Interface Engineering via Ti3C2Tx MXene Electrolyte Additive toward Dendrite-Free Zinc Deposition
Corresponding Author: Xingxing Gu
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 89
Abstract
Zinc metal batteries have been considered as a promising candidate for next-generation batteries due to their high safety and low cost. However, their practical applications are severely hampered by the poor cyclability that caused by the undesired dendrite growth of metallic Zn. Herein, Ti3C2Tx MXene was first used as electrolyte additive to facilitate the uniform Zn deposition by controlling the nucleation and growth process of Zn. Such MXene additives can not only be absorbed on Zn foil to induce uniform initial Zn deposition via providing abundant zincophilic-O groups and subsequently participate in the formation of robust solid-electrolyte interface film, but also accelerate ion transportation by reducing the Zn2+ concentration gradient at the electrode/electrolyte interface. Consequently, MXene-containing electrolyte realizes dendrite-free Zn plating/striping with high Coulombic efficiency (99.7%) and superior reversibility (stably up to 1180 cycles). When applied in full cell, the Zn-V2O5 cell also delivers significantly improved cycling performances. This work provides a facile yet effective method for developing reversible zinc metal batteries.
Highlights:
1 Well-dispersed MXene nanosheets in the electrolyte dramatically shorten Zn2+ diffusion pathways and facilitate their migration.
2 MXene interfacial layer with abundant functional groups and good conductivity induces uniform nucleation and enables long-term even deposition.
3 MXene-containing electrolyte realizes dendrite-free Zn plating/striping with high Coulombic efficiency (99.7%) and superior reversibility (stably up to 1180 cycles).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Gu, C. Lai, One dimensional nanostructures contribute better Li–S and Li–Se batteries: Progress, challenges and perspectives. Energy Storage Mater. 23, 190–224 (2019). https://doi.org/10.1016/j.ensm.2019.05.013
- Y.Y. Liu, Y.Y. Zhu, Y. Cui, Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4, 540–550 (2019). https://doi.org/10.1038/s41560-019-0405-3
- H.L. Dai, K. Xi, X. Liu, C. Lai, S.Q. Zhang, Cationic surfactant-based electrolyte additives for uniform lithium. J. Am. Chem. Soc. 140(50), 17515–17521 (2018). https://doi.org/10.1021/jacs.8b08963
- W.Y. Zhang, S.Q. Liang, G.Z. Fang, Y.Q. Yang, J. Zhou, Ultra-high mass-loading cathode for aqueous zinc-ion battery based on graphene-wrapped aluminum vanadate nanobelts. Nano-Micro Lett. 11, 69 (2019). https://doi.org/10.1007/s40820-019-0300-2
- X.L. Deng, K.Y. Zou, P. Cai, B.W. Wang, H.S. Hou et al., Advanced battery-type anode materials for high-performance sodium-ion capacitors. Small Methods. 4(10), 2000401 (2020). https://doi.org/10.1002/smtd.202000401
- J.Y. Zhang, X.W. Bai, T.T. Wang, W. Xiao, P.X. Xi et al., Bimetallic nickel cobalt sulfide as efficient electrocatalyst for Zn-air battery and water splitting. Nano-Micro Lett. 11, 2 (2019). https://doi.org/10.1007/s40820-018-0232-2
- Z.D. Huang, T.R. Wang, H. Song, X.L. Li, G.J. Liang et al., Effects of anion carriers on capacitance and self-discharge behaviors of zinc ion capacitors. Angew. Chem. Int. Ed. 60, 1011–1021 (2020). https://doi.org/10.1002/anie.202012202
