N-Doped Graphene-Decorated NiCo Alloy Coupled with Mesoporous NiCoMoO Nano-sheet Heterojunction for Enhanced Water Electrolysis Activity at High Current Density
Corresponding Author: Shibin Yin
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 77
Abstract
Developing highly effective and stable non-noble metal-based bifunctional catalyst working at high current density is an urgent issue for water electrolysis (WE). Herein, we prepare the N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet grown on 3D nickel foam (NiCo@C-NiCoMoO/NF) for water splitting. NiCo@C-NiCoMoO/NF exhibits outstanding activity with low overpotentials for hydrogen and oxygen evolution reaction (HER: 39/266 mV; OER: 260/390 mV) at ± 10 and ± 1000 mA cm−2. More importantly, in 6.0 M KOH solution at 60 °C for WE, it only requires 1.90 V to reach 1000 mA cm−2 and shows excellent stability for 43 h, exhibiting the potential for actual application. The good performance can be assigned to N-doped graphene-decorated NiCo alloy and mesoporous NiCoMoO nano-sheet, which not only increase the intrinsic activity and expose abundant catalytic activity sites, but also enhance its chemical and mechanical stability. This work thus could provide a promising material for industrial hydrogen production.
Highlights:
1 N-doped graphene-coated structure and mesoporous nano-sheet can efficiently boost active sites and stability for hydrogen and oxygen evolution reaction.
2 NiCo@C-NiCoMoO/NF exhibits low overpotentials for HER (266 mV) and OER (390 mV) at ± 1000 mA cm−2.
3 For water electrolysis, it can hold at 1000 mA cm−2 for 43 h in 6.0 M KOH + 60 °C condition.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Hossain, K. Sakthipandi, A.K.M.A. Ullah, S. Roy, Recent progress and approaches on carbon-free energy from water splitting. Nano-Micro Lett. 11, 103 (2019). https://doi.org/10.1007/s40820-019-0335-4
- S.S. Chen, T. Hisatomi, G.J. Ma, Z. Wang, Z.H. Pan et al., Metal selenides for photocatalytic Z-scheme pure water splitting mediated by reduced graphene oxide. Chin. J. Catal. 40, 1668–1672 (2019). https://doi.org/10.1016/s1872-2067(19)63326-7
- P.W. Menezes, A. Indra, I. Zaharieva, C. Walter, S. Loos et al., Helical cobalt borophosphates to master durable overall water-splitting. Energy Environ. Sci. 12, 988–999 (2019). https://doi.org/10.1039/c8ee01669k
- T.Q. Yu, Q.L. Xu, G.F. Qian, J.L. Chen, H. Zhang et al., Amorphous CoOx-decorated crystalline RuO2 nanosheets as bifunctional catalysts for boosting overall water splitting at large current density. ACS Sustain. Chem. Eng. 8, 17520–17526 (2020). https://doi.org/10.1021/acssuschemeng.0c06782
- X. Luo, P.X. Ji, P.Y. Wang, R.L. Cheng, D. Chen et al., Interface engineering of hierarchical branched Mo-doped Ni3S2/NixPy hollow heterostructure nanorods for efficient overall water splitting. Adv. Energy Mater. 10, 1903891 (2020). https://doi.org/10.1002/aenm.201903891
- S.J. Deng, K.L. Zhang, D. Xie, Y. Zhang, Y.Q. Zhang et al., Hig-index-faceted Ni3S2 branch arrays as bifunctional electrocatalysts for efficient water splitting. Nano-Micro Lett. 11, 12 (2019). https://doi.org/10.1007/s40820-019-0242-8
- Z. Qiu, C.W. Tai, G.A. Niklasson, T. Edvinsson, Direct observation of active catalyst surface phases and the effect of dynamic self-optimization in NiFe-layered double hydroxides for alkaline water splitting. Energy Environ. Sci. 12, 572–581 (2019). https://doi.org/10.1039/c8ee03282c
- Q.J. Che, Q. Li, Y. Tan, X.H. Chen, X. Xu et al., One-step controllable synthesis of amorphous (Ni-Fe)S/NiFe(OH) hollow microtube/sphere films as superior bifunctional electrocatalysts for quasi-industrial water splitting at large-current-density. Appl. Catal. B 246, 337–348 (2019). https://doi.org/10.1016/j.apcatb.2019.01.082
