Efficient Photoelectrochemical Water Splitting by g-C3N4/TiO2 Nanotube Array Heterostructures
Corresponding Author: Zhidong Chen
Nano-Micro Letters,
Vol. 10 No. 2 (2018), Article Number: 37
Abstract
Well-ordered TiO2 nanotube arrays (TNTAs) decorated with graphitic carbon nitride (g-C3N4) were fabricated by anodic oxidization and calcination process. First, TNTAs were prepared via the anodic oxidation of Ti foil in glycerol solution containing fluorinion and 20% deionized water. Subsequently, g-C3N4 film was hydrothermally grown on TNTAs via the hydrogen-bonded cyanuric acid melamine supramolecular complex. The results showed that g-C3N4 was successfully decorated on the TNTAs and the g-C3N4/TNTAs served as an efficient and stable photoanode for photoelectrochemical water splitting. The facile deposition method enables the fabrication of efficient and low-cost photoanodes for renewable energy applications.
Highlights:
1 Well-ordered TiO2 nanotube arrays (TNTAs) decorated with g-C3N4 were fabricated by anodic oxidization of titanium foil and calcination process.
2 The g-C3N4/TNTA heterojunction efficiently enhanced the photoelectrochemical activity for solar light-driven water splitting. Its photocurrent density and applied bias photon-to-current efficiency were, respectively, ~ 0.86 mA cm−2 and ~ 0.25%, about twofold higher compared with those of pristine TiO2 nanotube arrays.
3 The heterojunction expanded the optical absorption range of the TNTAs, accelerated the migration of carriers, and suppressed the recombination of photogenerated electron–hole pairs via an efficient band alignment between TiO2 and g-C3N4.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Grätzel, Photoelectrochemical cells. Nature 414, 338–344 (2001). https://doi.org/10.1038/35104607
- F.E. Osterloh, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42, 2294–2320 (2013). https://doi.org/10.1039/C2CS35266D
- G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R.C. Fitzmorris, C. Wang, J.Z. Zhang, Y. Li, Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11(7), 3026–3033 (2011). https://doi.org/10.1021/nl201766h
- Y. Hou, F. Zuo, A. Dagg, P. Feng, A three-dimensional branched cobalt-doped α-Fe2O3 Nanorod/MgFe2O4 heterojunction array as a flexible photoanode for efficient photoelectrochemical water oxidation. Angew. Chem. Int. Ed. 125(4), 1286–1290 (2013). https://doi.org/10.1002/ange.201207578
- K.D. Malviya, D. Klotz, H.D. Dmitry, D. Shlenkevich, A. Tsyanok, H. Mor, A. Rothschild, Influence of Ti doping levels on the photoelectrochemical properties of thin-film hematite (α-Fe2O3) photoanodes. J. Phys. Chem. C 121(8), 4206–4213 (2017). https://doi.org/10.1021/acs.jpcc.7b00442
- F.X. Xiao, J. Miao, B. Liu, Layer-by-layer self-assembly of CdS quantum dots/graphene nanosheets hybrid films for photoelectrochemical and photocatalytic applications. J. Am. Chem. Soc. 136(4), 1559–1569 (2014). https://doi.org/10.1021/ja411651e
- X. Wang, C. Liow, D. Qi, B. Zhu, W.R. Leow, H. Wang, C. Xue, X. Chen, S. Li, Programmable photo-electrochemical hydrogen evolution based on multi-segmented CdS-Au nanorod arrays. Adv. Mater. 26(21), 3506–3512 (2014). https://doi.org/10.1002/adma.201306201
- C.H. Liu, Y.Y. Qiu, F. Wang, L. Li, Q. Liang, Z.D. Chen, Electrodeposition of ZnO nanoflake-based photoanode sensitized by carbon quantum dots for photoelectrochemical water oxidation. Ceram. Int. 43(6), 5329–5333 (2017). https://doi.org/10.1016/j.ceramint.2016.11.129