- W.W. Xu, Y. Wang, Recent Progress on Zinc-Ion Rechargeable Batteries. Nano-Micro Lett. 11, 90 (2019). https://doi.org/10.1007/s40820-019-0322-9
- Y. Tian, Y. An, C. Wei, B. Xi, S. Xiong et al., Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano 13(10), 11676–11685 (2019). https://doi.org/10.1021/acsnano.9b05599
- C.F. Liu, Z. Neale, J.Q. Zheng, X.X. Jia, J.J. Huang et al., Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 12, 2273–2285 (2019). https://doi.org/10.1039/C9EE00956F
- B.Y. Tang, L.T. Shan, S.Q. Liang, J. Zhou, Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 12, 3288–3304 (2019). https://doi.org/10.1039/C9EE02526J
- F. Wang, O. Borodin, T. Gao, X.L. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17, 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
- K.Y. Zou, P. Cai, B.W. Wang, C. Liu, J.Y. Li et al., Insights into enhanced capacitive behavior of carbon cathode for lithium ion capacitors: the coupling of pore size and graphitization engineering. Nano-Micro Lett. 12, 121 (2020). https://doi.org/10.1007/s40820-020-00458-6
- Y.X. Zeng, X.Y. Zhang, R.F. Qin, X.Q. Liu, P.P. Fang et al., Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 31, 1903675 (2019). https://doi.org/10.1002/adma.201903675
- Z. Cai, Y.T. Ou, J.D. Wang, R. Xiao, L. Fu et al., Chemically resistant Cu-Zn/Zn composite anode for long cycling aqueous batteries. Energy Storage Mater. 27, 205–211 (2020). https://doi.org/10.1016/j.ensm.2020.01.032
- Z. Wang, J.H. Huang, Z.W. Guo, X.L. Dong, Y. Liu et al., A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3(5), 1289–1300 (2019). https://doi.org/10.1016/j.joule.2019.02.012
- L.T. Kang, M.W. Cui, F.Y. Jiang, Y.F. Gao, H.J. Luo et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8, 1801090 (2018). https://doi.org/10.1002/aenm.201801090
- K.N. Zhao, C.X. Wang, Y.H. Yu, M.Y. Yan, Q.L. Wei et al., Ultrathin surface coating enables stabilized zinc metal anode. Adv. Mater. Interfaces 5(16), 1800848 (2018). https://doi.org/10.1002/admi.201800848
- Z.M. Zhao, J.W. Zhao, Z.L. Hu, J.D. Li, J.J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12, 1938–1949 (2019). https://doi.org/10.1039/C9EE00596J
- H.J. Yang, Z. Chang, Y. Qiao, H. Deng, X.W. Mu et al., Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 59(24), 9377–9381 (2020). https://doi.org/10.1002/anie.202001844
- C.B. Deng, X.S. Xie, J.W. Han, Y. Tang, J.W. Gao et al., A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode. Adv. Funct. Mater. 30(21), 2000599 (2020). https://doi.org/10.1002/adfm.202000599
- Q. Zhang, J.Y. Luan, L. Fu, S.G. Wu, Y.G. Tang et al., The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem. Int. Ed. 58(44), 15841–15847 (2019). https://doi.org/10.1002/anie.201907830
- W.N. Xu, K.N. Zhao, W.C. Huo, Y.Z. Wang, G. Yao et al., Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. Nano Energy 62, 275–281 (2019). https://doi.org/10.1016/j.nanoen.2019.05.042
- L.H. Yu, W.P. Li, C.H. Wei, Q.F. Yang, Y.L. Shao et al., 3D printing of NiCoP/Ti3C2 MXene architectures for energy storage devices with high areal and volumetric energy density. Nano-Micro Lett. 12, 143 (2020). https://doi.org/10.1007/s40820-020-00483-5
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J.J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014). https://doi.org/10.1002/adma.201304138
- X. Tang, D. Zhou, P. Li, X. Guo, B. Sun et al., MXene-based dendrite-free potassium metal batteries. Adv. Mater. 32(4), 1906739 (2020). https://doi.org/10.1002/adma.201906739