- P. Babar, A. Lokhande, H.H. Shin, B. Pawar, M.G. Gang et al., Cobalt iron hydroxide as a precious metal-free bifunctional electrocatalyst for efficient overall water splitting. Small 14, 1702568 (2018). https://doi.org/10.1002/smll.201702568
- T. Ouyang, X.T. Wang, X.Q. Mai, A.N. Chen, Z.Y. Tang et al., Coupling magnetic single-crystal Co2Mo3O8 with ultrathin nitrogen-rich carbon layer for oxygen evolution reaction. Angew. Chem. Int. Ed. 59, 11948–11957 (2020). https://doi.org/10.1002/ange.202004533
- H.T. Liu, J.Y. Guan, S.X. Yang, Y.H. Yu, R. Shao et al., Metal-organic framework-derived Co2P nanoparticle/multi-doped porous carbon as a trifunctional electrocatalyst. Adv. Mater. 32, 2003649 (2020). https://doi.org/10.1002/adma.202003649
- J.W. Li, W.M. Xu, J.X. Luo, D. Zhou, D.W. Zhang et al., Synthesis of 3D hexagram-like cobalt-manganese sulfides nanosheets grown onnickel foam: a bifunctional electrocatalyst for overall water splitting. Nano-micro Lett. 10, 6 (2018). https://doi.org/10.1007/s40820-017-0160-6
- G.B. Darband, M. Aliofkhazraei, S. Hyun, A.S. Rouhaghdam, S. Shanmugam, Electrodeposited Ni–Co–P hierarchical nanostructure as a cost-effective and durable electrocatalyst with superior activity for bifunctional water splitting. J. Power Sources 429, 156–167 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.050
- S. Anantharaj, S. Chatterjee, K.C. Swaathini, T.S. Amarnath, E. Subhashini et al., Stainless steel scrubber: a cost efficient catalytic electrode for full water splitting in alkaline medium. ACS Sustain. Chem. Eng. 6, 2498–2509 (2018). https://doi.org/10.1021/acssuschemeng.7b03964
- J.J. Lu, S.B. Yin, P.K. Shen, Carbon-encapsulated electrocatalysts for the hydrogen evolution reaction. Electrochem. Energy Rev. 2, 105–127 (2018). https://doi.org/10.1007/s41918-018-0025-9
- Y.C. Tu, P.J. Ren, D.H. Deng, X.H. Bao, Structural and electronic optimization of graphene encapsulating binary metal for highly efficient water oxidation. Nano Energy 52, 494–500 (2018). https://doi.org/10.1016/j.nanoen.2018.07.062
- C.Y. Chen, S.L. Liu, X.Q. Mu, R.L. Cheng, S.Y. Lin et al., In situ engineering of hollow porous Mo2C@C nanoballs derived from giant Mo-polydopamine clusters as highly efficient electrocatalysts for hydrogen evolution. Front. Chem. 8, 170 (2020). https://doi.org/10.3389/fchem.2020.00170
- J.H. Cao, K.X. Wang, J.Y. Chen, C.J. Lei, B. Yang et al., Nitrogen-doped carbon-encased bimetallic selenide for high-performance water electrolysis. Nano-Micro Lett. 11, 67 (2019). https://doi.org/10.1007/s40820-019-0299-4
- G.F. Qian, J.L. Chen, L. Luo, T.Q. Yu, Y.M. Wang et al., Industrially promising nanowire heterostructure catalyst for enhancing overall water splitting at large current density. ACS Sustain. Chem. Eng. 8, 12063–12071 (2020). https://doi.org/10.1021/acssuschemeng.0c03263
- J. Balamurugan, T.T. Nguyen, V. Aravindan, N.H. Kim, J.H. Lee, Highly reversible water splitting cell building from hierarchical 3D nickel manganese oxyphosphide nanosheets. Nano Energy 69, 104432 (2020). https://doi.org/10.1016/j.nanoen.2019.104432
- S. Niu, W.J. Jiang, T. Tang, L.P. Yuan, H. Luo et al., Autogenous growth of hierarchical NiFe(OH)x/FeS nanosheet-on-microsheet arrays for synergistically enhanced high-output water oxidation. Adv. Funct. Mater. 29, 1902180 (2019). https://doi.org/10.1002/adfm.201902180
- J.X. Yuan, X.D. Cheng, H.Q. Wang, C.J. Lei, S. Pardiwala et al., A superaerophobic bimetallic selenides heterostructure for efficient industrial-level oxygen evolution at ultra-high current densities. Nano-Micro Lett. 12, 104 (2020). https://doi.org/10.1007/s40820-020-00442-0