- M. Shao, F. Ning, M. Wei, D.G. Evans, X. Duan, Hierarchical nanowire arrays based on ZnO core-layered double hydroxide shell for largely enhanced photoelectrochemical water splitting. Adv. Fun. Mater. 24(5), 580–586 (2014). https://doi.org/10.1002/adfm.201301889
- M. Li, R. Zhao, Y. Su, J. Hu, Z. Yang, Y. Zhang, Synthesis of CuInS2 nanowire arrays via solution transformation of Cu2S self-template for enhanced photoelectrochemical performance. Appl. Catal. B 203, 715–724 (2017). https://doi.org/10.1016/j.apcatb.2016.10.051
- W. Shi, X. Zhang, J. Brillet, D. Huang, M. Li, M. Wang, Y. Shen, Significant enhancement of the photoelectrochemical activity of WO3 nanoflakes by carbon quantum dots decoration. Carbon 105, 387–393 (2016). https://doi.org/10.1016/j.carbon.2016.04.051
- Y.C. Pu, G. Wang, K.D. Chang, Y. Ling, Y.K. Lin et al., Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett. 13(8), 3817–3823 (2013). https://doi.org/10.1021/nl4018385
- X.P. Chen, Z.X. Zhang, L.N. Chi, A.K. Nair, W.F. Shangguang, Z. Jiang, Recent advances in visible-light-driven photoelectrochemical water splitting: catalyst nanostructures and reaction systems. Nano Micro Lett. 8(1), 1–12 (2016). https://doi.org/10.1007/s40820-015-0063-3
- D.D. Qin, Y.P. Bi, X.J. Feng, W. Wang, G.D. Barber, T. Wang, Y.M. Song, X.Q. Lu, T.E. Mallouk, Hydrothermal growth and photoelectrochemistry of highly oriented, crystalline anatase TiO2 nanorods on transparent conducting electrodes. Chem. Mater. 27(12), 4180–4183 (2015). https://doi.org/10.1021/acs.chemmater.5b00782
- X. Li, J. Li, J. Bai, Y. Dong, L. Li, B. Zhou, The inhibition effect of tert-butyl alcohol on the TiO2 nano arrays photoelectrocatalytic degradation of different organics and its mechanism. Nano Micro Lett. 8(3), 221–231 (2016). https://doi.org/10.1007/s40820-015-0080-2
- H. Wu, D.D. Li, X.F. Zhu, C.Y. Yang, D.F. Liu, X.Y. Chen, Y. Song, L.F. Lu, High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach. Electrochim. Acta 116, 129–136 (2014). https://doi.org/10.1016/j.electacta.2013.10.092
- S.Y. Zhang, D.L. Yu, D.D. Li, Y. Song, J.F. Che, S.Y. You, X.F. Zhu, Forming process of anodic TiO2 nanotubes under a preformed compact surface layer. J. Electrochem. Soc. 161(10), E135–E141 (2014). https://doi.org/10.1149/2.0661410jes
- R. Reichert, Z. Jusys, R.J. Behm, Au/TiO2 Photo (electro) catalysis: the role of the Au cocatalyst in photoelectrochemical water splitting and photocatalytic H2 evolution. J. Phys. Chem. C 119(44), 24750–24759 (2015). https://doi.org/10.1021/acs.jpcc.5b08428
- X. Wang, J. Zhao, Y. Kang, L. Li, X. Xu, Photoelectrochemical properties of Fe-doped TiO2 nanotube arrays fabricated by anodization. J. Appl. Electrochem. 44(1), 1–4 (2014). https://doi.org/10.1007/s10800-013-0617-3
- J. Song, M. Zheng, X. Yuan, Q. Li, F. Wang et al., Electrochemically induced Ti3+ self-doping of TiO2 nanotube arrays for improved photoelectrochemical water splitting. J. Mater. Sci. 52(12), 6976–6986 (2017). https://doi.org/10.1007/s10800-013-0617-3
- P. Wang, J. Wang, T. Ming, X. Wang, H. Yu, J. Yu, Y. Wang, M. Lei, Dye-sensitization-induced visible-light reduction of graphene oxide for the enhanced TiO2 photocatalytic performance. ACS Appl. Mater. Interfaces 5(8), 2924–2929 (2013). https://doi.org/10.1021/am4008566
- M. Krbal, H. Sopha, V. Podzemna, S. Das, J. Prikryl, J.M. Macak, TiO2 nanotube/chalcogenide-based photoelectrochemical cell: nanotube diameter dependence study. J. Phys. Chem. C 121(11), 6065–6071 (2017). https://doi.org/10.1021/acs.jpcc.6b11283
