org/10.1007/s12274-020-2816-7
- Y.M. Zhao, X.W. Wang, G.Z. Cheng, W. Luo, Phosphorus-induced activation of ruthenium for boosting hydrogen oxidation and evolution electrocatalysis. ACS Catal. 10(20), 11751–11757 (2020). https://doi.org/10.1021/acscatal.0c03148
- V.L. Deringer, U. Englert, R. Dronskowski, Covalency of hydrogen bonds in solids revisited. Chem. Commun. 50(78), 11547–11549 (2014). https://doi.org/10.1039/c4cc04716h
- X. Liu, K. Ni, B. Wen, C.J. Niu, J.S. Meng et al., Polyoxomolybdate-derived carbon-encapsulated multicomponent electrocatalysts for synergistically boosting hydrogen evolution. J. Mater. Chem. A 6(37), 17874–17881 (2018). https://doi.org/10.1039/c8ta07135g
- H. Han, K.M. Kim, J.H. Ryu, H.J. Lee, J. Woo et al., Boosting oxygen evolution reaction of transition metal layered double hydroxide by metalloid incorporation. Nano Energy 75, 104945 (2020). https://doi.org/10.1016/j.nanoen.2020.104945
- D. Chen, T.T. Liu, P.Y. Wang, J.H. Zhao, C.T. Zhang et al., Ionothermal route to phase-pure RuB2 catalysts for efficient oxygen evolution and water splitting in acidic media. ACS Energy Lett. 5(9), 2909–2915 (2020). https://doi.org/10.1021/acsenergylett.0c01384
- X.H. Wan, H.A. Niu, Y.H. Yin, X.T. Wang, C. Shao et al., Enhanced electrochemical oxygen evolution reaction activity on natural single-atom catalysts transition metal phthalocyanines: the substrate effect. Catal. Sci. Technol. 10(24), 8339–8346 (2020). https://doi.org/10.1039/d0cy01651a
- F.N. Yang, Y.T. Luo, Q.M. Yu, Z.Y. Zhang, S. Zhang et al., A durable and efficient electrocatalyst for saline water splitting with current density exceeding 2000 mA cm−2. Adv. Funct. Mater. 31(21), 2010367 (2021). https://doi.org/10.1002/adfm.202010367
- G.F. Qian, J.L. Chen, T.Q. Yu, L. Luo, S.B. Yin, N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet heterojunction for enhanced water electrolysis activity at high current density. Nano-Micro Lett. 13, 77 (2021). https://doi.org/10.1007/s40820-021-00607-5
- Y.P. Li, J.H. Zhang, Y. Liu, Q.Z. Qian, Z.Y. Li et al., Partially exposed RuP2 surface in hybrid structure endows its bifunctionality for hydrazine oxidation and hydrogen evolution catalysis. Sci. Adv. (2020). https://doi.org/10.1126/sciadv.abb4197
- L. Pei, J.S. Zhong, T.Z. Li, W.F. Bai, S.T. Wu et al., CoS2@N-doped carbon core-shell nanorod array grown on Ni foam for enhanced electrocatalytic water oxidation. J. Mater. Chem. A 8(14), 6795–6803 (2020). https://doi.org/10.1039/d0ta00777c
- Q.Z. Qian, J.H. Zhang, J.M. Li, Y.P. Li, X. Jin et al., Artificial heterointerfaces achieve delicate reaction kinetics towards hydrogen evolution and hydrazine oxidation catalysis. Angew. Chem., Int. Ed. 60(11), 5984–5993 (2021). https://doi.org/10.1002/anie.202014362
- S.Y. Jing, L.S. Zhang, L. Luo, J.J. Lu, S.B. Yin et al., N-doped porous molybdenum carbide nanobelts as efficient catalysts for hydrogen evolution reaction. Appl. Catal. B 224, 533–540 (2018). https://doi.org/10.1016/j.apcatb.2017.10.025