- S. Xue, Z.B. Liu, C.Q. Ma, H.M. Cheng, W.C. Ren, A highly active and durable electrocatalyst for large current density hydrogen evolution reaction. Sci. Bull. 65, 123–130 (2020). https://doi.org/10.1016/j.scib.2019.10.024
- J.U. Yang, A.R. Mohmad, Y. Wang, R. Fullon, X.J. Song et al., Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nat. Mater. 18, 1309–1314 (2019). https://doi.org/10.1038/s41563-019-0463-8
- A. Saad, H.J. Shen, Z.X. Cheng, R. Arbi, B.B. Guo et al., Mesoporous ternary nitrides of earth-abundant metals as oxygen evolution electrocatalyst. Nano-Micro Lett. 12, 79 (2020). https://doi.org/10.1007/s40820-020-0412-8
- Y. Li, B. Wei, Z.P. Yu, O. Bondarchuk, A. Araujo et al., Bifunctional porous cobalt phosphide foam for high-current-density alkaline water electrolysis with 4000-h long stability. ACS Sustain. Chem. Eng. 8, 10193–10200 (2020). https://doi.org/10.1021/acssuschemeng.0c02671
- S.C. Zhang, W.B. Wang, F.L. Hu, Y. Mi, S.Z. Wang et al., 2D CoOOH sheet-encapsulated Ni2P into tubular arrays realizing 1000 mA cm-2-level-current-density hydrogen evolution over 100 h in neutral water. Nano-Micro Lett. 12, 140 (2020). https://doi.org/10.1007/s40820-020-00476-4
- S.S. Wang, Y.C. Xu, R.R. Fu, H.H. Zhu, Q.Z. Jiao et al., Rational construction of hierarchically porous Fe-Co/N-doped carbon/rGO composites for broadband microwave absorption. Nano-Micro Lett. 11, 76 (2019). https://doi.org/10.1007/s40820-019-0307-8
- A. Kumar, S. Bhattacharyya, Porous NiFe-oxide nanocubes as bifunctional electrocatalysts for efficient water-splitting. ACS Appl. Mater. Interfaces 9, 41906–41915 (2017). https://doi.org/10.1021/acsami.7b14096
- H.M. Sun, C.Y. Tian, G.L. Fan, J.N. Qi, Z.T. Liu et al., Boosting activity on Co4N porous nanosheet by coupling CeO2 for efficient electrochemical overall water splitting at high current densities. Adv. Funct. Mater. 30, 1910596 (2020). https://doi.org/10.1002/adfm.201910596
- L. Yu, I.K. Mishra, Y.L. Xie, H.Q. Zhou, J.Y. Sun et al., Ternary Ni2(1–x)Mo2xP nanowire arrays toward efficient and stable hydrogen evolution electrocatalysis under large-current-density. Nano Energy 53, 492–500 (2018). https://doi.org/10.1016/j.nanoen.2018.08.025
- Q. Zhang, W. Chen, G.L. Chen, J. Huang, C.S. Song et al., Bi-metallic nitroxide nanodot-decorated tri-metallic sulphide nanosheets by on-electrode plasma-hydrothermal sprouting for overall water splitting. Appl. Catal. B 261, 118254 (2020). https://doi.org/10.1016/j.apcatb.2019.118254
- G.X. Wang, W. Chen, G.L. Chen, J. Huang, C.S. Song et al., Trimetallic Mo-Ni-Co selenides nanorod electrocatalysts for highly-efficient and ultra-stable hydrogen evolution. Nano Energy 71, 104637 (2020). https://doi.org/10.1016/j.nanoen.2020.104637
- D.L. Chen, Z.M. Xu, W. Chen, G.L. Chen, J. Huang et al., Mulberry-inspired nickel-niobium phosphide on plasma-defect-engineered carbon support for high-performance hydrogen evolution. Small 16, 2004843 (2020). https://doi.org/10.1002/smll.202004843
- D.L. Chen, Z.M. Xu, W. Chen, G.L. Chen, J. Huang et al., Just add water to split water: ultrahigh-performance bifunctional electrocatalysts fabricated using eco-friendly heterointerfacing of NiCo diselenides. J. Mater. Chem. A 8, 12035–12044 (2020). https://doi.org/10.1039/D0TA02121K
- C. Yu, J.J. Lu, L. Luo, F. Xu, P.K. Shen et al., Bifunctional catalysts for overall water splitting: CoNi oxyhydroxide nanosheets electrodeposited on titanium sheets. Electrochim. Acta 301, 449–457 (2019). https://doi.org/10.1016/j.electacta.2019.01.149
- S.W. Wen, T. Yang, N.Q. Zhao, L.Y. Ma, E.Z. Liu, Ni-Co-Mo-O nanosheets decorated with NiCo nanoparticles as advanced electrocatalysts for highly efficient hydrogen evolution. Appl. Catal. B 258, 117953 (2019). https://doi.org/10.1016/j.apcatb.2019.117953