- W. Yang, Y. Yu, M.B. Starr, X. Yin, Z. Li, A. Kvit, S. Wang, P. Zhao, X.D. Wang, Ferroelectric polarization-enhanced photoelectrochemical water splitting in TiO2-BaTiO3 core-shell nanowire photoanodes. Nano Lett. 15(11), 7574–7580 (2015). https://doi.org/10.1021/acs.nanolett.5b03988
- Q. Liu, H. Lu, Z. Shi, F. Wu, J. Guo, K. Deng, L. Li, 2D ZnIn2S4 nanosheet/1D TiO2 nanorod heterostructure arrays for improved photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 6(19), 17200–17207 (2014). https://doi.org/10.1021/am505015j
- Y.C. Bao, K.Z. Chen, AgCl/Ag/g-C3N4 hybrid composites: preparation, visible light drived photocatalytic activity and mechanism. Nano Micro Lett. 8(2), 182–192 (2016). https://doi.org/10.1007/s40820-015-0076-y
- Q. Xu, B. Cheng, J. Yu, G. Liu, Making co-condensed amorphous carbon/g-C3N4 composites with improved visible-light photocatalytic H2-production performance using Pt as cocatalyst. Carbon 118, 241–249 (2017). https://doi.org/10.1016/j.carbon.2017.03.052
- Q. Liang, J. Jin, M. Zhang, C.H. Liu, S. Xu, C. Yao, Z. Li, Construction of mesoporous carbon nitride/binary metal sulfide heterojunction photocatalysts for enhanced degradation of pollution under visible light. Appl. Catal. B 218(5), 545–554 (2017). https://doi.org/10.1016/j.apcatb.2017.07.003
- Y. Hou, Z. Wen, S. Cui, X. Guo, J. Chen, Constructing 2D porous graphitic C3N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv. Mater. 25(43), 6291–6297 (2013). https://doi.org/10.1002/adma.201303116
- Y. Tian, B. Chang, J. Lu, J. Fu, F. Xi, X. Dong, Hydrothermal synthesis of graphitic carbon nitride-Bi2WO6 heterojunctions with enhanced visible light photocatalytic activities. ACS Appl. Mater. Interfaces 5(15), 7079–7085 (2013). https://doi.org/10.1021/am4013819
- M. Shalom, S. Gimenez, F. Schipper, I. Herraiz-Cardona, J. Bisquert, M. Antonietti, Controlled carbon nitride growth on surfaces for hydrogen evolution electrodes. Angew. Chem. Int. Ed. 53(14), 3654–3658 (2014). https://doi.org/10.1002/ange.201309415
- H. Song, K. Jo, B.Y. Jung, G.Y. Jung, Fabrication of periodically aligned vertical single-crystalline anatase TiO2 nanotubes with perfect hexagonal open-ends using chemical capping materials. Nano Res. 7(1), 104–109 (2014). https://doi.org/10.1007/s12274-013-0377-8
- M. Xiong, L. Chen, Q. Yuan, J. He, S.L. Luo, C.T. Au et al., Controlled synthesis of graphitic carbon nitride/beta bismuth oxide composite and its high visible-light photocatalytic activity. Carbon 86, 217–224 (2015). https://doi.org/10.1016/j.carbon.2015.01.023
- R. Lei, J. Jian, Z. Zhang, B. Song, R. Wu, Bifunctional Ag/C3N4.5 composite nanobelts for photocatalysis and antibacterium. Nanotechnology 27, 395603 (2016). https://doi.org/10.1088/0957-4484/27/39/395603
- G.X. Wang, X.P. Shen, J. Yao, J. Park, Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47(8), 2049–2053 (2009). https://doi.org/10.1016/j.carbon.2009.03.053
- M. Li, R. Zhao, Y. Su, J. Hu, Z. Yang, Y. Zhang, Hierarchically CuInS2 Nanosheet-constructed nanowire arrays for photoelectrochemical water splitting. Adv. Mater. Interfaces 3(20), 1600494 (2016). https://doi.org/10.1002/admi.201600494
- J. Wang, Z.Q. Lin, Freestanding TiO2 nanotube arrays with ultrahigh aspect ratio via electrochemical anodization. Chem. Mater. 20(4), 1257–1261 (2008). https://doi.org/10.1021/cm7028917
- T. Ohsaka, F. Izumi, Y. Fujiki, Raman spectrum of anatase, TiO2. J. Raman Spectrosc. 7(6), 321–324 (1978). https://doi.org/10.1002/jrs.1250070606
