Design and Synthesis of Cu@CuS Yolk–Shell Structures with Enhanced Photocatalytic Activity
Corresponding Author: Xiguang Han
Nano-Micro Letters,
Vol. 9 No. 3 (2017), Article Number: 35
Abstract
Non-spherical Cu@CuS yolk–shell structures are successfully obtained using Cu2O cube templates in a process combining rapid surface sulfidation followed by disproportionation of the Cu2O core upon treatment with a hydrochloric acid solution. By employing the above method, Cu@CuS yolk–shell structures with different morphologies, including octahedral, truncated octahedral, and cuboctahedral shapes, can be synthesized. The void space within the hollow structures provides a unique confined space, where the metallic copper present in the core of a shell can be protected from agglomeration and oxidation. Furthermore, the presence of metal copper in these hollow structures contributes to improvement in the photocatalytic properties of these materials. The application of these Cu@CuS structures indeed shows clearly improved photocatalytic performance.
Highlights:
1 Non-spherical Cu@CuS yolk–shell structures with different morphologies, including octahedral, truncated octahedral, and cuboctahedral shapes, are successfully obtained using a strategy combining shell sulfidation and core disproportionation reaction.
2 The as-prepared Cu@CuS structures exhibited clearly remarkable photocatalytic performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Fujishima, K. Honda, Three-dimensional structure of thermolysin. Nature 238, 37–41 (1972). doi:10.1038/newbio238037a0
- X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010). doi:10.1021/cr1001645
- Z.G. Yi, J.H. Ye, N. Kikugawa, T. Kako, S.X. Ouyang et al., An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nat. Mater. 9, 559–564 (2010). doi:10.1038/nmat2780
- P. Zhang, L. Wang, X. Zhang, C. Shao, J. Hu, G. Shao, Three-dimensional porous networks of ultra-long electrospun SnO2 nanotubes with high photocatalytic performance. Nano-Micro Lett. 7(1), 86–95 (2015). doi:10.1007/s40820-014-0022-4
- J.S. Hu, L.L. Ren, Y.G. Guo, H.P. Liang, A.M. Cao, L.J. Wan, C.L. Bai, Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles. Angew. Chem. Int. Ed. 117, 1295–1299 (2005). doi:10.1002/ange.200462057
- H.F. Cheng, B.B. Huang, X.Y. Qin, X.Y. Zhang, Y. Dai, A controlled anion exchange strategy to synthesize Bi2S3 nanocrystals/BiOCl hybrid architectures with efficient visible light photoactivity. Chem. Commun. 48, 97–99 (2012). doi:10.1039/C1CC15487G
- Q.W. Tian, J.Q. Hu, Y.H. Zhu, R.J. Zou, Z.G. Chen et al., Sub-10 nm Fe3O4@Cu2−x S core–shell nanoparticles for dual-modal imaging and photothermal therapy. J. Am. Chem. Soc. 135(23), 8571–8577 (2013). doi:10.1021/ja4013497
- J.F. Mao, Q. Shu, Y.Q. Wen, H.Y. Yuan, D. Xiao, M.F. Choi, Facile fabrication of porous cus nanotubes using well-aligned [Cu(tu)]Cl·1/2H2O nanowire precursors as self-sacrificial templates. Cryst. Growth Des. 9(6), 2546–2548 (2009). doi:10.1021/cg8006052
- F. Pan, S.M. Niu, Y. Ding, L. Dong, R.M. Yu, Y. Liu, G. Zhu, Z.L. Wang, Enhanced Cu2S/CdS coaxial nanowire solar cells by piezo-phototronic effect. Nano Lett. 12(6), 3302–3307 (2012). doi:10.1021/nl3014082
- Z.J. Sun, X. Liu, Q.D. Yue, H.X. Jia, P.W. Du, Cadmium sulfide nanorods decorated with copper sulfide via one-step cation exchange approach for enhanced photocatalytic hydrogen evolution under visible light. Chemcatchem 8, 157–162 (2016). doi:10.1002/cctc.201500789
- H.B. Wu, W. Chen, Synthesis and reaction temperature-tailored self-assembly of copper sulfide nanoplates. Nanoscale 3, 5096–5102 (2011). doi:10.1039/c1nr10829h
- Z.G. Chen, S.Z. Wang, Q. Wang, B.Y. Geng, A facile solution chemical route to self-assembly of CuS ball-flowers and their application as an efficient photocatalyst. CrystEngComm 12, 144–149 (2010). doi:10.1039/B914902C