- G.C. Yang, Y.Q. Jiao, H.J. Yan, Y. Xie, A.P. Wu et al., Interfacial engineering of MoO2-FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation. Adv. Mater. 32, 2000455 (2020). https://doi.org/10.1002/adma.202000455
- H.J. Yan, Y. Xie, A.P. Wu, Z.C. Cai, L. Wang et al., Anion-modulated HER and OER activities of 3D Ni–V-based interstitial compound heterojunctions for high-efficiency and stable overall water splitting. Adv. Mater. 31, 1901174 (2019). https://doi.org/10.1002/adma.201901174
- M. Ming, Y.L. Ma, Y. Zhang, L.B. Huang, L. Zhao et al., 3D nanoporous Ni/V2O3 hybrid nanoplate assemblies for highly efficient electrochemical hydrogen evolution. J. Mater. Chem. A 6, 21452–21457 (2018). https://doi.org/10.1039/C8TA07701K
- G.F. Qian, G.T. Yu, J.J. Lu, L. Luo, T. Wang et al., Ultra-thin N-doped-graphene encapsulated Ni nanoparticles coupled with MoO2 nanosheets for highly efficient water splitting at large current density. J. Mater. Chem. A 8, 14545–14554 (2020). https://doi.org/10.1039/d0ta04388e
- S.Y. Jing, L.S. Zhang, L. Luo, J.J. Lu, S.B. Yin et al., N-doped porous molybdenum carbide nanobelts as efficient catalysts for hydrogen evolution reaction. Appl. Catal. B 224, 533–540 (2018). https://doi.org/10.1016/j.apcatb.2017.10.025
- J. Zhang, T. Wang, P. Liu, Z.Q. Liao, S.H. Liu et al., Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 8, 15437 (2017). https://doi.org/10.1038/ncomms15437
- M.J. Zang, N. Xu, G.X. Cao, Z.J. Chen, J. Cui et al., Cobalt molybdenum oxide derived high-performance electrocatalyst for the hydrogen evolution reaction. ACS Catal. 8, 5062–5069 (2018). https://doi.org/10.1021/acscatal.8b00949
- D.H. Deng, K.S. Novoselov, Q. Fu, N.F. Zheng, Z.Q. Tian et al., Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11, 218–230 (2016). https://doi.org/10.1038/nnano.2015.340
- X.R. Gao, X.M. Liu, W.J. Zang, H.L. Dong, Y.J. Pang et al., Synergizing in-grown Ni3N/Ni heterostructured core and ultrathin Ni3N surface shell enables self-adaptive surface reconfiguration and efficient oxygen evolution reaction. Nano Energy (2020). https://doi.org/10.1016/j.nanoen.2020.105355
- J. Jian, L. Yuan, H. Qi, X.J. Sun, L. Zhang et al., Sn-Ni3S2 ultrathin nanosheets as efficient bifunctional water-splitting catalysts with a large current density and low overpotential. ACS Appl. Mater. Interfaces 10, 40568–40576 (2018). https://doi.org/10.1021/acsami.8b14603
- Y.T. Luo, L. Tang, U. Khan, Q.M. Yu, H.M. Cheng et al., Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat. Commun. 10, 269 (2019). https://doi.org/10.1038/s41467-018-07792-9
- Y. Li, F.M. Li, X.Y. Meng, S.N. Li, J.H. Zeng et al., Ultrathin Co3O4 nanomeshes for the oxygen evolution reaction. ACS Catal. 8, 1913–1920 (2018). https://doi.org/10.1021/acscatal.7b03949
- L. Hui, Y.R. Xue, D.Z. Jia, H.D. Yu, C. Zhang et al., Multifunctional single-crystallized carbonate hydroxides as highly efficient electrocatalyst for full water splitting. Adv. Energy Mater. 8, 1800175 (2018). https://doi.org/10.1002/aenm.201800175
- F. Yu, H.Q. Zhou, Y.F. Huang, J.Y. Sun, F. Qin et al., High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nat. Commun. 9, 2551 (2018). https://doi.org/10.1038/s41467-018-04746-z
- X. Yu, Z.Y. Yu, X.L. Zhang, Y.R. Zheng, Y. Duan et al., “Superaerophobic” nickel phosphide nanoarray catalyst for efficient hydrogen evolution at ultrahigh current densities. J. Am. Chem. Soc. 141, 7537–7543 (2019). https://doi.org/10.1021/jacs.9b02527
- T. Tang, W.J. Jiang, S. Niu, N. Liu, H. Luo et al., Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting. J. Am. Chem. Soc. 139, 8320–8328 (2017). https://doi.org/10.1021/jacs.7b03507