- X.Y. Zhang, R.J. Lv, A.X. Wang, W.Q. Guo, X.J. Liu et al., MXene aerogel scaffolds for high rate lithium metal anodes. Angew. Chem. Int. Ed. 57(46), 15028–15033 (2018). https://doi.org/10.1002/anie.201808714
- J.M. Luo, C.L. Wang, H. Wang, X.F. Hu, E. Matios et al., Pillared MXene with ultralarge interlayer spacing as a stable matrix for high performance sodium metal anodes. Adv. Funct. Mater. 29(3), 1805946 (2019). https://doi.org/10.1002/adfm.201805946
- Y.Z. Fang, Y. Zhang, K. Zhu, R.Q. Lian, Y. Gao et al., Lithiophilic three-dimensional porousTi3C2Tx-rGO membrane as a stable scaffold for safe alkali metal (Li or Na) anodes. ACS Nano 13(12), 14319–14328 (2019). https://doi.org/10.1021/acsnano.9b07729
- D. Zhang, S. Wang, B. Li, Y.G. Gong, S.B. Yang, Horizontal growth of lithium on parallelly aligned MXene layers towards dendrite-free metallic lithium anodes. Adv. Mater. 31(33), 1901820 (2019). https://doi.org/10.1002/adma.201901820
- H.D. Shi, C.F. Zhang, P.F. Lu, Y.F. Dong, P.C. Wen et al., Conducting and lithiophilic MXene/graphene framework for high-capacity, dendrite-free lithium-metal anodes. ACS Nano 13(12), 14308–14318 (2019). https://doi.org/10.1021/acsnano.9b07710
- K. Shen, B. Li, S.B. Yang, 3D printing dendrite-free lithium anodes based on the nucleated MXene arrays. Energy Storage Mater. 24, 670–675 (2020). https://doi.org/10.1016/j.ensm.2019.08.015
- Y.L. An, Y. Tian, C.L. Wei, H.F. Jiang, B.J. Xi et al., Scalable and physical synthesis of 2D silicon from bulk layered alloy for lithium-ion batteries and lithium metal batteries. ACS Nano 13(12), 13690–13701 (2019). https://doi.org/10.1021/acsnano.9b06653
- C. Sun, X.L. Shi, Y.B. Zhang, J.J. Liang, J. Qu et al., Ti3C2Tx MXene interface layer driving ultra-stable lithium-iodine batteries with both high iodine content and mass loading. ACS Nano 14(1), 1176–1184 (2020). https://doi.org/10.1021/acsnano.9b09541
- L.H. Yu, Z.D. Fan, Y.L. Shao, Z.N. Tian, J.Y. Sun et al., Versatile N-doped MXene ink for printed electrochemical energy storage application. Adv. Energy Mater. 9(34), 1901839 (2019). https://doi.org/10.1002/aenm.201901839
- X.Q. Fan, Y. Ding, Y. Liu, J.J. Liang, Y.S. Chen, Plasmonic Ti3C2Tx MXene enables highly efficient photothermal conversion for healable and transparent wearable device. ACS Nano 13(7), 8124–8134 (2019). https://doi.org/10.1021/acsnano.9b03161
- L. Ding, Y.Y. Wei, L.B. Li, T. Zhang, H.H. Wang et al., MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 9(155), 1–7 (2018). https://doi.org/10.1038/s41467-017-02529-6
- M.K. Aslam, Y.B. Niu, M.W. Xu, MXenes for non-lithium-ion (Na, K, Ca, Mg and Al) batteries and supercapacitors. Adv. Energy Mater. 9, 2000681 (2020). https://doi.org/10.1002/aenm.202000681
- Z.Y. Cao, P.Y. Zhuang, X. Zhang, M.X. Ye, J.F. Shen et al., Strategies for dendrite-free anode in aqueous rechargeable zinc ion batteries. Adv. Energy Mater. 10(30), 2001599 (2020). https://doi.org/10.1002/aenm.202001599
- J.Y. Wu, X.W. Li, Z.X. Rao, X.N. Xu, Z.X. Cheng et al., Electrolyte with boron nitride nanosheets as leveling agent towards dendrite-free lithium metal anodes. Nano Energy 72, 104725 (2020). https://doi.org/10.1016/j.nanoen.2020.104725
- W. Chen, Y. Hu, W.Q. Lv, T.Y. Lei, X.F. Wang et al., Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition. Nat. Commun. 10(1), 4973 (2019). https://doi.org/10.1038/s41467-019-12952-6