- D. Zhao, K. Sun, W.C. Cheong, L.R. Zheng, C. Zhang et al., Synergistically interactive pyridinic-N-MoP sites: Identified active centers for enhanced hydrogen evolution in alkaline solution. Angew. Chem., Int. Ed. 59(23), 8982–8990 (2020). https://doi.org/10.1002/anie.201908760
- G.C. Yang, Y.Q. Jiao, H.J. Yan, Y. Xie, A.P. Wu et al., Interfacial engineering of MoO2-FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation. Adv. Mater. 32(17), 2000455 (2020). https://doi.org/10.1002/adma.202000455
- Q. Zhang, W. Chen, G.L. Chen, J. Huang, C.S. Song et al., Bi-metallic nitroxide nanodot-decorated tri-metallic sulphide nanosheets by on-electrode plasma-hydrothermal sprouting for overall water splitting. Appl. Catal. B 261, 118254 (2020). https://doi.org/10.1016/j.apcatb.2019.118254
- H.J. Yan, Y. Xie, A.P. Wu, Z.C. Cai, L. Wang et al., Anion-modulated HER and OER activities of 3D Ni-V-based interstitial compound heterojunctions for high-efficiency and stable overall water splitting. Adv. Mater. 31(23), 1901174 (2019). https://doi.org/10.1002/adma.201901174
- D.R. Wang, J.J. Lu, L. Luo, S.Y. Jing, H.S. Abbo et al., Enhanced hydrogen evolution activity over microwave-assisted functionalized 3D structured graphene anchoring FeP nanoparticles. Electrochim. Acta 317, 242–249 (2019). https://doi.org/10.1016/j.electacta.2019.05.153
- X.R. Gao, X.M. Liu, W.J. Zang, H.L. Dong, Y.J. Pang et al., Synergizing in-grown Ni3N/Ni heterostructured core and ultrathin Ni3N surface shell enables self-adaptive surface reconfiguration and efficient oxygen evolution reaction. Nano Energy 78, 105355 (2020). https://doi.org/10.1016/j.nanoen.2020.105355
- X. Liu, R.T. Guo, K. Ni, F.J. Xia, C.J. Niu et al., Reconstruction-determined alkaline water electrolysis at industrial temperatures. Adv. Mater. 32(40), 2001136 (2020). https://doi.org/10.1002/adma.202001136
- X. Liu, J.S. Meng, K. Ni, R.T. Guo, F.J. Xia et al., Complete reconstruction of hydrate pre-catalysts for ultrastable water electrolysis in industrial-concentration alkali media. Cell Rep. Phys. Sci. 1(11), 100241 (2020). https://doi.org/10.1016/j.xcrp.2020.100241
- Z.Y. Yu, C.C. Lang, M.R. Gao, Y. Chen, Q.Q. Fu et al., Ni-Mo-O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis. Energy Environ. Sci. 11(7), 1890–1897 (2018). https://doi.org/10.1039/c8ee00521d
- M.Y. Zu, C.W. Wang, L. Zhang, L.R. Zheng, H.G. Yang, Reconstructing bimetallic carbide Mo6Ni6C for carbon interconnected MoNi alloys to boost oxygen evolution electrocatalysis. Mater. Horiz. 6(1), 115–121 (2019). https://doi.org/10.1039/c8mh00664d
- X.D. Cheng, C.J. Lei, J. Yang, B. Yang, Z.J. Li et al., Efficient electrocatalytic oxygen evolution at extremely high current density over 3D ultrasmall zero-valent iron-coupled nickel sulfide nanosheets. ChemElectroChem 5(24), 3866–3872 (2018). https://doi.org/10.1002/celc.201801104
- Y. Tan, Q. Li, Q.J. Che, X.H. Chen, X. Xu et al., Improving activity of Ni3P/Mn hybrid film via electrochemical tuning for water splitting under simulated industrial environment. Electrochim. Acta 324, 134897 (2019). https://doi.org/10.1016/j.electacta.2019.134897
