Efficient and Stable Photoassisted Lithium-Ion Battery Enabled by Photocathode with Synergistically Boosted Carriers Dynamics
Corresponding Author: Hongqiang Wang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 74
Abstract
Efficient and stable photocathodes with versatility are of significance in photoassisted lithium-ion batteries (PLIBs), while there is always a request on fast carrier transport in electrochemical active photocathodes. Present work proposes a general approach of creating bulk heterojunction to boost the carrier mobility of photocathodes by simply laser assisted embedding of plasmonic nanocrystals. When employed in PLIBs, it was found effective for synchronously enhanced photocharge separation and transport in light charging process. Additionally, experimental photon spectroscopy, finite difference time domain method simulation and theoretical analyses demonstrate that the improved carrier dynamics are driven by the plasmonic-induced hot electron injection from metal to TiO2, as well as the enhanced conductivity in TiO2 matrix due to the formation of oxygen vacancies after Schottky contact. Benefiting from these merits, several benchmark values in performance of TiO2-based photocathode applied in PLIBs are set, including the capacity of 276 mAh g−1 at 0.2 A g−1 under illumination, photoconversion efficiency of 1.276% at 3 A g−1, less capacity and Columbic efficiency loss even through 200 cycles. These results exemplify the potential of the bulk heterojunction strategy in developing highly efficient and stable photoassisted energy storage systems.
Highlights:
1 Developing a universal bulk heterojunction strategy to create oxygen vacancies by embedding laser-manufactured metal nanocrystals into the TiO2 matrix.
2 Proposing a new mechanism based on plasmonic-induced hot electron injection and enhanced conductivity from Schottky contact-derived oxygen vacancies.
3 Establishing several benchmark values for the performance of TiO2-based photocathodes in photoassisted lithium-ion batteries.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Gurung, Q. Qiao, Solar charging batteries: advances, challenges, and opportunities. Joule 2, 1217–1230 (2018). https://doi.org/10.1016/j.joule.2018.04.006
- Q. Zeng, Y. Lai, L. Jiang, F. Liu, X. Hao et al., Integrated photorechargeable energy storage system: next-generation power source driving the future. Adv. Energy Mater. 10, 1903930 (2020). https://doi.org/10.1002/aenm.201903930
- L. Song, Y. Fan, H. Fan, X. Yang, K. Yan, X. Wang, L. Ma, Photo-assisted rechargeable metal batteries. Nano Energy 125, 109538 (2024). https://doi.org/10.1016/j.nanoen.2024.109538
- J. Xu, Y. Chen, L. Dai, Efficiently photo-charging lithium-ion battery by perovskite solar cell. Nat. Commun. 6, 8103 (2015). https://doi.org/10.1038/ncomms9103
- A. Gurung, K. Chen, R. Khan, S.S. Abdulkarim, G. Varnekar et al., Highly efficient perovskite solar cell photocharging of lithium ion battery using DC–DC booster. Adv. Energy Mater. 7, 1602105 (2017). https://doi.org/10.1002/aenm.201602105
- A. Gurung, K.M. Reza, S. Mabrouk, B. Bahrami, R. Pathak et al., Rear-illuminated perovskite photorechargeable lithium battery. Adv. Funct. Mater. 30, 2001865 (2020). https://doi.org/10.1002/adfm.202001865
- H. Wu, S. Luo, H. Wang, L. Li, Y. Fang et al., A review of anode materials for dual-ion batteries. Nano-Micro Lett. 16, 252 (2024). https://doi.org/10.1007/s40820-024-01470-w
- A. Lee, M. Vörös, W.M. Dose, J. Niklas, O. Poluektov et al., Photo-accelerated fast charging of lithium-ion batteries. Nat. Commun. 10, 4946 (2019). https://doi.org/10.1038/s41467-019-12863-6
- J. Li, Y. Zhang, Y. Mao, Y. Zhao, D. Kan et al., Dual-functional Z-scheme TiO2@MoS2@NC multi-heterostructures for photo-driving ultrafast sodium ion storage. Angew. Chem. Int. Ed. 62, e202303056 (2023). https://doi.org/10.1002/anie.202303056