- H. Liu, D. Chen, Z. Wang, H. Jing, R. Zhang, Microwave-assisted molten-salt rapid synthesis of isotype triazine-/heptazine based g-C3N4 heterojunctions with highly enhanced photocatalytic hydrogen evolution performance. Appl. Catal. B 203, 300–313 (2017). https://doi.org/10.1016/j.apcatb.2016.10.014
- D.J. Martin, K. Qiu, S.A. Shevlin, A.D. Handoko, X. Chen, Z. Guo, J. Tang, Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride. Angew. Chem. Int. Ed. 126(35), 9394–9399 (2014). https://doi.org/10.1002/anie.201403375
- S. Hu, L. Ma, J. You, F. Li, Z. Fan, G. Lu, D. Liu, J. Gui, Enhanced visible light photocatalytic performance of g-C3N4 photocatalysts co-doped with iron and phosphorus. Appl. Surf. Sci. 311, 164–171 (2014). https://doi.org/10.1016/j.apsusc.2014.05.036
- Q.H. Liang, Z. Li, X.L. Yu, Z.H. Huang, F.Y. Kang, Q.H. Yang, Macroscopic 3D porous graphitic carbon nitride monolith for enhanced photocatalytic hydrogen evolution. Adv. Mater. 27(31), 4634–4639 (2015). https://doi.org/10.1002/adma.201502057
- Z.F. Jiang, C.Z. Zhu, W.M. Wan, K. Qian, J.M. Xie, Constructing graphite-like carbon nitride modified hierarchical yolk-shell TiO2 spheres for water pollution treatment and hydrogen production. J. Mater. Chem. A 4(5), 1806–1818 (2016). https://doi.org/10.1039/C5TA09919F
- J. Xu, Y. Li, X. Zhou, Y. Li, Z.D. Gao, Y.Y. Song, P. Schmuki, Graphitic C3N4-sensitized TiO2 nanotube layers: a visible-light activated efficient metal-free antimicrobial platform. Chem. Eur. J. 22(12), 3947–3951 (2016). https://doi.org/10.1002/chem.201505173
- C. Zhao, G. Tan, J. Huang, W. Yang, H. Ren, A. Xia, Preparation of self-assembled spherical g-C3N4/tz-Bi0.92Gd0.08VO4 heterojunctions and their mineralization properties. ACS Appl. Mater. Interfaces 7(43), 23949–23957 (2015). https://doi.org/10.1021/acsami.5b06501
- Q. Liang, M. Zhang, C. Liu, S. Xu, Z. Li, Sulfur-doped graphitic carbon nitride decorated with zinc phthalocyanines towards highly stable and efficient photocatalysis. Appl. Catal. A 519(5), 107–115 (2016). https://doi.org/10.1016/j.apcata.2016.03.033
- C.H. Liu, Y.Y. Qiu, F. Wang, K. Wang, Q. Liang, C.Z. Chen, Design of core–shell-structured ZnO/ZnS hybridized with graphite-like C3N4 for highly efficient photoelectrochemical water splitting. Adv. Mater. Interfaces 4(21), 1700681 (2017). https://doi.org/10.1002/admi.201700681
- S.B.A. Hamid, S.J. The, C.W. Lai, S. Perathoner, G. Centi, Applied bias photon-to-current conversion efficiency of ZnO enhanced by hybridization with reduced graphene oxide. J. Energy Chem. 26(2), 302–308 (2017). https://doi.org/10.1016/j.jechem.2016.11.006
- T. An, J. Tang, Y. Zhang, Y. Quan, X. Gong, A.M. Al-Enizi, A.A. Elzatahry, L. Zhang, G.F. Zheng, Photoelectrochemical conversion from graphitic C3N4 quantum dot decorated semiconductor nanowires. ACS Appl. Mater. Interfaces 8(20), 12772–12779 (2016). https://doi.org/10.1021/acsami.6b01534
- H.J. Yun, H. Lee, N.D. Kim, J. Yi, Characterization of photocatalytic performance of silver deposited TiO2 nanorods. Electrochem. Commun. 11(2), 363–366 (2009). https://doi.org/10.1016/j.elecom.2008.11.044
- L. Ye, D. Wang, S. Chen, Fabrication and enhanced photoelectrochemical performance of MoS2/S-doped g-C3N4 heterojunction film. ACS Appl. Mater. Interfaces 8(8), 5280–5289 (2016). https://doi.org/10.1021/acsami.5b11326
- B. Liu, X.B. Li, Y.J. Gao, Z.J. Li, Q.Y. Meng, C.H. Tung, L.Z. Wu, A solution-processed, mercaptoacetic acid-engineered CdSe quantum dot photocathode for efficient hydrogen production under visible light irradiation. Energy Environ. Sci. 8(5), 1443–1449 (2015). https://doi.org/10.1039/C5EE00331H