- D.S. Raja, X.F. Chuah, S.Y. Lu, In situ grown bimetallic MOF-based composite as highly efficient bifunctional electrocatalyst for overall water splitting with ultrastability at high current densities. Adv. Energy Mater. 8(23), 1801065 (2018). https://doi.org/10.1002/aenm.201801065
- X.F. Chuah, C.T. Hsieh, C.L. Huang, D.S. Raja, H.W. Lin et al., In-situ grown, passivator-modulated anodization derived synergistically well-mixed Ni-Fe oxides from Ni foam as high-performance oxygen evolution reaction electrocatalyst. ACS Appl. Energy Mater. 2(1), 743–753 (2018). https://doi.org/10.1021/acsaem.8b01794
- Z.C. Wu, Z.X. Zou, J.S. Huang, F. Gao, NiFe2O4 nanoparticles/NiFe layered double-hydroxide nanosheet heterostructure array for efficient overall water splitting at large current densities. ACS Appl. Mater. Interfaces 10(31), 26283–26292 (2018). https://doi.org/10.1021/acsami.8b07835
- C.L. Huang, X.F. Chuah, C.T. Hsieh, S.Y. Lu, NiFe alloy nanotube arrays as highly efficient bifunctional electrocatalysts for overall water splitting at high current densities. ACS Appl. Mater. Interfaces 11(27), 24096–24106 (2019). https://doi.org/10.1021/acsami.9b05919
- Q.J. Che, Q. Li, Y. Tan, X.H. Chen, X. Xu et al., One-step controllable synthesis of amorphous (Ni-Fe)Sx/NiFe(OH)y hollow microtube/sphere films as superior bifunctional electrocatalysts for quasi-industrial water splitting at large-current-density. Appl. Catal. B 246, 337–348 (2019). https://doi.org/10.1016/j.apcatb.2019.01.082
- X.D. Cheng, Z.Y. Pan, C.J. Lei, Y.J. Jin, B. Yang et al., A strongly coupled 3D ternary Fe2O3@Ni2P/Ni(PO3)2 hybrid for enhanced electrocatalytic oxygen evolution at ultra-high current densities. J. Mater. Chem. A 7(3), 965–971 (2019). https://doi.org/10.1039/c8ta11223a
- J.X. Yuan, X.D. Cheng, H.Q. Wang, C.J. Lei, S. Pardiwala et al., A superaerophobic bimetallic selenides heterostructure for efficient industrial-level oxygen evolution at ultra-high current densities. Nano-Micro Lett. 12, 104 (2020). https://doi.org/10.1007/s40820-020-00442-0
References
J. Zhu, L.S. Hu, P.X. Zhao, L.Y.S. Lee, K.Y. Wong, Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 120(2), 851–918 (2020). https://doi.org/10.1021/acs.chemrev.9b00248
T. Schuler, T. Kimura, T.J. Schmidt, F.N. Büchi, Towards a generic understanding of oxygen evolution reaction kinetics in polymer electrolyte water electrolysis. Energy Environ. Sci. 13(7), 2153–2166 (2020). https://doi.org/10.1039/d0ee00673d
J.H. Cao, K.X. Wang, J.Y. Chen, C.J. Lei, B. Yang et al., Nitrogen-doped carbon-encased bimetallic selenide for high-performance water electrolysis. Nano-Micro Lett. 11, 67 (2019). https://doi.org/10.1007/s40820-019-0299-4
A. Ali, P.K. Shen, Recent progress in graphene-based nanostructured electrocatalysts for overall water splitting. Electrochem. Energy Rev. 3, 370–394 (2020). https://doi.org/10.1007/s41918-020-00066-3
F. Dionigi, Z.H. Zeng, I. Sinev, T. Merzdorf, S. Deshpande et al., In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat. Commun. 11, 2522 (2020). https://doi.org/10.1038/s41467-020-16237-1