- X. Yang, X. Wang, Y. Xiang, L. Ma, W. Huang, Asymmetric electrolytes design for aqueous multivalent metal ion batteries. Nano-Micro Lett. 16, 51 (2023). https://doi.org/10.1007/s40820-023-01256-6
- S. Wang, S. Chen, Y. Ying, G. Li, H. Wang et al., Fast reaction kinetics and commendable low-temperature adaptability of zinc batteries enabled by aprotic water-acetamide symbiotic solvation sheath. Angew. Chem. Int. Ed. 63, e202316841 (2024). https://doi.org/10.1002/anie.202316841
- Y. Zhao, T. He, J. Li, C. Zhu, Y. Tan et al., Carbon superstructure-supported half-metallic V2O3 nanospheres for high-efficiency photorechargeable zinc ion batteries. Angew. Chem. Int. Ed. 63, e202408218 (2024). https://doi.org/10.1002/anie.202408218
- Q. Dong, M. Wei, Q. Zhang, L. Xiao, X. Cai et al., Photoassisted Li-ion de-intercalation and Niδ+ valence conversion win-win boost energy storage performance in Ni/CdS@Ni3S2-based Li-ion battery. Chem. Eng. J. 459, 141542 (2023). https://doi.org/10.1016/j.cej.2023.141542
- N. Tewari, S.B. Shivarudraiah, J.E. Halpert, Photorechargeable lead-free perovskite lithium-ion batteries using hexagonal Cs3Bi2I9 nanosheets. Nano Lett. 21, 5578–5585 (2021). https://doi.org/10.1021/acs.nanolett.1c01000
- K. Kato, A.B. Puthirath, A. Mojibpour, M. Miroshnikov, S. Satapathy et al., Light-assisted rechargeable lithium batteries: organic molecules for simultaneous energy harvesting and storage. Nano Lett. 21, 907–913 (2021). https://doi.org/10.1021/acs.nanolett.0c03311
- L. Song, Y. Fan, H. Fan, X. Yang, K. Yan et al., Photo-assisted rechargeable metal batteries. Nano Energy 125, 109538 (2024). https://doi.org/10.1016/j.nanoen.2024.109538
- Y. Zhao, J. Li, Y. Tan, C. Zhu, Y. Chen, Recent progress in device designs and dual-functional photoactive materials for direct solar to electrochemical energy storage. Carbon Neutralization 3, 32 (2024). https://doi.org/10.1002/cnl2.100
- J. Lv, Y.-X. Tan, J. Xie, R. Yang, M. Yu et al., Direct solar-to-electrochemical energy storage in a functionalized covalent organic framework. Angew. Chem. Int. Ed. 57, 12716–12720 (2018). https://doi.org/10.1002/anie.201806596
- B.D. Boruah, A. Mathieson, B. Wen, S. Feldmann, W.M. Dose et al., Photo-rechargeable zinc-ion batteries. Energy Environ. Sci. 13, 2414–2421 (2020). https://doi.org/10.1039/d0ee01392g
- B.D. Boruah, A. Mathieson, S.K. Park, X. Zhang, B. Wen, L. Tan, A. Boies, M. De Volder, Vanadium dioxide cathodes for high‐rate photo‐rechargeable zinc‐ion batteries. Adv. Energy Mater. (2021). https://doi.org/10.1002/aenm.202100115
- O. Nguyen, E. Courtin, F. Sauvage, N. Krins, C. Sanchez et al., Shedding light on the light-driven lithium ion de-insertion reaction: towards the design of a photo-rechargeable battery. J. Mater. Chem. A 5, 5927–5933 (2017). https://doi.org/10.1039/c7ta00493a
- Z. Zhu, X. Shi, G. Fan, F. Li, J. Chen, Photo-energy conversion and storage in an aprotic Li–O2 battery. Angew. Chem. Int. Ed. 58, 19021–19026 (2019). https://doi.org/10.1002/anie.201911228
- S. Weng, G. Yang, S. Zhang, X. Liu, X. Zhang et al., Kinetic limits of graphite anode for fast-charging lithium-ion batteries. Nano-Micro Lett. 15, 215 (2023). https://doi.org/10.1007/s40820-023-01183-6
- B.D. Boruah, B. Wen, M. De Volder, Light rechargeable lithium-ion batteries using V2O5 cathodes. Nano Lett. 21, 3527–3532 (2021). https://doi.org/10.1021/acs.nanolett.1c00298
- B.D. Boruah, B. Wen, S. Nagane, X. Zhang, S.D. Stranks et al., Photo-rechargeable zinc-ion capacitors using V2O5-activated carbon electrodes. ACS Energy Lett. 5, 3132–3139 (2020). https://doi.org/10.1021/acsenergylett.0c01528