- H. Kuo, Y.T. Chu, Y.F. Song, M.H. Huang, Cu2O nanocrystal-templated growth of Cu2S nanocages with encapsulated au nanoparticles and in situ transmission X-ray microscopy study. Adv. Funct. Mater. 21, 792–797 (2011). doi:10.1002/adfm.201002108
- J. Reszczynska, T. Grzyb, J.W. Sobczak, W. Lisowski, M. Gazda, B. Ohtani, A. Zaleska, Visible light activity of rare earth metal doped (Er3+, Yb3+ or Er3+/Yb3+) titania photocatalysts. Appl. Catal. B-Environ. 163, 40–49 (2015). doi:10.1016/j.apcatb.2014.07.010
- J.Z. Bloh, R. Dillert, D.W. Bahnemann, Designing optimal metal-doped photocatalysts: correlation between photocatalytic activity, doping ratio, and particle size. J. Phys. Chem. C 116(48), 25558–25562 (2012). doi:10.1021/jp307313z
- J.Y. Qin, J.P. Huo, P.Y. Zhang, J. Zeng, T.T. Wang, H.P. Zeng, Improving the photocatalytic hydrogen production of Ag/g-C3N4 nanocomposites by dye-sensitization under visible light irradiation. Nanoscale 8, 2249–2259 (2016). doi:10.1039/C5NR06346A
- K. Kim, M.J. Kim, S. Kim, J.H. Jang, Towards visible light hydrogen generation: quantum dot-sensitization via efficient light harvesting of hybrid-TiO2. Sci. Rep. 3, 3330 (2013). doi:10.1038/srep03330
- S.S. Chen, Y. Qi, T. Hisatomi, Q. Ding, T. Asai et al., Efficient visible-light-driven z-scheme overall water splitting using a MgTa2O6–xNy/TaON heterostructure photocatalyst for H2 evolution. Angew. Chem. Int. Ed. 127, 8618–8621 (2015). doi:10.1002/ange.201502686
- J. Jiang, H. Li, L.Z. Zhang, New insight into daylight photocatalysis of AgBr@Ag: synergistic effect between semiconductor photocatalysis and plasmonic photocatalysis. Chem. Eur. J. 18, 6360–6369 (2012). doi:10.1002/chem.201102606
- W. Ding, K. Liu, S.N. He, C.B. Gao, Y.D. Yin, Ligand-exchange assisted formation of Au/TiO2 schottky contact for visible-light photocatalysis. Nano Lett. 14(11), 6731–6736 (2014). doi:10.1021/nl503585m
- S.N. Xiao, P.J. Liu, W. Zhu, G.S. Li, D.Q. Zhang, H.X. Li, Copper nanowires: a substitute for noble metals to enhance photocatalytic H2 generation. Nano Lett. 15(8), 4853–4858 (2015). doi:10.1021/acs.nanolett.5b00082
- Y. Li, W.N. Wang, Z.L. Zhan, M.H. Woo, C.Y. Wu, P. Biswas, Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Appl. Catal. B-Environ. 100, 386–392 (2010). doi:10.1016/j.apcatb.2010.08.015
- X. Lai, J.E. Halpert, D. Wang, Recent advances in micro-/nano-structured hollow spheres for energy applications: from simple to complex systems. Energy Environ. Sci. 5, 5604–5618 (2012). doi:10.1039/C1EE02426D
- N. Liu, H. Wu, M.T. McDowell, Y. Yao, C.M. Wang, Y. Cui, A yolk–shell design for stabilized and scalable li-ion battery alloy anodes. Nano Lett. 12(6), 3315–3321 (2012). doi:10.1021/nl3014814
- H. Hu, B.Y. Guan, B.Y. Xia, X.W. Lou, Sub-10 nm Fe3O4@Cu2−x S core–shell nanoparticles for dual-modal imaging and photothermal therapy. J. Am. Chem. Soc. 135(23), 8571–8577 (2013). doi:10.1021/ja4013497
- L.L. Wang, H.M. Dou, Z. Lou, T. Zhang, Encapsuled nanoreactors (Au@SnO2): a new sensing material for chemical sensors. Nanoscale 5, 2686–2691 (2013). doi:10.1039/c2nr33088a
- L.L. Wang, Z. Lou, J.N. Deng, R. Zhang, T. Zhang, Ethanol gas detection using a yolk–shell (core–shell) α-Fe2O3 nanospheres as sensing material. ACS Appl. Mater. Interfaces 7, 13098–13104 (2015). doi:10.1021/acsami.5b03978
- L.L. Wang, W.B. Ng, J.A. Jackman, N.J. Cho, Graphene-functionalized natural microcapsules: modular building blocks for ultrahigh sensitivity bioelectronic platforms. Adv. Funct. Mater. 26, 2097–2103 (2016). doi:10.1002/adfm.201504940
- Y.R. Wang, W.L. Yang, L. Zhang, Y. Hu, X.W. Lou, Formation of MS–Ag and MS (M = Pb, Cd, Zn) nanotubes via microwave-assisted cation exchange and their enhanced photocatalytic activities. Nanoscale 5, 10864–10867 (2013). doi:10.1039/c3nr03909a
- S.H. Ye, X.J. He, L.X. Ding, Z.W. Pan, Y.X. Tong, M.M. Wu, G.R. Li, Cu2O template synthesis of high-performance PtCu alloy yolk–shell cube catalysts for direct methanol fuel cells. Chem. Commun. 50, 12337–12340 (2014). doi:10.1039/C4CC04108A