J. Kim, H. Jung, S.M. Jung, J. Hwang, D.Y. Kim et al., Tailoring binding abilities by incorporating oxophilic transition metals on 3D nanostructured Ni arrays for accelerated alkaline hydrogen evolution reaction. J. Am. Chem. Soc. 143(3), 1399–1408 (2021). https://doi.org/10.1021/jacs.0c10661
K. Chen, Z.M. Wang, L. Wang, X.Z. Wu, B.J. Hu et al., Boron nanosheet-supported Rh catalysts for hydrogen evolution: a new territory for the strong metal-support interaction effect. Nano-Micro Lett. 13, 138 (2021). https://doi.org/10.1007/s40820-021-00662-y
A. Hossain, K. Sakthipandi, A.K.M.A. Ullah, S. Roy, Recent progress and approaches on carbon-free energy from water splitting. Nano-Micro Lett. 11, 103 (2019). https://doi.org/10.1007/s40820-019-0335-4
H. Gao, H.H. Yue, F. Qi, B. Yu, W.L. Zhang et al., Few-layered ReS2 nanosheets grown on graphene as electrocatalyst for hydrogen evolution reaction. Rare Met. 37, 1014–1020 (2018). https://doi.org/10.1007/s12598-018-1121-z
A. Saad, D.Q. Liu, Y.C. Wu, Z.Q. Song, Y. Li et al., Ag nanoparticles modified crumpled borophene supported Co3O4 catalyst showing superior oxygen evolution reaction (OER) performance. Appl. Catal. B 298, 120529 (2021). https://doi.org/10.1016/j.apcatb.2021.120529
L. Yan, B. Zhang, J.L. Zhu, Y.Y. Li, P. Tsiakaras et al., Electronic modulation of cobalt phosphide nanosheet arrays via copper doping for highly efficient neutral-pH overall water splitting. Appl. Catal. B 265, 118555 (2020). https://doi.org/10.1016/j.apcatb.2019.118555
T.Y. Kou, S.W. Wang, Y. Li, Perspective on high-rate alkaline water splitting. ACS Mater. Lett. 3(2), 224–234 (2021). https://doi.org/10.1021/acsmaterialslett.0c00536
Y.L. Xu, C. Wang, Y.H. Huang, J. Fu, Recent advances in electrocatalysts for neutral and large-current-density water electrolysis. Nano Energy 80, 105545 (2021). https://doi.org/10.1016/j.nanoen.2020.105545
S.C. Zhang, W.B. Wang, F.L. Hu, Y. Mi, S.Z. Wang et al., 2D CoOOH sheet-encapsulated Ni2P into tubular arrays realizing 1000 mA cm−2-level-current-density hydrogen evolution over 100 h in neutral water. Nano-Micro Lett. 12, 140 (2020). https://doi.org/10.1007/s40820-020-00476-4
W.J. Jiang, T. Tang, Y. Zhang, J.S. Hu, Synergistic modulation of non-precious-metal electrocatalysts for advanced water splitting. Acc. Chem. Res. 53(6), 1111–1123 (2020). https://doi.org/10.1021/acs.accounts.0c00127
J.M. Cen, E.J. Jiang, Y.Q. Zhu, Z.Y. Chen, P. Tsiakaras et al., Enhanced electrocatalytic overall water splitting over novel one-pot synthesized Ru-MoO3-x and Fe3O4-NiFe layered double hydroxide on Ni foam. Renew. Energy 177, 1346–1355 (2021). https://doi.org/10.1016/j.renene.2021.06.005
H. Park, E. Lee, M. Lei, H. Joo, S. Coh et al., Canonic-like HER activity of Cr1−xMoxB2 solid solution: overpowering Pt/C at high current density. Adv. Mater. 32(28), 2000855 (2020). https://doi.org/10.1002/adma.202000855
Y. Liu, S.B. Yin, P.K. Shen, Asymmetric 3d electronic structure for enhanced oxygen evolution catalysis. ACS Appl. Mater. Interfaces 10(27), 23131–23139 (2018). https://doi.org/10.1021/acsami.8b06106