- Z.P. Jiang, Z.Q. Zeng, C.K. Yang, Z.L. Han, W. Hu et al., Nitrofullerene, a C60-based bifunctional additive with smoothing and protecting effects for stable lithium metal anode. Nano Lett. 19(12), 8780–8786 (2019). https://doi.org/10.1021/acs.nanolett.9b03562
- X.Q. Zhang, T. Li, B.Q. Li, R. Zhang, P. Shi et al., A sustainable solid electrolyte interphase enables high-energy-density lithium metal batteries under practical conditions. Angew. Chem. Int. Ed. 132(8), 3278–3283 (2020). https://doi.org/10.1002/ange.201911724
- J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria et al., Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100(13), 136406 (2008). https://doi.org/10.1103/PhysRevLett.100.136406
- J.C. Sancho-Garcı́a, J.L. Brédas, J. Cornil, Assessment of the reliability of the perdew-burke-ernzerhof functionals in the determination of torsional potentials in π-conjugated molecules. Chem. Phys. Lett. 377(1–2), 63–68 (2003). https://doi.org/10.1016/S0009-2614(03)01086-8
References
X. Gu, C. Lai, One dimensional nanostructures contribute better Li–S and Li–Se batteries: Progress, challenges and perspectives. Energy Storage Mater. 23, 190–224 (2019). https://doi.org/10.1016/j.ensm.2019.05.013
Y.Y. Liu, Y.Y. Zhu, Y. Cui, Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4, 540–550 (2019). https://doi.org/10.1038/s41560-019-0405-3
H.L. Dai, K. Xi, X. Liu, C. Lai, S.Q. Zhang, Cationic surfactant-based electrolyte additives for uniform lithium. J. Am. Chem. Soc. 140(50), 17515–17521 (2018). https://doi.org/10.1021/jacs.8b08963
W.Y. Zhang, S.Q. Liang, G.Z. Fang, Y.Q. Yang, J. Zhou, Ultra-high mass-loading cathode for aqueous zinc-ion battery based on graphene-wrapped aluminum vanadate nanobelts. Nano-Micro Lett. 11, 69 (2019). https://doi.org/10.1007/s40820-019-0300-2
X.L. Deng, K.Y. Zou, P. Cai, B.W. Wang, H.S. Hou et al., Advanced battery-type anode materials for high-performance sodium-ion capacitors. Small Methods. 4(10), 2000401 (2020). https://doi.org/10.1002/smtd.202000401
J.Y. Zhang, X.W. Bai, T.T. Wang, W. Xiao, P.X. Xi et al., Bimetallic nickel cobalt sulfide as efficient electrocatalyst for Zn-air battery and water splitting. Nano-Micro Lett. 11, 2 (2019). https://doi.org/10.1007/s40820-018-0232-2
Z.D. Huang, T.R. Wang, H. Song, X.L. Li, G.J. Liang et al., Effects of anion carriers on capacitance and self-discharge behaviors of zinc ion capacitors. Angew. Chem. Int. Ed. 60, 1011–1021 (2020). https://doi.org/10.1002/anie.202012202
W.W. Xu, Y. Wang, Recent Progress on Zinc-Ion Rechargeable Batteries. Nano-Micro Lett. 11, 90 (2019). https://doi.org/10.1007/s40820-019-0322-9
Y. Tian, Y. An, C. Wei, B. Xi, S. Xiong et al., Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano 13(10), 11676–11685 (2019). https://doi.org/10.1021/acsnano.9b05599
C.F. Liu, Z. Neale, J.Q. Zheng, X.X. Jia, J.J. Huang et al., Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 12, 2273–2285 (2019). https://doi.org/10.1039/C9EE00956F
B.Y. Tang, L.T. Shan, S.Q. Liang, J. Zhou, Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 12, 3288–3304 (2019). https://doi.org/10.1039/C9EE02526J
F. Wang, O. Borodin, T. Gao, X.L. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17, 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
K.Y. Zou, P. Cai, B.W. Wang, C. Liu, J.Y. Li et al., Insights into enhanced capacitive behavior of carbon cathode for lithium ion capacitors: the coupling of pore size and graphitization engineering. Nano-Micro Lett. 12, 121 (2020). https://doi.org/10.1007/s40820-020-00458-6