- Y.C. Wang, Y.Y. Zhang, J. Tang, H.J. Wu, M. Xu, Z. Peng, X.G. Gong, G. Zheng, Simultaneous etching and doping of TiO2 nanowire arrays for enhanced photoelectrochemical performance. ACS Nano 7(10), 9375–9383 (2013). https://doi.org/10.1021/nn4040876
- J. Resasco, H. Zhang, N. Kornienko, N. Becknell, H. Lee, J.H. Guo, A.L. Briseno, P.D. Yang, TiO2/BiVO4 nanowire heterostructure photoanodes based on type II band alignment. ACS Cent. Sci. 2(2), 80–88 (2016). https://doi.org/10.1021/acscentsci.5b00402
- K. Sridharan, E. Jang, T.J. Park, Novel visible light active graphitic C3N4–TiO2 composite photocatalyst: synergistic synthesis, growth and photocatalytic treatment of hazardous pollutants. Appl. Catal. B 142–143, 718–728 (2013). https://doi.org/10.1016/j.apcatb.2013.05.077
References
M. Grätzel, Photoelectrochemical cells. Nature 414, 338–344 (2001). https://doi.org/10.1038/35104607
F.E. Osterloh, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42, 2294–2320 (2013). https://doi.org/10.1039/C2CS35266D
G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R.C. Fitzmorris, C. Wang, J.Z. Zhang, Y. Li, Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11(7), 3026–3033 (2011). https://doi.org/10.1021/nl201766h
Y. Hou, F. Zuo, A. Dagg, P. Feng, A three-dimensional branched cobalt-doped α-Fe2O3 Nanorod/MgFe2O4 heterojunction array as a flexible photoanode for efficient photoelectrochemical water oxidation. Angew. Chem. Int. Ed. 125(4), 1286–1290 (2013). https://doi.org/10.1002/ange.201207578
K.D. Malviya, D. Klotz, H.D. Dmitry, D. Shlenkevich, A. Tsyanok, H. Mor, A. Rothschild, Influence of Ti doping levels on the photoelectrochemical properties of thin-film hematite (α-Fe2O3) photoanodes. J. Phys. Chem. C 121(8), 4206–4213 (2017). https://doi.org/10.1021/acs.jpcc.7b00442
F.X. Xiao, J. Miao, B. Liu, Layer-by-layer self-assembly of CdS quantum dots/graphene nanosheets hybrid films for photoelectrochemical and photocatalytic applications. J. Am. Chem. Soc. 136(4), 1559–1569 (2014). https://doi.org/10.1021/ja411651e
X. Wang, C. Liow, D. Qi, B. Zhu, W.R. Leow, H. Wang, C. Xue, X. Chen, S. Li, Programmable photo-electrochemical hydrogen evolution based on multi-segmented CdS-Au nanorod arrays. Adv. Mater. 26(21), 3506–3512 (2014). https://doi.org/10.1002/adma.201306201
C.H. Liu, Y.Y. Qiu, F. Wang, L. Li, Q. Liang, Z.D. Chen, Electrodeposition of ZnO nanoflake-based photoanode sensitized by carbon quantum dots for photoelectrochemical water oxidation. Ceram. Int. 43(6), 5329–5333 (2017). https://doi.org/10.1016/j.ceramint.2016.11.129
M. Shao, F. Ning, M. Wei, D.G. Evans, X. Duan, Hierarchical nanowire arrays based on ZnO core-layered double hydroxide shell for largely enhanced photoelectrochemical water splitting. Adv. Fun. Mater. 24(5), 580–586 (2014). https://doi.org/10.1002/adfm.201301889
M. Li, R. Zhao, Y. Su, J. Hu, Z. Yang, Y. Zhang, Synthesis of CuInS2 nanowire arrays via solution transformation of Cu2S self-template for enhanced photoelectrochemical performance. Appl. Catal. B 203, 715–724 (2017). https://doi.org/10.1016/j.apcatb.2016.10.051
W. Shi, X. Zhang, J. Brillet, D. Huang, M. Li, M. Wang, Y. Shen, Significant enhancement of the photoelectrochemical activity of WO3 nanoflakes by carbon quantum dots decoration. Carbon 105, 387–393 (2016). https://doi.org/10.1016/j.carbon.2016.04.051