Y.B. Li, X. Tan, H. Tan, H.J. Ren, S. Chen et al., Phosphine vapor-assisted construction of heterostructured Ni2P/NiTe2 catalysts for efficient hydrogen evolution. Energy Environ. Sci. 13(6), 1799–1807 (2020). https://doi.org/10.1039/d0ee00666a
Y. Gu, S. Chen, J. Ren, Y.A. Jia, C.M. Chen et al., Electronic structure tuning in Ni3FeN/r-GO aerogel toward bifunctional electrocatalyst for overall water splitting. ACS Nano 12(1), 245–253 (2018). https://doi.org/10.1021/acsnano.7b05971
D. Lyu, Y. Du, S. Huang, B.Y. Mollamahale, X. Zhang et al., Highly efficient multifunctional Co-N-C electrocatalysts with synergistic effects of Co-N moieties and Co metallic nanoparticles encapsulated in a N-doped carbon matrix for water-splitting and oxygen redox reactions. ACS Appl. Mater. Interfaces 11(43), 39809–39819 (2019). https://doi.org/10.1021/acsami.9b11870
D.H. Deng, K.S. Novoselov, Q. Fu, N.F. Zheng, Z.Q. Tian et al., Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11, 218–230 (2016). https://doi.org/10.1038/nnano.2015.340
C. Panda, P.W. Menezes, S. Yao, J. Schmidt, C. Walter et al., Boosting electrocatalytic hydrogen evolution activity with a NiPt3@NiS heteronanostructure evolved from a molecular nickel-platinum precursor. J. Am. Chem. Soc. 141(34), 13306–13310 (2019). https://doi.org/10.1021/jacs.9b06530
S.S. Wang, Y.C. Xu, R.R. Fu, H.H. Zhu, Q.Z. Jiao et al., Rational construction of hierarchically porous Fe-Co/N-doped carbon/rGO composites for broadband microwave absorption. Nano-Micro Lett. 11, 76 (2019). https://doi.org/10.1007/s40820-019-0307-8
X. Luo, P.X. Ji, P.Y. Wang, R.L. Cheng, D. Chen et al., Interface engineering of hierarchical branched Mo-doped Ni3S2/NixPy hollow heterostructure nanorods for efficient overall water splitting. Adv. Energy Mater. 10(17), 1903891 (2020). https://doi.org/10.1002/aenm.201903891
F. Lin, Z.H. Dong, Y.H. Yao, L. Yang, F. Fang et al., Electrocatalytic hydrogen evolution of ultrathin Co-Mo5N6 heterojunction with interfacial electron redistribution. Adv. Energy Mater. 10(42), 2002176 (2020). https://doi.org/10.1002/aenm.202002176
J.J. Lu, S.B. Yin, P.K. Shen, Carbon-encapsulated electrocatalysts for the hydrogen evolution reaction. Electrochem. Energy Rev. 2, 105–127 (2018). https://doi.org/10.1007/s41918-018-0025-9
Y.C. Tu, P.J. Ren, D.H. Deng, X.H. Bao, Structural and electronic optimization of graphene encapsulating binary metal for highly efficient water oxidation. Nano Energy 52, 494–500 (2018). https://doi.org/10.1016/j.nanoen.2018.07.062
A. Saad, H.J. Shen, Z.X. Cheng, R. Arbi, B.B. Guo et al., Mesoporous ternary nitrides of earth-abundant metals as oxygen evolution electrocatalyst. Nano-Micro Lett. 12, 79 (2020). https://doi.org/10.1007/s40820-020-0412-8
S. Xue, Z.B. Liu, C.Q. Ma, H.M. Cheng, W.C. Ren, A highly active and durable electrocatalyst for large current density hydrogen evolution reaction. Sci. Bull. 65(2), 123–130 (2020). https://doi.org/10.1016/j.scib.2019.10.024