- X. Zou, Y.P. Liu, G.D. Li, Y.Y. Wu, D.P. Liu et al., Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis. Adv. Mater. 29, 1700404 (2017). https://doi.org/10.1002/adma.201700404
- L.M. Cao, Y.W. Hu, S.F. Tang, A. Iljin, J.W. Wang et al., Fe-CoP electrocatalyst derived from a bimetallic prussian blue analogue for large-current-density oxygen evolution and overall water splitting. Adv. Sci. 5, 1800949 (2018). https://doi.org/10.1002/advs.201800949
- N. Zhang, Y. Gao, Y.H. Mei, J. Liu, W.Y. Song et al., CuS-Ni3S2 grown in situ from three-dimensional porous bimetallic foam for efficient oxygen evolution. Inorg. Chem. Front. 6, 293–302 (2019). https://doi.org/10.1039/c8qi01148f
- X.X. Zou, Y.Y. Wu, Y.P. Liu, D.P. Liu, W. Li et al., In situ generation of bifunctional, efficient Fe-based catalysts from mackinawite iron sulfide for water splitting. Chem 4, 1139–1152 (2018). https://doi.org/10.1016/j.chempr.2018.02.023
References
A. Hossain, K. Sakthipandi, A.K.M.A. Ullah, S. Roy, Recent progress and approaches on carbon-free energy from water splitting. Nano-Micro Lett. 11, 103 (2019). https://doi.org/10.1007/s40820-019-0335-4
S.S. Chen, T. Hisatomi, G.J. Ma, Z. Wang, Z.H. Pan et al., Metal selenides for photocatalytic Z-scheme pure water splitting mediated by reduced graphene oxide. Chin. J. Catal. 40, 1668–1672 (2019). https://doi.org/10.1016/s1872-2067(19)63326-7
P.W. Menezes, A. Indra, I. Zaharieva, C. Walter, S. Loos et al., Helical cobalt borophosphates to master durable overall water-splitting. Energy Environ. Sci. 12, 988–999 (2019). https://doi.org/10.1039/c8ee01669k
T.Q. Yu, Q.L. Xu, G.F. Qian, J.L. Chen, H. Zhang et al., Amorphous CoOx-decorated crystalline RuO2 nanosheets as bifunctional catalysts for boosting overall water splitting at large current density. ACS Sustain. Chem. Eng. 8, 17520–17526 (2020). https://doi.org/10.1021/acssuschemeng.0c06782
X. Luo, P.X. Ji, P.Y. Wang, R.L. Cheng, D. Chen et al., Interface engineering of hierarchical branched Mo-doped Ni3S2/NixPy hollow heterostructure nanorods for efficient overall water splitting. Adv. Energy Mater. 10, 1903891 (2020). https://doi.org/10.1002/aenm.201903891
S.J. Deng, K.L. Zhang, D. Xie, Y. Zhang, Y.Q. Zhang et al., Hig-index-faceted Ni3S2 branch arrays as bifunctional electrocatalysts for efficient water splitting. Nano-Micro Lett. 11, 12 (2019). https://doi.org/10.1007/s40820-019-0242-8
Z. Qiu, C.W. Tai, G.A. Niklasson, T. Edvinsson, Direct observation of active catalyst surface phases and the effect of dynamic self-optimization in NiFe-layered double hydroxides for alkaline water splitting. Energy Environ. Sci. 12, 572–581 (2019). https://doi.org/10.1039/c8ee03282c
Q.J. Che, Q. Li, Y. Tan, X.H. Chen, X. Xu et al., One-step controllable synthesis of amorphous (Ni-Fe)S/NiFe(OH) hollow microtube/sphere films as superior bifunctional electrocatalysts for quasi-industrial water splitting at large-current-density. Appl. Catal. B 246, 337–348 (2019). https://doi.org/10.1016/j.apcatb.2019.01.082
P. Babar, A. Lokhande, H.H. Shin, B. Pawar, M.G. Gang et al., Cobalt iron hydroxide as a precious metal-free bifunctional electrocatalyst for efficient overall water splitting. Small 14, 1702568 (2018). https://doi.org/10.1002/smll.201702568
T. Ouyang, X.T. Wang, X.Q. Mai, A.N. Chen, Z.Y. Tang et al., Coupling magnetic single-crystal Co2Mo3O8 with ultrathin nitrogen-rich carbon layer for oxygen evolution reaction. Angew. Chem. Int. Ed. 59, 11948–11957 (2020). https://doi.org/10.1002/ange.202004533
H.T. Liu, J.Y. Guan, S.X. Yang, Y.H. Yu, R. Shao et al., Metal-organic framework-derived Co2P nanoparticle/multi-doped porous carbon as a trifunctional electrocatalyst. Adv. Mater. 32, 2003649 (2020). https://doi.org/10.1002/adma.202003649