- D. Du, Z. Zhu, K.-Y. Chan, F. Li, J. Chen, Photoelectrochemistry of oxygen in rechargeable Li–O2 batteries. Chem. Soc. Rev. 51, 1846–1860 (2022). https://doi.org/10.1039/d1cs00877c
- Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14, 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
- Y. Xiang, L. Xu, L. Yang, Y. Ye, Z. Ge et al., Natural stibnite for lithium-/sodium-ion batteries: carbon dots evoked high initial coulombic efficiency. Nano-Micro Lett. 14, 136 (2022). https://doi.org/10.1007/s40820-022-00873-x
- B.D. Boruah, M. De Volder, Vanadium dioxide–zinc oxide stacked photocathodes for photo-rechargeable zinc-ion batteries. J. Mater. Chem. A 9(40), 23199–23205 (2021). https://doi.org/10.1039/D1TA07572A
- B.D. Boruah, B. Wen, M. De Volder, Molybdenum disulfide-zinc oxide photocathodes for photo-rechargeable zinc-ion batteries. ACS Nano 15, 16616–16624 (2021). https://doi.org/10.1021/acsnano.1c06372
- Y.-H. Liu, J. Qu, W. Chang, C.-Y. Yang, H.-J. Liu et al., A photo-assisted reversible lithium-sulfur battery. Energy Storage Mater. 50, 334–343 (2022). https://doi.org/10.1016/j.ensm.2022.05.030
- C. Hu, L. Chen, Y. Hu, A. Chen, L. Chen et al., Light-motivated SnO2/TiO2 heterojunctions enabling the breakthrough in energy density for lithium-ion batteries. Adv. Mater. 33, e2103558 (2021). https://doi.org/10.1002/adma.202103558
- W. Guo, X. Xue, S. Wang, C. Lin, Z.L. Wang, An integrated power pack of dye-sensitized solar cell and Li battery based on double-sided TiO2 nanotube arrays. Nano Lett. 12, 2520–2523 (2012). https://doi.org/10.1021/nl3007159
- C. Xu, X. Zhang, L. Duan, X. Zhang, X. Li et al., A photo-assisted rechargeable battery: synergy, compatibility, and stability of a TiO2/dye/Cu2S bifunctional composite electrode. Nanoscale 12, 530–537 (2020). https://doi.org/10.1039/C9NR09224B
- T.D. Deepa, S.V. Mohapatra, A.S. Nair, A.K. Nair, Rai, Surfactant-assisted synthesis of porous TiO2 nanofibers as an anode material for secondary lithium ion batteries. Sustain. Energy Fuels 1, 138–144 (2017). https://doi.org/10.1039/C6SE00030D
- Y. Liu, A.A. Elzatahry, W. Luo, K. Lan, P. Zhang et al., Surfactant-templating strategy for ultrathin mesoporous TiO2 coating on flexible graphitized carbon supports for high-performance lithium-ion battery. Nano Energy 25, 80–90 (2016). https://doi.org/10.1016/j.nanoen.2016.04.028
- V. Veeramani, Y.-H. Chen, H.-C. Wang, T.-F. Hung, W.-S. Chang et al., CdSe/ZnS QD@CNT nanocomposite photocathode for improvement on charge overpotential in photoelectrochemical Li–O2 batteries. Chem. Eng. J. 349, 235–240 (2018). https://doi.org/10.1016/j.cej.2018.05.012
- M. Li, X. Wang, F. Li, L. Zheng, J. Xu et al., A bifunctional photo-assisted Li–O2 battery based on a hierarchical heterostructured cathode. Adv. Mater. 32, e1907098 (2020). https://doi.org/10.1002/adma.201907098
- L. Long, Y. Ding, N. Liang, J. Liu, F. Liu et al., A carbon-free and free-standing cathode from mixed-phase TiO2 for photo-assisted Li–CO2 battery. Small 19, e2300519 (2023). https://doi.org/10.1002/smll.202300519
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54, 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/physrevb.59.1758
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
- H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976). https://doi.org/10.1103/physrevb.13.5188
- V. Wang, N. Xu, J.-C. Liu, G. Tang, W.-T. Geng, VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021). https://doi.org/10.1016/j.cpc.2021.108033
- K. Momma, F. Izumi, VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011). https://doi.org/10.1107/s0021889811038970
- M.J. Paik, Y. Lee, H.-S. Yun, S.-U. Lee, S.-T. Hong et al., TiO2 colloid-spray coated electron-transporting layers for efficient perovskite solar cells. Adv. Energy Mater. 10, 2001799 (2020). https://doi.org/10.1002/aenm.202001799