Y.X. Zeng, X.Y. Zhang, R.F. Qin, X.Q. Liu, P.P. Fang et al., Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 31, 1903675 (2019). https://doi.org/10.1002/adma.201903675
Z. Cai, Y.T. Ou, J.D. Wang, R. Xiao, L. Fu et al., Chemically resistant Cu-Zn/Zn composite anode for long cycling aqueous batteries. Energy Storage Mater. 27, 205–211 (2020). https://doi.org/10.1016/j.ensm.2020.01.032
Z. Wang, J.H. Huang, Z.W. Guo, X.L. Dong, Y. Liu et al., A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3(5), 1289–1300 (2019). https://doi.org/10.1016/j.joule.2019.02.012
L.T. Kang, M.W. Cui, F.Y. Jiang, Y.F. Gao, H.J. Luo et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8, 1801090 (2018). https://doi.org/10.1002/aenm.201801090
K.N. Zhao, C.X. Wang, Y.H. Yu, M.Y. Yan, Q.L. Wei et al., Ultrathin surface coating enables stabilized zinc metal anode. Adv. Mater. Interfaces 5(16), 1800848 (2018). https://doi.org/10.1002/admi.201800848
Z.M. Zhao, J.W. Zhao, Z.L. Hu, J.D. Li, J.J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12, 1938–1949 (2019). https://doi.org/10.1039/C9EE00596J
H.J. Yang, Z. Chang, Y. Qiao, H. Deng, X.W. Mu et al., Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 59(24), 9377–9381 (2020). https://doi.org/10.1002/anie.202001844
C.B. Deng, X.S. Xie, J.W. Han, Y. Tang, J.W. Gao et al., A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode. Adv. Funct. Mater. 30(21), 2000599 (2020). https://doi.org/10.1002/adfm.202000599
Q. Zhang, J.Y. Luan, L. Fu, S.G. Wu, Y.G. Tang et al., The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem. Int. Ed. 58(44), 15841–15847 (2019). https://doi.org/10.1002/anie.201907830
W.N. Xu, K.N. Zhao, W.C. Huo, Y.Z. Wang, G. Yao et al., Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. Nano Energy 62, 275–281 (2019). https://doi.org/10.1016/j.nanoen.2019.05.042
L.H. Yu, W.P. Li, C.H. Wei, Q.F. Yang, Y.L. Shao et al., 3D printing of NiCoP/Ti3C2 MXene architectures for energy storage devices with high areal and volumetric energy density. Nano-Micro Lett. 12, 143 (2020). https://doi.org/10.1007/s40820-020-00483-5
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J.J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014). https://doi.org/10.1002/adma.201304138
X. Tang, D. Zhou, P. Li, X. Guo, B. Sun et al., MXene-based dendrite-free potassium metal batteries. Adv. Mater. 32(4), 1906739 (2020). https://doi.org/10.1002/adma.201906739
X.Y. Zhang, R.J. Lv, A.X. Wang, W.Q. Guo, X.J. Liu et al., MXene aerogel scaffolds for high rate lithium metal anodes. Angew. Chem. Int. Ed. 57(46), 15028–15033 (2018). https://doi.org/10.1002/anie.201808714
J.M. Luo, C.L. Wang, H. Wang, X.F. Hu, E. Matios et al., Pillared MXene with ultralarge interlayer spacing as a stable matrix for high performance sodium metal anodes. Adv. Funct. Mater. 29(3), 1805946 (2019). https://doi.org/10.1002/adfm.201805946
Y.Z. Fang, Y. Zhang, K. Zhu, R.Q. Lian, Y. Gao et al., Lithiophilic three-dimensional porousTi3C2Tx-rGO membrane as a stable scaffold for safe alkali metal (Li or Na) anodes. ACS Nano 13(12), 14319–14328 (2019). https://doi.org/10.1021/acsnano.9b07729
D. Zhang, S. Wang, B. Li, Y.G. Gong, S.B. Yang, Horizontal growth of lithium on parallelly aligned MXene layers towards dendrite-free metallic lithium anodes. Adv. Mater. 31(33), 1901820 (2019). https://doi.org/10.1002/adma.201901820