J.W. Li, W.M. Xu, J.X. Luo, D. Zhou, D.W. Zhang et al., Synthesis of 3D hexagram-like cobalt-manganese sulfides nanosheets grown onnickel foam: a bifunctional electrocatalyst for overall water splitting. Nano-micro Lett. 10, 6 (2018). https://doi.org/10.1007/s40820-017-0160-6
G.B. Darband, M. Aliofkhazraei, S. Hyun, A.S. Rouhaghdam, S. Shanmugam, Electrodeposited Ni–Co–P hierarchical nanostructure as a cost-effective and durable electrocatalyst with superior activity for bifunctional water splitting. J. Power Sources 429, 156–167 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.050
S. Anantharaj, S. Chatterjee, K.C. Swaathini, T.S. Amarnath, E. Subhashini et al., Stainless steel scrubber: a cost efficient catalytic electrode for full water splitting in alkaline medium. ACS Sustain. Chem. Eng. 6, 2498–2509 (2018). https://doi.org/10.1021/acssuschemeng.7b03964
J.J. Lu, S.B. Yin, P.K. Shen, Carbon-encapsulated electrocatalysts for the hydrogen evolution reaction. Electrochem. Energy Rev. 2, 105–127 (2018). https://doi.org/10.1007/s41918-018-0025-9
Y.C. Tu, P.J. Ren, D.H. Deng, X.H. Bao, Structural and electronic optimization of graphene encapsulating binary metal for highly efficient water oxidation. Nano Energy 52, 494–500 (2018). https://doi.org/10.1016/j.nanoen.2018.07.062
C.Y. Chen, S.L. Liu, X.Q. Mu, R.L. Cheng, S.Y. Lin et al., In situ engineering of hollow porous Mo2C@C nanoballs derived from giant Mo-polydopamine clusters as highly efficient electrocatalysts for hydrogen evolution. Front. Chem. 8, 170 (2020). https://doi.org/10.3389/fchem.2020.00170
J.H. Cao, K.X. Wang, J.Y. Chen, C.J. Lei, B. Yang et al., Nitrogen-doped carbon-encased bimetallic selenide for high-performance water electrolysis. Nano-Micro Lett. 11, 67 (2019). https://doi.org/10.1007/s40820-019-0299-4
G.F. Qian, J.L. Chen, L. Luo, T.Q. Yu, Y.M. Wang et al., Industrially promising nanowire heterostructure catalyst for enhancing overall water splitting at large current density. ACS Sustain. Chem. Eng. 8, 12063–12071 (2020). https://doi.org/10.1021/acssuschemeng.0c03263
J. Balamurugan, T.T. Nguyen, V. Aravindan, N.H. Kim, J.H. Lee, Highly reversible water splitting cell building from hierarchical 3D nickel manganese oxyphosphide nanosheets. Nano Energy 69, 104432 (2020). https://doi.org/10.1016/j.nanoen.2019.104432
S. Niu, W.J. Jiang, T. Tang, L.P. Yuan, H. Luo et al., Autogenous growth of hierarchical NiFe(OH)x/FeS nanosheet-on-microsheet arrays for synergistically enhanced high-output water oxidation. Adv. Funct. Mater. 29, 1902180 (2019). https://doi.org/10.1002/adfm.201902180
J.X. Yuan, X.D. Cheng, H.Q. Wang, C.J. Lei, S. Pardiwala et al., A superaerophobic bimetallic selenides heterostructure for efficient industrial-level oxygen evolution at ultra-high current densities. Nano-Micro Lett. 12, 104 (2020). https://doi.org/10.1007/s40820-020-00442-0
S. Xue, Z.B. Liu, C.Q. Ma, H.M. Cheng, W.C. Ren, A highly active and durable electrocatalyst for large current density hydrogen evolution reaction. Sci. Bull. 65, 123–130 (2020). https://doi.org/10.1016/j.scib.2019.10.024
J.U. Yang, A.R. Mohmad, Y. Wang, R. Fullon, X.J. Song et al., Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nat. Mater. 18, 1309–1314 (2019). https://doi.org/10.1038/s41563-019-0463-8
A. Saad, H.J. Shen, Z.X. Cheng, R. Arbi, B.B. Guo et al., Mesoporous ternary nitrides of earth-abundant metals as oxygen evolution electrocatalyst. Nano-Micro Lett. 12, 79 (2020). https://doi.org/10.1007/s40820-020-0412-8
Y. Li, B. Wei, Z.P. Yu, O. Bondarchuk, A. Araujo et al., Bifunctional porous cobalt phosphide foam for high-current-density alkaline water electrolysis with 4000-h long stability. ACS Sustain. Chem. Eng. 8, 10193–10200 (2020). https://doi.org/10.1021/acssuschemeng.0c02671