- J.Y. Do, R.K. Chava, K.K. Mandari, N.-K. Park, H.-J. Ryu et al., Selective methane production from visible-light-driven photocatalytic carbon dioxide reduction using the surface plasmon resonance effect of superfine silver nanops anchored on lithium titanium dioxide nanocubes (Ag@LixTiO2). Appl. Catal. B Environ. 237, 895–910 (2018). https://doi.org/10.1016/j.apcatb.2018.06.070
- J. Chen, J. Li, L. Sun, Z. Lin, Z. Hu et al., Tunable oxygen defect density and location for enhancement of energy storage. J. Energy Chem. 59, 736–747 (2021). https://doi.org/10.1016/j.jechem.2020.12.016
- H. Zhong, C. Yang, L. Fan, Z. Fu, X. Yang et al., Dyadic promotion of photocatalytic aerobic oxidation via the Mott-Schottky effect enabled by nitrogen-doped carbon from imidazolium-based ionic polymers. Energy Environ. Sci. 12, 418–426 (2019). https://doi.org/10.1039/C8EE02727G
- X. Chen, Z. Zhang, L. Chi, A.K. Nair, W. Shangguan et al., Recent advances in visible-light-driven photoelectrochemical water splitting: catalyst nanostructures and reaction systems. Nano-Micro Lett. 8, 1–12 (2016). https://doi.org/10.1007/s40820-015-0063-3
- Y. Tang, H. Zhou, K. Zhang, J. Ding, T. Fan et al., Visible-light-active ZnO via oxygen vacancy manipulation for efficient formaldehyde photodegradation. Chem. Eng. J. 262, 260–267 (2015). https://doi.org/10.1016/j.cej.2014.09.095
- J. Yang, D. Zheng, X. Xiao, X. Wu, X. Zuo et al., Iodine self-doping and oxygen vacancies doubly surface-modified BiOIO3: facile in situ synthesis, band gap modulation, and excellent visible-light photocatalytic activity. Chem. Eng. J. 373, 935–945 (2019). https://doi.org/10.1016/j.cej.2019.05.057
- M. Kim, B. Lee, H. Ju, J.Y. Kim, J. Kim et al., Oxygen-vacancy-introduced BaSnO3-δ photoanodes with tunable band structures for efficient solar-driven water splitting. Adv. Mater. 31, e1903316 (2019). https://doi.org/10.1002/adma.201903316
- D.-H. Guan, X.-X. Wang, F. Li, L.-J. Zheng, M.-L. Li et al., All-solid-state photo-assisted Li–CO2 battery working at an ultra-wide operation temperature. ACS Nano 16, 12364–12376 (2022). https://doi.org/10.1021/acsnano.2c03534
- F.P. García de Arquer, A. Mihi, D. Kufer, G. Konstantatos, Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures. ACS Nano 7, 3581–3588 (2013). https://doi.org/10.1021/nn400517w
- L. Lin, X. Feng, D. Lan, Y. Chen, Q. Zhong et al., Coupling effect of Au nanops with the oxygen vacancies of TiO2–x for enhanced charge transfer. J. Phys. Chem. C 124, 23823–23831 (2020). https://doi.org/10.1021/acs.jpcc.0c09011
- Z. Zhu, Y. Ni, Q. Lv, J. Geng, W. Xie et al., Surface plasmon mediates the visible light-responsive lithium–oxygen battery with Au nanops on defective carbon nitride. Proc. Natl. Acad. Sci. U.S.A. 118, e2024619118 (2021). https://doi.org/10.1073/pnas.2024619118
- J.-Y. Li, X.-Y. Du, X.-X. Wang, X.-Y. Yuan, D.-H. Guan et al., Photo-assisted Li–N2 batteries with enhanced nitrogen fixation and energy conversion. Angew. Chem. Int. Ed. 63, e202319211 (2024). https://doi.org/10.1002/anie.202319211
- B. Wang, M. Zhang, X. Cui, Z. Wang, M. Rager et al., Unconventional route to oxygen-vacancy-enabled highly efficient electron extraction and transport in perovskite solar cells. Angew. Chem. Int. Ed. 59, 1611–1618 (2020). https://doi.org/10.1002/anie.201910471
- L. Goswami, N.S. Sarma, D. Chowdhury, Determining the ionic and electronic contribution in conductivity of polypyrrole/Au nanocomposites. J. Phys. Chem. C 115, 19668–19675 (2011). https://doi.org/10.1021/jp2075012
- H. Qiao, H. Liu, Z. Huang, Q. Ma, S. Luo et al., Black phosphorus nanosheets modified with Au nanops as high conductivity and high activity electrocatalyst for oxygen evolution reaction. Adv. Energy Mater. 10, 2002424 (2020). https://doi.org/10.1002/aenm.202002424