Y.C. Pu, G. Wang, K.D. Chang, Y. Ling, Y.K. Lin et al., Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett. 13(8), 3817–3823 (2013). https://doi.org/10.1021/nl4018385
X.P. Chen, Z.X. Zhang, L.N. Chi, A.K. Nair, W.F. Shangguang, Z. Jiang, Recent advances in visible-light-driven photoelectrochemical water splitting: catalyst nanostructures and reaction systems. Nano Micro Lett. 8(1), 1–12 (2016). https://doi.org/10.1007/s40820-015-0063-3
D.D. Qin, Y.P. Bi, X.J. Feng, W. Wang, G.D. Barber, T. Wang, Y.M. Song, X.Q. Lu, T.E. Mallouk, Hydrothermal growth and photoelectrochemistry of highly oriented, crystalline anatase TiO2 nanorods on transparent conducting electrodes. Chem. Mater. 27(12), 4180–4183 (2015). https://doi.org/10.1021/acs.chemmater.5b00782
X. Li, J. Li, J. Bai, Y. Dong, L. Li, B. Zhou, The inhibition effect of tert-butyl alcohol on the TiO2 nano arrays photoelectrocatalytic degradation of different organics and its mechanism. Nano Micro Lett. 8(3), 221–231 (2016). https://doi.org/10.1007/s40820-015-0080-2
H. Wu, D.D. Li, X.F. Zhu, C.Y. Yang, D.F. Liu, X.Y. Chen, Y. Song, L.F. Lu, High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach. Electrochim. Acta 116, 129–136 (2014). https://doi.org/10.1016/j.electacta.2013.10.092
S.Y. Zhang, D.L. Yu, D.D. Li, Y. Song, J.F. Che, S.Y. You, X.F. Zhu, Forming process of anodic TiO2 nanotubes under a preformed compact surface layer. J. Electrochem. Soc. 161(10), E135–E141 (2014). https://doi.org/10.1149/2.0661410jes
R. Reichert, Z. Jusys, R.J. Behm, Au/TiO2 Photo (electro) catalysis: the role of the Au cocatalyst in photoelectrochemical water splitting and photocatalytic H2 evolution. J. Phys. Chem. C 119(44), 24750–24759 (2015). https://doi.org/10.1021/acs.jpcc.5b08428
X. Wang, J. Zhao, Y. Kang, L. Li, X. Xu, Photoelectrochemical properties of Fe-doped TiO2 nanotube arrays fabricated by anodization. J. Appl. Electrochem. 44(1), 1–4 (2014). https://doi.org/10.1007/s10800-013-0617-3
J. Song, M. Zheng, X. Yuan, Q. Li, F. Wang et al., Electrochemically induced Ti3+ self-doping of TiO2 nanotube arrays for improved photoelectrochemical water splitting. J. Mater. Sci. 52(12), 6976–6986 (2017). https://doi.org/10.1007/s10800-013-0617-3
P. Wang, J. Wang, T. Ming, X. Wang, H. Yu, J. Yu, Y. Wang, M. Lei, Dye-sensitization-induced visible-light reduction of graphene oxide for the enhanced TiO2 photocatalytic performance. ACS Appl. Mater. Interfaces 5(8), 2924–2929 (2013). https://doi.org/10.1021/am4008566
M. Krbal, H. Sopha, V. Podzemna, S. Das, J. Prikryl, J.M. Macak, TiO2 nanotube/chalcogenide-based photoelectrochemical cell: nanotube diameter dependence study. J. Phys. Chem. C 121(11), 6065–6071 (2017). https://doi.org/10.1021/acs.jpcc.6b11283
W. Yang, Y. Yu, M.B. Starr, X. Yin, Z. Li, A. Kvit, S. Wang, P. Zhao, X.D. Wang, Ferroelectric polarization-enhanced photoelectrochemical water splitting in TiO2-BaTiO3 core-shell nanowire photoanodes. Nano Lett. 15(11), 7574–7580 (2015). https://doi.org/10.1021/acs.nanolett.5b03988
Q. Liu, H. Lu, Z. Shi, F. Wu, J. Guo, K. Deng, L. Li, 2D ZnIn2S4 nanosheet/1D TiO2 nanorod heterostructure arrays for improved photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 6(19), 17200–17207 (2014). https://doi.org/10.1021/am505015j
Y.C. Bao, K.Z. Chen, AgCl/Ag/g-C3N4 hybrid composites: preparation, visible light drived photocatalytic activity and mechanism. Nano Micro Lett. 8(2), 182–192 (2016). https://doi.org/10.1007/s40820-015-0076-y
