Reduced Graphene Oxide-Wrapped FeS2 Composite as Anode for High-Performance Sodium-Ion Batteries
Corresponding Author: Hongqiang Wang
Nano-Micro Letters,
Vol. 10 No. 2 (2018), Article Number: 30
Abstract
Iron disulfide is considered to be a potential anode material for sodium-ion batteries due to its high theoretical capacity. However, its applications are seriously limited by the weak conductivity and large volume change, which results in low reversible capacity and poor cycling stability. Herein, reduced graphene oxide-wrapped FeS2 (FeS2/rGO) composite was fabricated to achieve excellent electrochemical performance via a facile two-step method. The introduction of rGO effectively improved the conductivity, BET surface area, and structural stability of the FeS2 active material, thus endowing it with high specific capacity, good rate capability, as well as excellent cycling stability. Electrochemical measurements show that the FeS2/rGO composite had a high initial discharge capacity of 1263.2 mAh g−1 at 100 mA g−1 and a high discharge capacity of 344 mAh g−1 at 10 A g−1, demonstrating superior rate performance. After 100 cycles at 100 mA g−1, the discharge capacity remained at 609.5 mAh g−1, indicating the excellent cycling stability of the FeS2/rGO electrode.
Highlights:
1 Reduced graphene oxide-wrapped FeS2 (FeS2/rGO) composite was synthesized by a facile two-step method.
2 The integral reduced graphene oxide networks not only connect the FeS2 nanoparticles but also prevent them from aggregating.
3 As anodes for sodium-ion batteries, the FeS2/rGO composite delivers high specific capacity and good cycling stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-Gonzalez, T. Rojo, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5(3), 5884–5901 (2012). https://doi.org/10.1039/c2ee02781j
- J. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22(3), 587–603 (2010). https://doi.org/10.1021/cm901452z
- H. Kim, H. Kim, Z. Ding, M. Lee, K. Lim, G. Yoon, K. Kang, Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 6(19), 1600943 (2016). https://doi.org/10.1002/aenm.201600943
- N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114(23), 11636 (2014). https://doi.org/10.1021/cr500192f
- M.L. Kou, Y. Liu, C. Zhang, L. Shao, Z. Tian, Z. Deng, C. Gao, A mini review on nanocarbon-based 1D macroscopic fibers: assembly strategies and mechanical properties. Nano-Micro Lett. 9, 51 (2017). https://doi.org/10.1007/s40820-017-0151-7
- H. Kang, Y. Liu, K. Cao, Y. Zhao, L. Jiao, Y. Wang, H. Yuan, Update on anode materials for Na-ion batteries. J. Mater. Chem. A 3(35), 17899–17913 (2015). https://doi.org/10.1039/C5TA03181H
- K. Zhang, M. Park, L. Zhou, G. Lee, J. Shin, Z. Hu, S.L. Chou, J. Chen, Y.M. Kang, Cobalt-doped FeS2 nanospheres with complete solid solubility as a high-performance anode material for sodium-ion batteries. Angew. Chem. Int. Ed. 55(41), 12822–12826 (2016). https://doi.org/10.1002/anie.201607469
- S. Zhang, The redox mechanism of FeS2 in non-aqueous electrolytes for lithium and sodium batteries. J. Mater. Chem. A 3(15), 7689–7694 (2015). https://doi.org/10.1039/C5TA00623F
- Y. Xiao, S. Lee, Y. Sun, The application of metal sulfdes in sodium ion batteries. Adv. Energy Mater. 7(3), 1601329 (2016). https://doi.org/10.1002/aenm.201601329
- X. Wei, W. Li, J. Shi, L. Gu, Y. Yu, FeS@C on carbon cloth as flexible electrode for both lithium and sodium storage. ACS Appl. Mater. Interfaces. 7(50), 27804–27809 (2015). https://doi.org/10.1021/acsami.5b09062