- Y. Li, M. Wen, Y. Wang, G. Tian, C. Wang et al., Plasmonic hot electrons from oxygen vacancies for infrared light-driven catalytic CO2 reduction on Bi2O3–x. Angew. Chem. Int. Ed. 60, 910–916 (2021). https://doi.org/10.1002/anie.202010156
- Q. Ji, L. Bi, J. Zhang, H. Cao, X.S. Zhao, The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction. Energy Environ. Sci. 13, 1408–1428 (2020). https://doi.org/10.1039/D0EE00092B
- Y.-H. Zhang, S. Zhang, N. Hu, Y. Liu, J. Ma et al., Oxygen vacancy chemistry in oxide cathodes. Chem. Soc. Rev. 53, 3302 (2024). https://doi.org/10.1039/D3CS00872J
- Y. Si, S. Cao, Z. Wu, Y. Ji, Y. Mi et al., What is the predominant electron transfer process for Au NRs/TiO2 nanodumbbell heterostructure under sunlight irradiation? Appl. Catal. B Environ. 220, 471–476 (2018). https://doi.org/10.1016/j.apcatb.2017.08.024
- Q. Lang, Y. Chen, T. Huang, L. Yang, S. Zhong et al., Graphene “bridge” in transferring hot electrons from plasmonic Ag nanocubes to TiO2 nanosheets for enhanced visible light photocatalytic hydrogen evolution. Appl. Catal. B Environ. 220, 182–190 (2018). https://doi.org/10.1016/j.apcatb.2017.08.045
References
A. Gurung, Q. Qiao, Solar charging batteries: advances, challenges, and opportunities. Joule 2, 1217–1230 (2018). https://doi.org/10.1016/j.joule.2018.04.006
Q. Zeng, Y. Lai, L. Jiang, F. Liu, X. Hao et al., Integrated photorechargeable energy storage system: next-generation power source driving the future. Adv. Energy Mater. 10, 1903930 (2020). https://doi.org/10.1002/aenm.201903930
L. Song, Y. Fan, H. Fan, X. Yang, K. Yan, X. Wang, L. Ma, Photo-assisted rechargeable metal batteries. Nano Energy 125, 109538 (2024). https://doi.org/10.1016/j.nanoen.2024.109538
J. Xu, Y. Chen, L. Dai, Efficiently photo-charging lithium-ion battery by perovskite solar cell. Nat. Commun. 6, 8103 (2015). https://doi.org/10.1038/ncomms9103
A. Gurung, K. Chen, R. Khan, S.S. Abdulkarim, G. Varnekar et al., Highly efficient perovskite solar cell photocharging of lithium ion battery using DC–DC booster. Adv. Energy Mater. 7, 1602105 (2017). https://doi.org/10.1002/aenm.201602105
A. Gurung, K.M. Reza, S. Mabrouk, B. Bahrami, R. Pathak et al., Rear-illuminated perovskite photorechargeable lithium battery. Adv. Funct. Mater. 30, 2001865 (2020). https://doi.org/10.1002/adfm.202001865
H. Wu, S. Luo, H. Wang, L. Li, Y. Fang et al., A review of anode materials for dual-ion batteries. Nano-Micro Lett. 16, 252 (2024). https://doi.org/10.1007/s40820-024-01470-w
A. Lee, M. Vörös, W.M. Dose, J. Niklas, O. Poluektov et al., Photo-accelerated fast charging of lithium-ion batteries. Nat. Commun. 10, 4946 (2019). https://doi.org/10.1038/s41467-019-12863-6
J. Li, Y. Zhang, Y. Mao, Y. Zhao, D. Kan et al., Dual-functional Z-scheme TiO2@MoS2@NC multi-heterostructures for photo-driving ultrafast sodium ion storage. Angew. Chem. Int. Ed. 62, e202303056 (2023). https://doi.org/10.1002/anie.202303056
X. Yang, X. Wang, Y. Xiang, L. Ma, W. Huang, Asymmetric electrolytes design for aqueous multivalent metal ion batteries. Nano-Micro Lett. 16, 51 (2023). https://doi.org/10.1007/s40820-023-01256-6
S. Wang, S. Chen, Y. Ying, G. Li, H. Wang et al., Fast reaction kinetics and commendable low-temperature adaptability of zinc batteries enabled by aprotic water-acetamide symbiotic solvation sheath. Angew. Chem. Int. Ed. 63, e202316841 (2024). https://doi.org/10.1002/anie.202316841
Y. Zhao, T. He, J. Li, C. Zhu, Y. Tan et al., Carbon superstructure-supported half-metallic V2O3 nanospheres for high-efficiency photorechargeable zinc ion batteries. Angew. Chem. Int. Ed. 63, e202408218 (2024). https://doi.org/10.1002/anie.202408218
Q. Dong, M. Wei, Q. Zhang, L. Xiao, X. Cai et al., Photoassisted Li-ion de-intercalation and Niδ+ valence conversion win-win boost energy storage performance in Ni/CdS@Ni3S2-based Li-ion battery. Chem. Eng. J. 459, 141542 (2023). https://doi.org/10.1016/j.cej.2023.141542