Q. Xu, B. Cheng, J. Yu, G. Liu, Making co-condensed amorphous carbon/g-C3N4 composites with improved visible-light photocatalytic H2-production performance using Pt as cocatalyst. Carbon 118, 241–249 (2017). https://doi.org/10.1016/j.carbon.2017.03.052
Q. Liang, J. Jin, M. Zhang, C.H. Liu, S. Xu, C. Yao, Z. Li, Construction of mesoporous carbon nitride/binary metal sulfide heterojunction photocatalysts for enhanced degradation of pollution under visible light. Appl. Catal. B 218(5), 545–554 (2017). https://doi.org/10.1016/j.apcatb.2017.07.003
Y. Hou, Z. Wen, S. Cui, X. Guo, J. Chen, Constructing 2D porous graphitic C3N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv. Mater. 25(43), 6291–6297 (2013). https://doi.org/10.1002/adma.201303116
Y. Tian, B. Chang, J. Lu, J. Fu, F. Xi, X. Dong, Hydrothermal synthesis of graphitic carbon nitride-Bi2WO6 heterojunctions with enhanced visible light photocatalytic activities. ACS Appl. Mater. Interfaces 5(15), 7079–7085 (2013). https://doi.org/10.1021/am4013819
M. Shalom, S. Gimenez, F. Schipper, I. Herraiz-Cardona, J. Bisquert, M. Antonietti, Controlled carbon nitride growth on surfaces for hydrogen evolution electrodes. Angew. Chem. Int. Ed. 53(14), 3654–3658 (2014). https://doi.org/10.1002/ange.201309415
H. Song, K. Jo, B.Y. Jung, G.Y. Jung, Fabrication of periodically aligned vertical single-crystalline anatase TiO2 nanotubes with perfect hexagonal open-ends using chemical capping materials. Nano Res. 7(1), 104–109 (2014). https://doi.org/10.1007/s12274-013-0377-8
M. Xiong, L. Chen, Q. Yuan, J. He, S.L. Luo, C.T. Au et al., Controlled synthesis of graphitic carbon nitride/beta bismuth oxide composite and its high visible-light photocatalytic activity. Carbon 86, 217–224 (2015). https://doi.org/10.1016/j.carbon.2015.01.023
R. Lei, J. Jian, Z. Zhang, B. Song, R. Wu, Bifunctional Ag/C3N4.5 composite nanobelts for photocatalysis and antibacterium. Nanotechnology 27, 395603 (2016). https://doi.org/10.1088/0957-4484/27/39/395603
G.X. Wang, X.P. Shen, J. Yao, J. Park, Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47(8), 2049–2053 (2009). https://doi.org/10.1016/j.carbon.2009.03.053
M. Li, R. Zhao, Y. Su, J. Hu, Z. Yang, Y. Zhang, Hierarchically CuInS2 Nanosheet-constructed nanowire arrays for photoelectrochemical water splitting. Adv. Mater. Interfaces 3(20), 1600494 (2016). https://doi.org/10.1002/admi.201600494
J. Wang, Z.Q. Lin, Freestanding TiO2 nanotube arrays with ultrahigh aspect ratio via electrochemical anodization. Chem. Mater. 20(4), 1257–1261 (2008). https://doi.org/10.1021/cm7028917
T. Ohsaka, F. Izumi, Y. Fujiki, Raman spectrum of anatase, TiO2. J. Raman Spectrosc. 7(6), 321–324 (1978). https://doi.org/10.1002/jrs.1250070606
H. Liu, D. Chen, Z. Wang, H. Jing, R. Zhang, Microwave-assisted molten-salt rapid synthesis of isotype triazine-/heptazine based g-C3N4 heterojunctions with highly enhanced photocatalytic hydrogen evolution performance. Appl. Catal. B 203, 300–313 (2017). https://doi.org/10.1016/j.apcatb.2016.10.014
D.J. Martin, K. Qiu, S.A. Shevlin, A.D. Handoko, X. Chen, Z. Guo, J. Tang, Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride. Angew. Chem. Int. Ed. 126(35), 9394–9399 (2014). https://doi.org/10.1002/anie.201403375
S. Hu, L. Ma, J. You, F. Li, Z. Fan, G. Lu, D. Liu, J. Gui, Enhanced visible light photocatalytic performance of g-C3N4 photocatalysts co-doped with iron and phosphorus. Appl. Surf. Sci. 311, 164–171 (2014). https://doi.org/10.1016/j.apsusc.2014.05.036