A. Kumar, V.Q. Bui, J.Y. Lee, A.R. Jadhav, Y. Hwang et al., Modulating interfacial charge density of NiP2-FeP2 via coupling with metallic Cu for accelerating alkaline hydrogen evolution. ACS Energy Lett. 6(2), 354–363 (2021). https://doi.org/10.1021/acsenergylett.0c02498
A. Manikandan, L. Lee, Y.C. Wang, C.W. Chen, Y.Z. Chen et al., Graphene-coated copper nanowire networks as a highly stable transparent electrode in harsh environments toward efficient electrocatalytic hydrogen evolution reactions. J. Mater. Chem. A 5(26), 13320–13328 (2017). https://doi.org/10.1039/c7ta01767g
D.T. Tran, H.T. Le, V.H. Hoa, N.H. Kim, J.H. Lee, Dual-coupling ultrasmall iron-Ni2P into P-doped porous carbon sheets assembled CuxS nanobrush arrays for overall water splitting. Nano Energy 84, 105861 (2021). https://doi.org/10.1016/j.nanoen.2021.105861
Y.T. Wu, H. Wang, S. Ji, B.G. Pollet, X.Y. Wang et al., Engineered porous Ni2P-nanoparticle/Ni2P-nanosheet arrays via the Kirkendall effect and Ostwald ripening towards efficient overall water splitting. Nano Res. 13, 2098–2105 (2020). https://doi.org/10.1007/s12274-020-2816-7
Y.M. Zhao, X.W. Wang, G.Z. Cheng, W. Luo, Phosphorus-induced activation of ruthenium for boosting hydrogen oxidation and evolution electrocatalysis. ACS Catal. 10(20), 11751–11757 (2020). https://doi.org/10.1021/acscatal.0c03148
V.L. Deringer, U. Englert, R. Dronskowski, Covalency of hydrogen bonds in solids revisited. Chem. Commun. 50(78), 11547–11549 (2014). https://doi.org/10.1039/c4cc04716h
X. Liu, K. Ni, B. Wen, C.J. Niu, J.S. Meng et al., Polyoxomolybdate-derived carbon-encapsulated multicomponent electrocatalysts for synergistically boosting hydrogen evolution. J. Mater. Chem. A 6(37), 17874–17881 (2018). https://doi.org/10.1039/c8ta07135g
H. Han, K.M. Kim, J.H. Ryu, H.J. Lee, J. Woo et al., Boosting oxygen evolution reaction of transition metal layered double hydroxide by metalloid incorporation. Nano Energy 75, 104945 (2020). https://doi.org/10.1016/j.nanoen.2020.104945
D. Chen, T.T. Liu, P.Y. Wang, J.H. Zhao, C.T. Zhang et al., Ionothermal route to phase-pure RuB2 catalysts for efficient oxygen evolution and water splitting in acidic media. ACS Energy Lett. 5(9), 2909–2915 (2020). https://doi.org/10.1021/acsenergylett.0c01384
X.H. Wan, H.A. Niu, Y.H. Yin, X.T. Wang, C. Shao et al., Enhanced electrochemical oxygen evolution reaction activity on natural single-atom catalysts transition metal phthalocyanines: the substrate effect. Catal. Sci. Technol. 10(24), 8339–8346 (2020). https://doi.org/10.1039/d0cy01651a
F.N. Yang, Y.T. Luo, Q.M. Yu, Z.Y. Zhang, S. Zhang et al., A durable and efficient electrocatalyst for saline water splitting with current density exceeding 2000 mA cm−2. Adv. Funct. Mater. 31(21), 2010367 (2021). https://doi.org/10.1002/adfm.202010367
G.F. Qian, J.L. Chen, T.Q. Yu, L. Luo, S.B. Yin, N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet heterojunction for enhanced water electrolysis activity at high current density. Nano-Micro Lett. 13, 77 (2021). https://doi.org/10.1007/s40820-021-00607-5