- L. Li, S. Peng, N. Bucher, H. Chen, N. Shen et al., Large-scale synthesis of highly uniform Fe1-xS nanostructures as a high-rate anode for sodium ion batteries. Nano Energy 37, 81–90 (2017). https://doi.org/10.1016/j.nanoen.2017.05.012
- Y. Xiao, J. Hwang, I. Belharouak, Y. Sun, Na-storage capability investigation of carbon nanotubes-encapsulated Fe1−xS composite. ACS Energy Lett. 2(2), 364–372 (2017). https://doi.org/10.1021/acsenergylett.6b00660
- Z. Hu, Z. Zhu, F. Cheng, K. Zhang, J. Wang, C. Chen, J. Chen, Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ. Sci. 8(4), 1309–1316 (2015). https://doi.org/10.1039/C4EE03759F
- Z. Hu, K. Zhang, Z. Zhu, Z. Tao, J. Chen, FeS2 microspheres with an ether-based electrolyte for high-performance rechargeable lithium batteries. J. Mater. Chem. A 3(24), 12898–12904 (2015). https://doi.org/10.1039/C5TA02169C
- M. Walter, T. Zünd, M. Kovalenko, Pyrite (FeS2) nanocrystals as inexpensive high performance lithium-ion cathode and sodium-ion anode materials. Nanoscale 7(20), 9158–9163 (2015). https://doi.org/10.1039/C5NR00398A
- A. Douglas, R. Carter, L. Oakes, K. Share, A. Cohn, C. Pint, Ultrafine iron pyrite (FeS2) nanocrystals improve sodium-sulfur and lithium-sulfur conversion reactions for efficient batteries. ACS Nano 9(11), 11156–11165 (2015). https://doi.org/10.1021/acsnano.5b04700
- B. Wu, H. Song, J. Zhou, X. Chen, Iron sulfide-embedded carbon microsphere anode material with high-rate performance for lithium-ion batteries. Chem. Commun. 47(30), 8653–8655 (2011). https://doi.org/10.1039/c1cc12924d
- D. Zhang, Y. Mai, J. Xiang, X. Xia, Y. Qiao, J. Tu, FeS2/C composite as an anode for lithium ion batteries with enhanced reversible capacity. J. Power Sources 217(11), 229–235 (2012). https://doi.org/10.1016/j.jpowsour.2012.05.112
- Y. Wang, J. Yang, S. Chou, H. Liu, W. Zhang, D. Zhao, S.X. Dou, Uniform yolk-shell iron sulfide-carbon nanospheres for superior sodium-iron sulfide batteries. Nat. Commun. 6, 8689–8697 (2015). https://doi.org/10.1038/ncomms9689
- L. Liu, Z. Yuan, C. Qiu, J. Liu, A novel FeS2/CNT micro-spherical cathode material with enhanced electrochemical characteristics for lithium-ion batteries. Solid State Ion. 241, 25–29 (2013). https://doi.org/10.1016/j.ssi.2013.03.031
- F. Yu, Y. Liu, Y. Zhu, F. Dai, L. Zhang, Z. Wen, Polypyrrole@MoO3/reductive graphite oxide nanocomposites as anode material for aqueous supercapacitors with high performance. Mater. Lett. 171, 104–107 (2016). https://doi.org/10.1016/j.matlet.2016.01.028
- Y. Liu, B. Zhang, Y. Yang, Z. Chang, Z. Wen, Y. Wu, Polypyrrole-coated α-MoO3 nanobelts with good electrochemical performance as anode material for aqueous supercapacitor. J. Mater. Chem. A 1(43), 13582–13587 (2013). https://doi.org/10.1039/c3ta12902k
- Y. Liu, B. Zhang, S. Xiao, L. Liu, Z. Wen, Y. Wu, A nanocomposite of MoO3 coated with PPy as an anode material for aqueous sodium rechargeable batteries with excellent electrochemical performance. Electrochim. Acta 116(2), 512–517 (2014). https://doi.org/10.1016/j.electacta.2013.11.077
- Q. Qu, Y. Zhu, X. Gao, Y. Wu, Core-shell structure of polypyrrole grown on V2O5 nanoribbon as high performance anode material for supercapacitors. Adv. Energy Mater. 2, 950–955 (2012). https://doi.org/10.1002/aenm.201200088
- Z. Liu, T. Lu, T. Song, X. Yu, X. Lou, U. Paik, Structure-designed synthesis of FeS2@C yolk-shell nanoboxes as a high-performance anode for sodium-ion batteries. Energy Environ. Sci. 10(7), 1576–1580 (2017). https://doi.org/10.1039/C7EE01100H
- L. Fei, Q. Lin, B. Yuan, G. Chen, P. Xie et al., Reduced graphene oxide wrapped FeS nanocomposite for lithium ion battery anode with improved performance. ACS Appl. Mater. Interfaces. 5(11), 5330–5335 (2013). https://doi.org/10.1021/am401239f