Q.H. Liang, Z. Li, X.L. Yu, Z.H. Huang, F.Y. Kang, Q.H. Yang, Macroscopic 3D porous graphitic carbon nitride monolith for enhanced photocatalytic hydrogen evolution. Adv. Mater. 27(31), 4634–4639 (2015). https://doi.org/10.1002/adma.201502057
Z.F. Jiang, C.Z. Zhu, W.M. Wan, K. Qian, J.M. Xie, Constructing graphite-like carbon nitride modified hierarchical yolk-shell TiO2 spheres for water pollution treatment and hydrogen production. J. Mater. Chem. A 4(5), 1806–1818 (2016). https://doi.org/10.1039/C5TA09919F
J. Xu, Y. Li, X. Zhou, Y. Li, Z.D. Gao, Y.Y. Song, P. Schmuki, Graphitic C3N4-sensitized TiO2 nanotube layers: a visible-light activated efficient metal-free antimicrobial platform. Chem. Eur. J. 22(12), 3947–3951 (2016). https://doi.org/10.1002/chem.201505173
C. Zhao, G. Tan, J. Huang, W. Yang, H. Ren, A. Xia, Preparation of self-assembled spherical g-C3N4/tz-Bi0.92Gd0.08VO4 heterojunctions and their mineralization properties. ACS Appl. Mater. Interfaces 7(43), 23949–23957 (2015). https://doi.org/10.1021/acsami.5b06501
Q. Liang, M. Zhang, C. Liu, S. Xu, Z. Li, Sulfur-doped graphitic carbon nitride decorated with zinc phthalocyanines towards highly stable and efficient photocatalysis. Appl. Catal. A 519(5), 107–115 (2016). https://doi.org/10.1016/j.apcata.2016.03.033
C.H. Liu, Y.Y. Qiu, F. Wang, K. Wang, Q. Liang, C.Z. Chen, Design of core–shell-structured ZnO/ZnS hybridized with graphite-like C3N4 for highly efficient photoelectrochemical water splitting. Adv. Mater. Interfaces 4(21), 1700681 (2017). https://doi.org/10.1002/admi.201700681
S.B.A. Hamid, S.J. The, C.W. Lai, S. Perathoner, G. Centi, Applied bias photon-to-current conversion efficiency of ZnO enhanced by hybridization with reduced graphene oxide. J. Energy Chem. 26(2), 302–308 (2017). https://doi.org/10.1016/j.jechem.2016.11.006
T. An, J. Tang, Y. Zhang, Y. Quan, X. Gong, A.M. Al-Enizi, A.A. Elzatahry, L. Zhang, G.F. Zheng, Photoelectrochemical conversion from graphitic C3N4 quantum dot decorated semiconductor nanowires. ACS Appl. Mater. Interfaces 8(20), 12772–12779 (2016). https://doi.org/10.1021/acsami.6b01534
H.J. Yun, H. Lee, N.D. Kim, J. Yi, Characterization of photocatalytic performance of silver deposited TiO2 nanorods. Electrochem. Commun. 11(2), 363–366 (2009). https://doi.org/10.1016/j.elecom.2008.11.044
L. Ye, D. Wang, S. Chen, Fabrication and enhanced photoelectrochemical performance of MoS2/S-doped g-C3N4 heterojunction film. ACS Appl. Mater. Interfaces 8(8), 5280–5289 (2016). https://doi.org/10.1021/acsami.5b11326
B. Liu, X.B. Li, Y.J. Gao, Z.J. Li, Q.Y. Meng, C.H. Tung, L.Z. Wu, A solution-processed, mercaptoacetic acid-engineered CdSe quantum dot photocathode for efficient hydrogen production under visible light irradiation. Energy Environ. Sci. 8(5), 1443–1449 (2015). https://doi.org/10.1039/C5EE00331H
Y.C. Wang, Y.Y. Zhang, J. Tang, H.J. Wu, M. Xu, Z. Peng, X.G. Gong, G. Zheng, Simultaneous etching and doping of TiO2 nanowire arrays for enhanced photoelectrochemical performance. ACS Nano 7(10), 9375–9383 (2013). https://doi.org/10.1021/nn4040876
J. Resasco, H. Zhang, N. Kornienko, N. Becknell, H. Lee, J.H. Guo, A.L. Briseno, P.D. Yang, TiO2/BiVO4 nanowire heterostructure photoanodes based on type II band alignment. ACS Cent. Sci. 2(2), 80–88 (2016). https://doi.org/10.1021/acscentsci.5b00402
K. Sridharan, E. Jang, T.J. Park, Novel visible light active graphitic C3N4–TiO2 composite photocatalyst: synergistic synthesis, growth and photocatalytic treatment of hazardous pollutants. Appl. Catal. B 142–143, 718–728 (2013). https://doi.org/10.1016/j.apcatb.2013.05.077