H.D. Shi, C.F. Zhang, P.F. Lu, Y.F. Dong, P.C. Wen et al., Conducting and lithiophilic MXene/graphene framework for high-capacity, dendrite-free lithium-metal anodes. ACS Nano 13(12), 14308–14318 (2019). https://doi.org/10.1021/acsnano.9b07710
K. Shen, B. Li, S.B. Yang, 3D printing dendrite-free lithium anodes based on the nucleated MXene arrays. Energy Storage Mater. 24, 670–675 (2020). https://doi.org/10.1016/j.ensm.2019.08.015
Y.L. An, Y. Tian, C.L. Wei, H.F. Jiang, B.J. Xi et al., Scalable and physical synthesis of 2D silicon from bulk layered alloy for lithium-ion batteries and lithium metal batteries. ACS Nano 13(12), 13690–13701 (2019). https://doi.org/10.1021/acsnano.9b06653
C. Sun, X.L. Shi, Y.B. Zhang, J.J. Liang, J. Qu et al., Ti3C2Tx MXene interface layer driving ultra-stable lithium-iodine batteries with both high iodine content and mass loading. ACS Nano 14(1), 1176–1184 (2020). https://doi.org/10.1021/acsnano.9b09541
L.H. Yu, Z.D. Fan, Y.L. Shao, Z.N. Tian, J.Y. Sun et al., Versatile N-doped MXene ink for printed electrochemical energy storage application. Adv. Energy Mater. 9(34), 1901839 (2019). https://doi.org/10.1002/aenm.201901839
X.Q. Fan, Y. Ding, Y. Liu, J.J. Liang, Y.S. Chen, Plasmonic Ti3C2Tx MXene enables highly efficient photothermal conversion for healable and transparent wearable device. ACS Nano 13(7), 8124–8134 (2019). https://doi.org/10.1021/acsnano.9b03161
L. Ding, Y.Y. Wei, L.B. Li, T. Zhang, H.H. Wang et al., MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 9(155), 1–7 (2018). https://doi.org/10.1038/s41467-017-02529-6
M.K. Aslam, Y.B. Niu, M.W. Xu, MXenes for non-lithium-ion (Na, K, Ca, Mg and Al) batteries and supercapacitors. Adv. Energy Mater. 9, 2000681 (2020). https://doi.org/10.1002/aenm.202000681
Z.Y. Cao, P.Y. Zhuang, X. Zhang, M.X. Ye, J.F. Shen et al., Strategies for dendrite-free anode in aqueous rechargeable zinc ion batteries. Adv. Energy Mater. 10(30), 2001599 (2020). https://doi.org/10.1002/aenm.202001599
J.Y. Wu, X.W. Li, Z.X. Rao, X.N. Xu, Z.X. Cheng et al., Electrolyte with boron nitride nanosheets as leveling agent towards dendrite-free lithium metal anodes. Nano Energy 72, 104725 (2020). https://doi.org/10.1016/j.nanoen.2020.104725
W. Chen, Y. Hu, W.Q. Lv, T.Y. Lei, X.F. Wang et al., Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition. Nat. Commun. 10(1), 4973 (2019). https://doi.org/10.1038/s41467-019-12952-6
Z.P. Jiang, Z.Q. Zeng, C.K. Yang, Z.L. Han, W. Hu et al., Nitrofullerene, a C60-based bifunctional additive with smoothing and protecting effects for stable lithium metal anode. Nano Lett. 19(12), 8780–8786 (2019). https://doi.org/10.1021/acs.nanolett.9b03562
X.Q. Zhang, T. Li, B.Q. Li, R. Zhang, P. Shi et al., A sustainable solid electrolyte interphase enables high-energy-density lithium metal batteries under practical conditions. Angew. Chem. Int. Ed. 132(8), 3278–3283 (2020). https://doi.org/10.1002/ange.201911724
J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria et al., Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100(13), 136406 (2008). https://doi.org/10.1103/PhysRevLett.100.136406
J.C. Sancho-Garcı́a, J.L. Brédas, J. Cornil, Assessment of the reliability of the perdew-burke-ernzerhof functionals in the determination of torsional potentials in π-conjugated molecules. Chem. Phys. Lett. 377(1–2), 63–68 (2003). https://doi.org/10.1016/S0009-2614(03)01086-8