- X. Wen, X. Wei, L. Yang, P. Shen, Self-assembled FeS2 cubes anchored on reduced graphene oxide as an anode material for lithium ion batteries. J. Mater. Chem. A 3(5), 2090–2096 (2015). https://doi.org/10.1039/C4TA05575F
- G. Zhou, D. Wang, F. Li, L. Zhang, N. Li, Z. Wu, L. Wen, G.Q. Lu, H.M. Chen, Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 22(18), 5306–5313 (2010). https://doi.org/10.1021/cm101532x
- Z. Zhang, Y. Wang, S. Chou, H. Li, H. Liu, J. Wang, Rapid synthesis of α-Fe2O3/rGO nanocomposites by microwave autoclave as superior anodes for sodium-ion batteries. J. Power Sources 280, 107–113 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.092
- H. Wu, Q. Liu, S. Guo, Composites of graphene and LiFePO4 as cathode materials for lithium-ion battery: a mini-review. Nano-Micro Lett. 6(4), 316–326 (2014). https://doi.org/10.1007/s40820-014-0004-6
- B. Hu, F. Wu, C. Lin, A. Khlobystov, L. Li, Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nat. Commun. 4, 1687–1693 (2013). https://doi.org/10.1038/ncomms2705
- Y. Zhu, L. Suo, T. Gao, X. Fan, F. Han, C. Wang, Ether-based electrolyte enabled Na/FeS2 rechargeable batteries. Electrochem. Commun. 54, 18–22 (2015). https://doi.org/10.1016/j.elecom.2015.02.006
- H. Hou, M. Jing, Y. Yang, Y. Zhu, L. Fang, W. Song, C. Pan, X. Yang, X. Ji, Sodium/lithium storage behavior of antimony hollow nanospheres for rechargeable batteries. ACS Appl. Mater. Interfaces 6, 16189–16196 (2014). https://doi.org/10.1021/am504310k
- Y. Ko, Y. Kang, Electrochemical properties of ultrafine Sb nanocrystals embedded in carbon microspheres for use as Na-ion battery anode materials. Chem. Commun. 50, 12322–12324 (2014). https://doi.org/10.1039/C4CC05275G
- Y. Luo, M. Balogun, W. Qiu, R. Zhao, P. Liu, Y. Tong, Sulfurization of FeOOH nanorods on a carbon cloth and their conversion into Fe2O3/Fe3O4-S core-shell nanorods for lithium storage. Chem. Commun. 51, 13016–13019 (2015). https://doi.org/10.1039/C5CC04700E
- T. Evans, D. Piper, S. Kim, S. Han, V. Bhat, K. Oh, S. Lee, Ionic liquid enabled FeS2 for high-energy-density lithium-ion batteries. Adv. Mater. 26, 7386–7392 (2014). https://doi.org/10.1002/adma.201402103
- Y. Zhu, X. Fan, L. Suo, C. Luo, T. Gao, C. Wang, Electrospun FeS2@carbon fiber electrode as a high energy density cathode for rechargeable lithium batteries. ACS Nano 10, 1529–1538 (2016). https://doi.org/10.1021/acsnano.5b07081
- T. Yersak, H. Macpherson, S. Kim, V. Le, C. Kang et al., Solid state enabled reversible four electron storage. Adv. Energy Mater. 3, 120–127 (2013). https://doi.org/10.1002/aenm.201200267
References
V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-Gonzalez, T. Rojo, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5(3), 5884–5901 (2012). https://doi.org/10.1039/c2ee02781j
J. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22(3), 587–603 (2010). https://doi.org/10.1021/cm901452z
H. Kim, H. Kim, Z. Ding, M. Lee, K. Lim, G. Yoon, K. Kang, Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 6(19), 1600943 (2016). https://doi.org/10.1002/aenm.201600943
N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114(23), 11636 (2014). https://doi.org/10.1021/cr500192f
M.L. Kou, Y. Liu, C. Zhang, L. Shao, Z. Tian, Z. Deng, C. Gao, A mini review on nanocarbon-based 1D macroscopic fibers: assembly strategies and mechanical properties. Nano-Micro Lett. 9, 51 (2017). https://doi.org/10.1007/s40820-017-0151-7
H. Kang, Y. Liu, K. Cao, Y. Zhao, L. Jiao, Y. Wang, H. Yuan, Update on anode materials for Na-ion batteries. J. Mater. Chem. A 3(35), 17899–17913 (2015). https://doi.org/10.1039/C5TA03181H