N. Tewari, S.B. Shivarudraiah, J.E. Halpert, Photorechargeable lead-free perovskite lithium-ion batteries using hexagonal Cs3Bi2I9 nanosheets. Nano Lett. 21, 5578–5585 (2021). https://doi.org/10.1021/acs.nanolett.1c01000
K. Kato, A.B. Puthirath, A. Mojibpour, M. Miroshnikov, S. Satapathy et al., Light-assisted rechargeable lithium batteries: organic molecules for simultaneous energy harvesting and storage. Nano Lett. 21, 907–913 (2021). https://doi.org/10.1021/acs.nanolett.0c03311
L. Song, Y. Fan, H. Fan, X. Yang, K. Yan et al., Photo-assisted rechargeable metal batteries. Nano Energy 125, 109538 (2024). https://doi.org/10.1016/j.nanoen.2024.109538
Y. Zhao, J. Li, Y. Tan, C. Zhu, Y. Chen, Recent progress in device designs and dual-functional photoactive materials for direct solar to electrochemical energy storage. Carbon Neutralization 3, 32 (2024). https://doi.org/10.1002/cnl2.100
J. Lv, Y.-X. Tan, J. Xie, R. Yang, M. Yu et al., Direct solar-to-electrochemical energy storage in a functionalized covalent organic framework. Angew. Chem. Int. Ed. 57, 12716–12720 (2018). https://doi.org/10.1002/anie.201806596
B.D. Boruah, A. Mathieson, B. Wen, S. Feldmann, W.M. Dose et al., Photo-rechargeable zinc-ion batteries. Energy Environ. Sci. 13, 2414–2421 (2020). https://doi.org/10.1039/d0ee01392g
B.D. Boruah, A. Mathieson, S.K. Park, X. Zhang, B. Wen, L. Tan, A. Boies, M. De Volder, Vanadium dioxide cathodes for high‐rate photo‐rechargeable zinc‐ion batteries. Adv. Energy Mater. (2021). https://doi.org/10.1002/aenm.202100115
O. Nguyen, E. Courtin, F. Sauvage, N. Krins, C. Sanchez et al., Shedding light on the light-driven lithium ion de-insertion reaction: towards the design of a photo-rechargeable battery. J. Mater. Chem. A 5, 5927–5933 (2017). https://doi.org/10.1039/c7ta00493a
Z. Zhu, X. Shi, G. Fan, F. Li, J. Chen, Photo-energy conversion and storage in an aprotic Li–O2 battery. Angew. Chem. Int. Ed. 58, 19021–19026 (2019). https://doi.org/10.1002/anie.201911228
S. Weng, G. Yang, S. Zhang, X. Liu, X. Zhang et al., Kinetic limits of graphite anode for fast-charging lithium-ion batteries. Nano-Micro Lett. 15, 215 (2023). https://doi.org/10.1007/s40820-023-01183-6
B.D. Boruah, B. Wen, M. De Volder, Light rechargeable lithium-ion batteries using V2O5 cathodes. Nano Lett. 21, 3527–3532 (2021). https://doi.org/10.1021/acs.nanolett.1c00298
B.D. Boruah, B. Wen, S. Nagane, X. Zhang, S.D. Stranks et al., Photo-rechargeable zinc-ion capacitors using V2O5-activated carbon electrodes. ACS Energy Lett. 5, 3132–3139 (2020). https://doi.org/10.1021/acsenergylett.0c01528
D. Du, Z. Zhu, K.-Y. Chan, F. Li, J. Chen, Photoelectrochemistry of oxygen in rechargeable Li–O2 batteries. Chem. Soc. Rev. 51, 1846–1860 (2022). https://doi.org/10.1039/d1cs00877c
Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14, 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
Y. Xiang, L. Xu, L. Yang, Y. Ye, Z. Ge et al., Natural stibnite for lithium-/sodium-ion batteries: carbon dots evoked high initial coulombic efficiency. Nano-Micro Lett. 14, 136 (2022). https://doi.org/10.1007/s40820-022-00873-x
B.D. Boruah, M. De Volder, Vanadium dioxide–zinc oxide stacked photocathodes for photo-rechargeable zinc-ion batteries. J. Mater. Chem. A 9(40), 23199–23205 (2021). https://doi.org/10.1039/D1TA07572A
B.D. Boruah, B. Wen, M. De Volder, Molybdenum disulfide-zinc oxide photocathodes for photo-rechargeable zinc-ion batteries. ACS Nano 15, 16616–16624 (2021). https://doi.org/10.1021/acsnano.1c06372
Y.-H. Liu, J. Qu, W. Chang, C.-Y. Yang, H.-J. Liu et al., A photo-assisted reversible lithium-sulfur battery. Energy Storage Mater. 50, 334–343 (2022). https://doi.org/10.1016/j.ensm.2022.05.030