S.C. Zhang, W.B. Wang, F.L. Hu, Y. Mi, S.Z. Wang et al., 2D CoOOH sheet-encapsulated Ni2P into tubular arrays realizing 1000 mA cm-2-level-current-density hydrogen evolution over 100 h in neutral water. Nano-Micro Lett. 12, 140 (2020). https://doi.org/10.1007/s40820-020-00476-4
S.S. Wang, Y.C. Xu, R.R. Fu, H.H. Zhu, Q.Z. Jiao et al., Rational construction of hierarchically porous Fe-Co/N-doped carbon/rGO composites for broadband microwave absorption. Nano-Micro Lett. 11, 76 (2019). https://doi.org/10.1007/s40820-019-0307-8
A. Kumar, S. Bhattacharyya, Porous NiFe-oxide nanocubes as bifunctional electrocatalysts for efficient water-splitting. ACS Appl. Mater. Interfaces 9, 41906–41915 (2017). https://doi.org/10.1021/acsami.7b14096
H.M. Sun, C.Y. Tian, G.L. Fan, J.N. Qi, Z.T. Liu et al., Boosting activity on Co4N porous nanosheet by coupling CeO2 for efficient electrochemical overall water splitting at high current densities. Adv. Funct. Mater. 30, 1910596 (2020). https://doi.org/10.1002/adfm.201910596
L. Yu, I.K. Mishra, Y.L. Xie, H.Q. Zhou, J.Y. Sun et al., Ternary Ni2(1–x)Mo2xP nanowire arrays toward efficient and stable hydrogen evolution electrocatalysis under large-current-density. Nano Energy 53, 492–500 (2018). https://doi.org/10.1016/j.nanoen.2018.08.025
Q. Zhang, W. Chen, G.L. Chen, J. Huang, C.S. Song et al., Bi-metallic nitroxide nanodot-decorated tri-metallic sulphide nanosheets by on-electrode plasma-hydrothermal sprouting for overall water splitting. Appl. Catal. B 261, 118254 (2020). https://doi.org/10.1016/j.apcatb.2019.118254
G.X. Wang, W. Chen, G.L. Chen, J. Huang, C.S. Song et al., Trimetallic Mo-Ni-Co selenides nanorod electrocatalysts for highly-efficient and ultra-stable hydrogen evolution. Nano Energy 71, 104637 (2020). https://doi.org/10.1016/j.nanoen.2020.104637
D.L. Chen, Z.M. Xu, W. Chen, G.L. Chen, J. Huang et al., Mulberry-inspired nickel-niobium phosphide on plasma-defect-engineered carbon support for high-performance hydrogen evolution. Small 16, 2004843 (2020). https://doi.org/10.1002/smll.202004843
D.L. Chen, Z.M. Xu, W. Chen, G.L. Chen, J. Huang et al., Just add water to split water: ultrahigh-performance bifunctional electrocatalysts fabricated using eco-friendly heterointerfacing of NiCo diselenides. J. Mater. Chem. A 8, 12035–12044 (2020). https://doi.org/10.1039/D0TA02121K
C. Yu, J.J. Lu, L. Luo, F. Xu, P.K. Shen et al., Bifunctional catalysts for overall water splitting: CoNi oxyhydroxide nanosheets electrodeposited on titanium sheets. Electrochim. Acta 301, 449–457 (2019). https://doi.org/10.1016/j.electacta.2019.01.149
S.W. Wen, T. Yang, N.Q. Zhao, L.Y. Ma, E.Z. Liu, Ni-Co-Mo-O nanosheets decorated with NiCo nanoparticles as advanced electrocatalysts for highly efficient hydrogen evolution. Appl. Catal. B 258, 117953 (2019). https://doi.org/10.1016/j.apcatb.2019.117953
G.C. Yang, Y.Q. Jiao, H.J. Yan, Y. Xie, A.P. Wu et al., Interfacial engineering of MoO2-FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation. Adv. Mater. 32, 2000455 (2020). https://doi.org/10.1002/adma.202000455
H.J. Yan, Y. Xie, A.P. Wu, Z.C. Cai, L. Wang et al., Anion-modulated HER and OER activities of 3D Ni–V-based interstitial compound heterojunctions for high-efficiency and stable overall water splitting. Adv. Mater. 31, 1901174 (2019). https://doi.org/10.1002/adma.201901174
M. Ming, Y.L. Ma, Y. Zhang, L.B. Huang, L. Zhao et al., 3D nanoporous Ni/V2O3 hybrid nanoplate assemblies for highly efficient electrochemical hydrogen evolution. J. Mater. Chem. A 6, 21452–21457 (2018). https://doi.org/10.1039/C8TA07701K