K. Zhang, M. Park, L. Zhou, G. Lee, J. Shin, Z. Hu, S.L. Chou, J. Chen, Y.M. Kang, Cobalt-doped FeS2 nanospheres with complete solid solubility as a high-performance anode material for sodium-ion batteries. Angew. Chem. Int. Ed. 55(41), 12822–12826 (2016). https://doi.org/10.1002/anie.201607469
S. Zhang, The redox mechanism of FeS2 in non-aqueous electrolytes for lithium and sodium batteries. J. Mater. Chem. A 3(15), 7689–7694 (2015). https://doi.org/10.1039/C5TA00623F
Y. Xiao, S. Lee, Y. Sun, The application of metal sulfdes in sodium ion batteries. Adv. Energy Mater. 7(3), 1601329 (2016). https://doi.org/10.1002/aenm.201601329
X. Wei, W. Li, J. Shi, L. Gu, Y. Yu, FeS@C on carbon cloth as flexible electrode for both lithium and sodium storage. ACS Appl. Mater. Interfaces. 7(50), 27804–27809 (2015). https://doi.org/10.1021/acsami.5b09062
L. Li, S. Peng, N. Bucher, H. Chen, N. Shen et al., Large-scale synthesis of highly uniform Fe1-xS nanostructures as a high-rate anode for sodium ion batteries. Nano Energy 37, 81–90 (2017). https://doi.org/10.1016/j.nanoen.2017.05.012
Y. Xiao, J. Hwang, I. Belharouak, Y. Sun, Na-storage capability investigation of carbon nanotubes-encapsulated Fe1−xS composite. ACS Energy Lett. 2(2), 364–372 (2017). https://doi.org/10.1021/acsenergylett.6b00660
Z. Hu, Z. Zhu, F. Cheng, K. Zhang, J. Wang, C. Chen, J. Chen, Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ. Sci. 8(4), 1309–1316 (2015). https://doi.org/10.1039/C4EE03759F
Z. Hu, K. Zhang, Z. Zhu, Z. Tao, J. Chen, FeS2 microspheres with an ether-based electrolyte for high-performance rechargeable lithium batteries. J. Mater. Chem. A 3(24), 12898–12904 (2015). https://doi.org/10.1039/C5TA02169C
M. Walter, T. Zünd, M. Kovalenko, Pyrite (FeS2) nanocrystals as inexpensive high performance lithium-ion cathode and sodium-ion anode materials. Nanoscale 7(20), 9158–9163 (2015). https://doi.org/10.1039/C5NR00398A
A. Douglas, R. Carter, L. Oakes, K. Share, A. Cohn, C. Pint, Ultrafine iron pyrite (FeS2) nanocrystals improve sodium-sulfur and lithium-sulfur conversion reactions for efficient batteries. ACS Nano 9(11), 11156–11165 (2015). https://doi.org/10.1021/acsnano.5b04700
B. Wu, H. Song, J. Zhou, X. Chen, Iron sulfide-embedded carbon microsphere anode material with high-rate performance for lithium-ion batteries. Chem. Commun. 47(30), 8653–8655 (2011). https://doi.org/10.1039/c1cc12924d
D. Zhang, Y. Mai, J. Xiang, X. Xia, Y. Qiao, J. Tu, FeS2/C composite as an anode for lithium ion batteries with enhanced reversible capacity. J. Power Sources 217(11), 229–235 (2012). https://doi.org/10.1016/j.jpowsour.2012.05.112
Y. Wang, J. Yang, S. Chou, H. Liu, W. Zhang, D. Zhao, S.X. Dou, Uniform yolk-shell iron sulfide-carbon nanospheres for superior sodium-iron sulfide batteries. Nat. Commun. 6, 8689–8697 (2015). https://doi.org/10.1038/ncomms9689
L. Liu, Z. Yuan, C. Qiu, J. Liu, A novel FeS2/CNT micro-spherical cathode material with enhanced electrochemical characteristics for lithium-ion batteries. Solid State Ion. 241, 25–29 (2013). https://doi.org/10.1016/j.ssi.2013.03.031
F. Yu, Y. Liu, Y. Zhu, F. Dai, L. Zhang, Z. Wen, Polypyrrole@MoO3/reductive graphite oxide nanocomposites as anode material for aqueous supercapacitors with high performance. Mater. Lett. 171, 104–107 (2016). https://doi.org/10.1016/j.matlet.2016.01.028
Y. Liu, B. Zhang, Y. Yang, Z. Chang, Z. Wen, Y. Wu, Polypyrrole-coated α-MoO3 nanobelts with good electrochemical performance as anode material for aqueous supercapacitor. J. Mater. Chem. A 1(43), 13582–13587 (2013). https://doi.org/10.1039/c3ta12902k