C. Hu, L. Chen, Y. Hu, A. Chen, L. Chen et al., Light-motivated SnO2/TiO2 heterojunctions enabling the breakthrough in energy density for lithium-ion batteries. Adv. Mater. 33, e2103558 (2021). https://doi.org/10.1002/adma.202103558
W. Guo, X. Xue, S. Wang, C. Lin, Z.L. Wang, An integrated power pack of dye-sensitized solar cell and Li battery based on double-sided TiO2 nanotube arrays. Nano Lett. 12, 2520–2523 (2012). https://doi.org/10.1021/nl3007159
C. Xu, X. Zhang, L. Duan, X. Zhang, X. Li et al., A photo-assisted rechargeable battery: synergy, compatibility, and stability of a TiO2/dye/Cu2S bifunctional composite electrode. Nanoscale 12, 530–537 (2020). https://doi.org/10.1039/C9NR09224B
T.D. Deepa, S.V. Mohapatra, A.S. Nair, A.K. Nair, Rai, Surfactant-assisted synthesis of porous TiO2 nanofibers as an anode material for secondary lithium ion batteries. Sustain. Energy Fuels 1, 138–144 (2017). https://doi.org/10.1039/C6SE00030D
Y. Liu, A.A. Elzatahry, W. Luo, K. Lan, P. Zhang et al., Surfactant-templating strategy for ultrathin mesoporous TiO2 coating on flexible graphitized carbon supports for high-performance lithium-ion battery. Nano Energy 25, 80–90 (2016). https://doi.org/10.1016/j.nanoen.2016.04.028
V. Veeramani, Y.-H. Chen, H.-C. Wang, T.-F. Hung, W.-S. Chang et al., CdSe/ZnS QD@CNT nanocomposite photocathode for improvement on charge overpotential in photoelectrochemical Li–O2 batteries. Chem. Eng. J. 349, 235–240 (2018). https://doi.org/10.1016/j.cej.2018.05.012
M. Li, X. Wang, F. Li, L. Zheng, J. Xu et al., A bifunctional photo-assisted Li–O2 battery based on a hierarchical heterostructured cathode. Adv. Mater. 32, e1907098 (2020). https://doi.org/10.1002/adma.201907098
L. Long, Y. Ding, N. Liang, J. Liu, F. Liu et al., A carbon-free and free-standing cathode from mixed-phase TiO2 for photo-assisted Li–CO2 battery. Small 19, e2300519 (2023). https://doi.org/10.1002/smll.202300519
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54, 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/physrevb.59.1758
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976). https://doi.org/10.1103/physrevb.13.5188
V. Wang, N. Xu, J.-C. Liu, G. Tang, W.-T. Geng, VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021). https://doi.org/10.1016/j.cpc.2021.108033
K. Momma, F. Izumi, VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011). https://doi.org/10.1107/s0021889811038970
M.J. Paik, Y. Lee, H.-S. Yun, S.-U. Lee, S.-T. Hong et al., TiO2 colloid-spray coated electron-transporting layers for efficient perovskite solar cells. Adv. Energy Mater. 10, 2001799 (2020). https://doi.org/10.1002/aenm.202001799
J.Y. Do, R.K. Chava, K.K. Mandari, N.-K. Park, H.-J. Ryu et al., Selective methane production from visible-light-driven photocatalytic carbon dioxide reduction using the surface plasmon resonance effect of superfine silver nanops anchored on lithium titanium dioxide nanocubes (Ag@LixTiO2). Appl. Catal. B Environ. 237, 895–910 (2018). https://doi.org/10.1016/j.apcatb.2018.06.070
J. Chen, J. Li, L. Sun, Z. Lin, Z. Hu et al., Tunable oxygen defect density and location for enhancement of energy storage. J. Energy Chem. 59, 736–747 (2021). https://doi.org/10.1016/j.jechem.2020.12.016
H. Zhong, C. Yang, L. Fan, Z. Fu, X. Yang et al., Dyadic promotion of photocatalytic aerobic oxidation via the Mott-Schottky effect enabled by nitrogen-doped carbon from imidazolium-based ionic polymers. Energy Environ. Sci. 12, 418–426 (2019). https://doi.org/10.1039/C8EE02727G
X. Chen, Z. Zhang, L. Chi, A.K. Nair, W. Shangguan et al., Recent advances in visible-light-driven photoelectrochemical water splitting: catalyst nanostructures and reaction systems. Nano-Micro Lett. 8, 1–12 (2016). https://doi.org/10.1007/s40820-015-0063-3