Y.P. Li, J.H. Zhang, Y. Liu, Q.Z. Qian, Z.Y. Li et al., Partially exposed RuP2 surface in hybrid structure endows its bifunctionality for hydrazine oxidation and hydrogen evolution catalysis. Sci. Adv. (2020). https://doi.org/10.1126/sciadv.abb4197
L. Pei, J.S. Zhong, T.Z. Li, W.F. Bai, S.T. Wu et al., CoS2@N-doped carbon core-shell nanorod array grown on Ni foam for enhanced electrocatalytic water oxidation. J. Mater. Chem. A 8(14), 6795–6803 (2020). https://doi.org/10.1039/d0ta00777c
Q.Z. Qian, J.H. Zhang, J.M. Li, Y.P. Li, X. Jin et al., Artificial heterointerfaces achieve delicate reaction kinetics towards hydrogen evolution and hydrazine oxidation catalysis. Angew. Chem., Int. Ed. 60(11), 5984–5993 (2021). https://doi.org/10.1002/anie.202014362
S.Y. Jing, L.S. Zhang, L. Luo, J.J. Lu, S.B. Yin et al., N-doped porous molybdenum carbide nanobelts as efficient catalysts for hydrogen evolution reaction. Appl. Catal. B 224, 533–540 (2018). https://doi.org/10.1016/j.apcatb.2017.10.025
D. Zhao, K. Sun, W.C. Cheong, L.R. Zheng, C. Zhang et al., Synergistically interactive pyridinic-N-MoP sites: Identified active centers for enhanced hydrogen evolution in alkaline solution. Angew. Chem., Int. Ed. 59(23), 8982–8990 (2020). https://doi.org/10.1002/anie.201908760
G.C. Yang, Y.Q. Jiao, H.J. Yan, Y. Xie, A.P. Wu et al., Interfacial engineering of MoO2-FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation. Adv. Mater. 32(17), 2000455 (2020). https://doi.org/10.1002/adma.202000455
Q. Zhang, W. Chen, G.L. Chen, J. Huang, C.S. Song et al., Bi-metallic nitroxide nanodot-decorated tri-metallic sulphide nanosheets by on-electrode plasma-hydrothermal sprouting for overall water splitting. Appl. Catal. B 261, 118254 (2020). https://doi.org/10.1016/j.apcatb.2019.118254
H.J. Yan, Y. Xie, A.P. Wu, Z.C. Cai, L. Wang et al., Anion-modulated HER and OER activities of 3D Ni-V-based interstitial compound heterojunctions for high-efficiency and stable overall water splitting. Adv. Mater. 31(23), 1901174 (2019). https://doi.org/10.1002/adma.201901174
D.R. Wang, J.J. Lu, L. Luo, S.Y. Jing, H.S. Abbo et al., Enhanced hydrogen evolution activity over microwave-assisted functionalized 3D structured graphene anchoring FeP nanoparticles. Electrochim. Acta 317, 242–249 (2019). https://doi.org/10.1016/j.electacta.2019.05.153
X.R. Gao, X.M. Liu, W.J. Zang, H.L. Dong, Y.J. Pang et al., Synergizing in-grown Ni3N/Ni heterostructured core and ultrathin Ni3N surface shell enables self-adaptive surface reconfiguration and efficient oxygen evolution reaction. Nano Energy 78, 105355 (2020). https://doi.org/10.1016/j.nanoen.2020.105355
X. Liu, R.T. Guo, K. Ni, F.J. Xia, C.J. Niu et al., Reconstruction-determined alkaline water electrolysis at industrial temperatures. Adv. Mater. 32(40), 2001136 (2020). https://doi.org/10.1002/adma.202001136
X. Liu, J.S. Meng, K. Ni, R.T. Guo, F.J. Xia et al., Complete reconstruction of hydrate pre-catalysts for ultrastable water electrolysis in industrial-concentration alkali media. Cell Rep. Phys. Sci. 1(11), 100241 (2020). https://doi.org/10.1016/j.xcrp.2020.100241