Y. Liu, B. Zhang, S. Xiao, L. Liu, Z. Wen, Y. Wu, A nanocomposite of MoO3 coated with PPy as an anode material for aqueous sodium rechargeable batteries with excellent electrochemical performance. Electrochim. Acta 116(2), 512–517 (2014). https://doi.org/10.1016/j.electacta.2013.11.077
Q. Qu, Y. Zhu, X. Gao, Y. Wu, Core-shell structure of polypyrrole grown on V2O5 nanoribbon as high performance anode material for supercapacitors. Adv. Energy Mater. 2, 950–955 (2012). https://doi.org/10.1002/aenm.201200088
Z. Liu, T. Lu, T. Song, X. Yu, X. Lou, U. Paik, Structure-designed synthesis of FeS2@C yolk-shell nanoboxes as a high-performance anode for sodium-ion batteries. Energy Environ. Sci. 10(7), 1576–1580 (2017). https://doi.org/10.1039/C7EE01100H
L. Fei, Q. Lin, B. Yuan, G. Chen, P. Xie et al., Reduced graphene oxide wrapped FeS nanocomposite for lithium ion battery anode with improved performance. ACS Appl. Mater. Interfaces. 5(11), 5330–5335 (2013). https://doi.org/10.1021/am401239f
X. Wen, X. Wei, L. Yang, P. Shen, Self-assembled FeS2 cubes anchored on reduced graphene oxide as an anode material for lithium ion batteries. J. Mater. Chem. A 3(5), 2090–2096 (2015). https://doi.org/10.1039/C4TA05575F
G. Zhou, D. Wang, F. Li, L. Zhang, N. Li, Z. Wu, L. Wen, G.Q. Lu, H.M. Chen, Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 22(18), 5306–5313 (2010). https://doi.org/10.1021/cm101532x
Z. Zhang, Y. Wang, S. Chou, H. Li, H. Liu, J. Wang, Rapid synthesis of α-Fe2O3/rGO nanocomposites by microwave autoclave as superior anodes for sodium-ion batteries. J. Power Sources 280, 107–113 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.092
H. Wu, Q. Liu, S. Guo, Composites of graphene and LiFePO4 as cathode materials for lithium-ion battery: a mini-review. Nano-Micro Lett. 6(4), 316–326 (2014). https://doi.org/10.1007/s40820-014-0004-6
B. Hu, F. Wu, C. Lin, A. Khlobystov, L. Li, Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nat. Commun. 4, 1687–1693 (2013). https://doi.org/10.1038/ncomms2705
Y. Zhu, L. Suo, T. Gao, X. Fan, F. Han, C. Wang, Ether-based electrolyte enabled Na/FeS2 rechargeable batteries. Electrochem. Commun. 54, 18–22 (2015). https://doi.org/10.1016/j.elecom.2015.02.006
H. Hou, M. Jing, Y. Yang, Y. Zhu, L. Fang, W. Song, C. Pan, X. Yang, X. Ji, Sodium/lithium storage behavior of antimony hollow nanospheres for rechargeable batteries. ACS Appl. Mater. Interfaces 6, 16189–16196 (2014). https://doi.org/10.1021/am504310k
Y. Ko, Y. Kang, Electrochemical properties of ultrafine Sb nanocrystals embedded in carbon microspheres for use as Na-ion battery anode materials. Chem. Commun. 50, 12322–12324 (2014). https://doi.org/10.1039/C4CC05275G
Y. Luo, M. Balogun, W. Qiu, R. Zhao, P. Liu, Y. Tong, Sulfurization of FeOOH nanorods on a carbon cloth and their conversion into Fe2O3/Fe3O4-S core-shell nanorods for lithium storage. Chem. Commun. 51, 13016–13019 (2015). https://doi.org/10.1039/C5CC04700E
T. Evans, D. Piper, S. Kim, S. Han, V. Bhat, K. Oh, S. Lee, Ionic liquid enabled FeS2 for high-energy-density lithium-ion batteries. Adv. Mater. 26, 7386–7392 (2014). https://doi.org/10.1002/adma.201402103
Y. Zhu, X. Fan, L. Suo, C. Luo, T. Gao, C. Wang, Electrospun FeS2@carbon fiber electrode as a high energy density cathode for rechargeable lithium batteries. ACS Nano 10, 1529–1538 (2016). https://doi.org/10.1021/acsnano.5b07081
T. Yersak, H. Macpherson, S. Kim, V. Le, C. Kang et al., Solid state enabled reversible four electron storage. Adv. Energy Mater. 3, 120–127 (2013). https://doi.org/10.1002/aenm.201200267