Y. Tang, H. Zhou, K. Zhang, J. Ding, T. Fan et al., Visible-light-active ZnO via oxygen vacancy manipulation for efficient formaldehyde photodegradation. Chem. Eng. J. 262, 260–267 (2015). https://doi.org/10.1016/j.cej.2014.09.095
J. Yang, D. Zheng, X. Xiao, X. Wu, X. Zuo et al., Iodine self-doping and oxygen vacancies doubly surface-modified BiOIO3: facile in situ synthesis, band gap modulation, and excellent visible-light photocatalytic activity. Chem. Eng. J. 373, 935–945 (2019). https://doi.org/10.1016/j.cej.2019.05.057
M. Kim, B. Lee, H. Ju, J.Y. Kim, J. Kim et al., Oxygen-vacancy-introduced BaSnO3-δ photoanodes with tunable band structures for efficient solar-driven water splitting. Adv. Mater. 31, e1903316 (2019). https://doi.org/10.1002/adma.201903316
D.-H. Guan, X.-X. Wang, F. Li, L.-J. Zheng, M.-L. Li et al., All-solid-state photo-assisted Li–CO2 battery working at an ultra-wide operation temperature. ACS Nano 16, 12364–12376 (2022). https://doi.org/10.1021/acsnano.2c03534
F.P. García de Arquer, A. Mihi, D. Kufer, G. Konstantatos, Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures. ACS Nano 7, 3581–3588 (2013). https://doi.org/10.1021/nn400517w
L. Lin, X. Feng, D. Lan, Y. Chen, Q. Zhong et al., Coupling effect of Au nanops with the oxygen vacancies of TiO2–x for enhanced charge transfer. J. Phys. Chem. C 124, 23823–23831 (2020). https://doi.org/10.1021/acs.jpcc.0c09011
Z. Zhu, Y. Ni, Q. Lv, J. Geng, W. Xie et al., Surface plasmon mediates the visible light-responsive lithium–oxygen battery with Au nanops on defective carbon nitride. Proc. Natl. Acad. Sci. U.S.A. 118, e2024619118 (2021). https://doi.org/10.1073/pnas.2024619118
J.-Y. Li, X.-Y. Du, X.-X. Wang, X.-Y. Yuan, D.-H. Guan et al., Photo-assisted Li–N2 batteries with enhanced nitrogen fixation and energy conversion. Angew. Chem. Int. Ed. 63, e202319211 (2024). https://doi.org/10.1002/anie.202319211
B. Wang, M. Zhang, X. Cui, Z. Wang, M. Rager et al., Unconventional route to oxygen-vacancy-enabled highly efficient electron extraction and transport in perovskite solar cells. Angew. Chem. Int. Ed. 59, 1611–1618 (2020). https://doi.org/10.1002/anie.201910471
L. Goswami, N.S. Sarma, D. Chowdhury, Determining the ionic and electronic contribution in conductivity of polypyrrole/Au nanocomposites. J. Phys. Chem. C 115, 19668–19675 (2011). https://doi.org/10.1021/jp2075012
H. Qiao, H. Liu, Z. Huang, Q. Ma, S. Luo et al., Black phosphorus nanosheets modified with Au nanops as high conductivity and high activity electrocatalyst for oxygen evolution reaction. Adv. Energy Mater. 10, 2002424 (2020). https://doi.org/10.1002/aenm.202002424
Y. Li, M. Wen, Y. Wang, G. Tian, C. Wang et al., Plasmonic hot electrons from oxygen vacancies for infrared light-driven catalytic CO2 reduction on Bi2O3–x. Angew. Chem. Int. Ed. 60, 910–916 (2021). https://doi.org/10.1002/anie.202010156
Q. Ji, L. Bi, J. Zhang, H. Cao, X.S. Zhao, The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction. Energy Environ. Sci. 13, 1408–1428 (2020). https://doi.org/10.1039/D0EE00092B
Y.-H. Zhang, S. Zhang, N. Hu, Y. Liu, J. Ma et al., Oxygen vacancy chemistry in oxide cathodes. Chem. Soc. Rev. 53, 3302 (2024). https://doi.org/10.1039/D3CS00872J
Y. Si, S. Cao, Z. Wu, Y. Ji, Y. Mi et al., What is the predominant electron transfer process for Au NRs/TiO2 nanodumbbell heterostructure under sunlight irradiation? Appl. Catal. B Environ. 220, 471–476 (2018). https://doi.org/10.1016/j.apcatb.2017.08.024
Q. Lang, Y. Chen, T. Huang, L. Yang, S. Zhong et al., Graphene “bridge” in transferring hot electrons from plasmonic Ag nanocubes to TiO2 nanosheets for enhanced visible light photocatalytic hydrogen evolution. Appl. Catal. B Environ. 220, 182–190 (2018). https://doi.org/10.1016/j.apcatb.2017.08.045