G.F. Qian, G.T. Yu, J.J. Lu, L. Luo, T. Wang et al., Ultra-thin N-doped-graphene encapsulated Ni nanoparticles coupled with MoO2 nanosheets for highly efficient water splitting at large current density. J. Mater. Chem. A 8, 14545–14554 (2020). https://doi.org/10.1039/d0ta04388e
S.Y. Jing, L.S. Zhang, L. Luo, J.J. Lu, S.B. Yin et al., N-doped porous molybdenum carbide nanobelts as efficient catalysts for hydrogen evolution reaction. Appl. Catal. B 224, 533–540 (2018). https://doi.org/10.1016/j.apcatb.2017.10.025
J. Zhang, T. Wang, P. Liu, Z.Q. Liao, S.H. Liu et al., Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 8, 15437 (2017). https://doi.org/10.1038/ncomms15437
M.J. Zang, N. Xu, G.X. Cao, Z.J. Chen, J. Cui et al., Cobalt molybdenum oxide derived high-performance electrocatalyst for the hydrogen evolution reaction. ACS Catal. 8, 5062–5069 (2018). https://doi.org/10.1021/acscatal.8b00949
D.H. Deng, K.S. Novoselov, Q. Fu, N.F. Zheng, Z.Q. Tian et al., Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11, 218–230 (2016). https://doi.org/10.1038/nnano.2015.340
X.R. Gao, X.M. Liu, W.J. Zang, H.L. Dong, Y.J. Pang et al., Synergizing in-grown Ni3N/Ni heterostructured core and ultrathin Ni3N surface shell enables self-adaptive surface reconfiguration and efficient oxygen evolution reaction. Nano Energy (2020). https://doi.org/10.1016/j.nanoen.2020.105355
J. Jian, L. Yuan, H. Qi, X.J. Sun, L. Zhang et al., Sn-Ni3S2 ultrathin nanosheets as efficient bifunctional water-splitting catalysts with a large current density and low overpotential. ACS Appl. Mater. Interfaces 10, 40568–40576 (2018). https://doi.org/10.1021/acsami.8b14603
Y.T. Luo, L. Tang, U. Khan, Q.M. Yu, H.M. Cheng et al., Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat. Commun. 10, 269 (2019). https://doi.org/10.1038/s41467-018-07792-9
Y. Li, F.M. Li, X.Y. Meng, S.N. Li, J.H. Zeng et al., Ultrathin Co3O4 nanomeshes for the oxygen evolution reaction. ACS Catal. 8, 1913–1920 (2018). https://doi.org/10.1021/acscatal.7b03949
L. Hui, Y.R. Xue, D.Z. Jia, H.D. Yu, C. Zhang et al., Multifunctional single-crystallized carbonate hydroxides as highly efficient electrocatalyst for full water splitting. Adv. Energy Mater. 8, 1800175 (2018). https://doi.org/10.1002/aenm.201800175
F. Yu, H.Q. Zhou, Y.F. Huang, J.Y. Sun, F. Qin et al., High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nat. Commun. 9, 2551 (2018). https://doi.org/10.1038/s41467-018-04746-z
X. Yu, Z.Y. Yu, X.L. Zhang, Y.R. Zheng, Y. Duan et al., “Superaerophobic” nickel phosphide nanoarray catalyst for efficient hydrogen evolution at ultrahigh current densities. J. Am. Chem. Soc. 141, 7537–7543 (2019). https://doi.org/10.1021/jacs.9b02527
T. Tang, W.J. Jiang, S. Niu, N. Liu, H. Luo et al., Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting. J. Am. Chem. Soc. 139, 8320–8328 (2017). https://doi.org/10.1021/jacs.7b03507
X. Zou, Y.P. Liu, G.D. Li, Y.Y. Wu, D.P. Liu et al., Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis. Adv. Mater. 29, 1700404 (2017). https://doi.org/10.1002/adma.201700404
L.M. Cao, Y.W. Hu, S.F. Tang, A. Iljin, J.W. Wang et al., Fe-CoP electrocatalyst derived from a bimetallic prussian blue analogue for large-current-density oxygen evolution and overall water splitting. Adv. Sci. 5, 1800949 (2018). https://doi.org/10.1002/advs.201800949
N. Zhang, Y. Gao, Y.H. Mei, J. Liu, W.Y. Song et al., CuS-Ni3S2 grown in situ from three-dimensional porous bimetallic foam for efficient oxygen evolution. Inorg. Chem. Front. 6, 293–302 (2019). https://doi.org/10.1039/c8qi01148f
X.X. Zou, Y.Y. Wu, Y.P. Liu, D.P. Liu, W. Li et al., In situ generation of bifunctional, efficient Fe-based catalysts from mackinawite iron sulfide for water splitting. Chem 4, 1139–1152 (2018). https://doi.org/10.1016/j.chempr.2018.02.023