Z.Y. Yu, C.C. Lang, M.R. Gao, Y. Chen, Q.Q. Fu et al., Ni-Mo-O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis. Energy Environ. Sci. 11(7), 1890–1897 (2018). https://doi.org/10.1039/c8ee00521d
M.Y. Zu, C.W. Wang, L. Zhang, L.R. Zheng, H.G. Yang, Reconstructing bimetallic carbide Mo6Ni6C for carbon interconnected MoNi alloys to boost oxygen evolution electrocatalysis. Mater. Horiz. 6(1), 115–121 (2019). https://doi.org/10.1039/c8mh00664d
X.D. Cheng, C.J. Lei, J. Yang, B. Yang, Z.J. Li et al., Efficient electrocatalytic oxygen evolution at extremely high current density over 3D ultrasmall zero-valent iron-coupled nickel sulfide nanosheets. ChemElectroChem 5(24), 3866–3872 (2018). https://doi.org/10.1002/celc.201801104
Y. Tan, Q. Li, Q.J. Che, X.H. Chen, X. Xu et al., Improving activity of Ni3P/Mn hybrid film via electrochemical tuning for water splitting under simulated industrial environment. Electrochim. Acta 324, 134897 (2019). https://doi.org/10.1016/j.electacta.2019.134897
D.S. Raja, X.F. Chuah, S.Y. Lu, In situ grown bimetallic MOF-based composite as highly efficient bifunctional electrocatalyst for overall water splitting with ultrastability at high current densities. Adv. Energy Mater. 8(23), 1801065 (2018). https://doi.org/10.1002/aenm.201801065
X.F. Chuah, C.T. Hsieh, C.L. Huang, D.S. Raja, H.W. Lin et al., In-situ grown, passivator-modulated anodization derived synergistically well-mixed Ni-Fe oxides from Ni foam as high-performance oxygen evolution reaction electrocatalyst. ACS Appl. Energy Mater. 2(1), 743–753 (2018). https://doi.org/10.1021/acsaem.8b01794
Z.C. Wu, Z.X. Zou, J.S. Huang, F. Gao, NiFe2O4 nanoparticles/NiFe layered double-hydroxide nanosheet heterostructure array for efficient overall water splitting at large current densities. ACS Appl. Mater. Interfaces 10(31), 26283–26292 (2018). https://doi.org/10.1021/acsami.8b07835
C.L. Huang, X.F. Chuah, C.T. Hsieh, S.Y. Lu, NiFe alloy nanotube arrays as highly efficient bifunctional electrocatalysts for overall water splitting at high current densities. ACS Appl. Mater. Interfaces 11(27), 24096–24106 (2019). https://doi.org/10.1021/acsami.9b05919
Q.J. Che, Q. Li, Y. Tan, X.H. Chen, X. Xu et al., One-step controllable synthesis of amorphous (Ni-Fe)Sx/NiFe(OH)y hollow microtube/sphere films as superior bifunctional electrocatalysts for quasi-industrial water splitting at large-current-density. Appl. Catal. B 246, 337–348 (2019). https://doi.org/10.1016/j.apcatb.2019.01.082
X.D. Cheng, Z.Y. Pan, C.J. Lei, Y.J. Jin, B. Yang et al., A strongly coupled 3D ternary Fe2O3@Ni2P/Ni(PO3)2 hybrid for enhanced electrocatalytic oxygen evolution at ultra-high current densities. J. Mater. Chem. A 7(3), 965–971 (2019). https://doi.org/10.1039/c8ta11223a
J.X. Yuan, X.D. Cheng, H.Q. Wang, C.J. Lei, S. Pardiwala et al., A superaerophobic bimetallic selenides heterostructure for efficient industrial-level oxygen evolution at ultra-high current densities. Nano-Micro Lett. 12, 104 (2020). https://doi.org/10.1007/s40820-020-00442-0