- L. Kuai, B.Y. Geng, S.Z. Wang, Y. Sang, A general and high-yield galvanic displacement approach to AuM (M = Au, Pd, and Pt) core–shell nanostructures with porous shells and enhanced electrocatalytic performances. Chem. Eur. J. 18, 9423–9429 (2012). doi:10.1002/chem.201200893
- Y. Lu, Y. Zhao, L. Yu, L. Dong, C. Shi, M.J. Hu, Y.J. Xu, L.P. Wen, S.H. Yu, Hydrophilic Co@Au yolk/shell nanospheres: synthesis, assembly, and application to gene delivery. Adv. Mater. 22, 1407–1411 (2010). doi:10.1002/adma.200903298
- Z.H. Wei, Z.J. Zhou, M. Yang, C.H. Lin, Z.H. Zhao, D.T. Huang, Z. Chen, J.H. Cao, Multifunctional Ag@Fe2O3 yolk–shell nanoparticles for simultaneous capture, kill, and removal of pathogen. J. Mater. Chem. 21, 16344–16348 (2011). doi:10.1039/c1jm13691g
- S.D. Sun, X.P. Song, C.C. Kong, S.H. Liang, B.J. Ding, Z.M. Yang, Unique polyhedral 26-facet CuS hollow architectures decorated with nanotwinned, mesostructural and single crystalline shells. CrystEngComm 13, 6200–6205 (2011). doi:10.1039/c1ce05563a
- Q.P. Luo, X.Y. Yu, B.X. Lei, H.Y. Chen, D.B. Kuang, C.Y. Su, Reduced graphene oxide-hierarchical zno hollow sphere composites with enhanced photocurrent and photocatalytic activity. J. Phys. Chem. C 116(14), 8111–8117 (2012). doi:10.1021/jp2113329
- X.W. Zou, H.Q. Fan, Y.M. Tian, M.G. Zhang, X.Y. Yan, Microwave-assisted hydrothermal synthesis of Cu/Cu2O hollow spheres with enhanced photocatalytic and gas sensing activities at room temperature. Dalton Trans. 44, 7811–7821 (2015). doi:10.1039/C4DT03417A
References
A. Fujishima, K. Honda, Three-dimensional structure of thermolysin. Nature 238, 37–41 (1972). doi:10.1038/newbio238037a0
X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010). doi:10.1021/cr1001645
Z.G. Yi, J.H. Ye, N. Kikugawa, T. Kako, S.X. Ouyang et al., An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nat. Mater. 9, 559–564 (2010). doi:10.1038/nmat2780
P. Zhang, L. Wang, X. Zhang, C. Shao, J. Hu, G. Shao, Three-dimensional porous networks of ultra-long electrospun SnO2 nanotubes with high photocatalytic performance. Nano-Micro Lett. 7(1), 86–95 (2015). doi:10.1007/s40820-014-0022-4
J.S. Hu, L.L. Ren, Y.G. Guo, H.P. Liang, A.M. Cao, L.J. Wan, C.L. Bai, Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles. Angew. Chem. Int. Ed. 117, 1295–1299 (2005). doi:10.1002/ange.200462057
H.F. Cheng, B.B. Huang, X.Y. Qin, X.Y. Zhang, Y. Dai, A controlled anion exchange strategy to synthesize Bi2S3 nanocrystals/BiOCl hybrid architectures with efficient visible light photoactivity. Chem. Commun. 48, 97–99 (2012). doi:10.1039/C1CC15487G
Q.W. Tian, J.Q. Hu, Y.H. Zhu, R.J. Zou, Z.G. Chen et al., Sub-10 nm Fe3O4@Cu2−x S core–shell nanoparticles for dual-modal imaging and photothermal therapy. J. Am. Chem. Soc. 135(23), 8571–8577 (2013). doi:10.1021/ja4013497
J.F. Mao, Q. Shu, Y.Q. Wen, H.Y. Yuan, D. Xiao, M.F. Choi, Facile fabrication of porous cus nanotubes using well-aligned [Cu(tu)]Cl·1/2H2O nanowire precursors as self-sacrificial templates. Cryst. Growth Des. 9(6), 2546–2548 (2009). doi:10.1021/cg8006052
F. Pan, S.M. Niu, Y. Ding, L. Dong, R.M. Yu, Y. Liu, G. Zhu, Z.L. Wang, Enhanced Cu2S/CdS coaxial nanowire solar cells by piezo-phototronic effect. Nano Lett. 12(6), 3302–3307 (2012). doi:10.1021/nl3014082
Z.J. Sun, X. Liu, Q.D. Yue, H.X. Jia, P.W. Du, Cadmium sulfide nanorods decorated with copper sulfide via one-step cation exchange approach for enhanced photocatalytic hydrogen evolution under visible light. Chemcatchem 8, 157–162 (2016). doi:10.1002/cctc.201500789
H.B. Wu, W. Chen, Synthesis and reaction temperature-tailored self-assembly of copper sulfide nanoplates. Nanoscale 3, 5096–5102 (2011). doi:10.1039/c1nr10829h
Z.G. Chen, S.Z. Wang, Q. Wang, B.Y. Geng, A facile solution chemical route to self-assembly of CuS ball-flowers and their application as an efficient photocatalyst. CrystEngComm 12, 144–149 (2010). doi:10.1039/B914902C
H. Kuo, Y.T. Chu, Y.F. Song, M.H. Huang, Cu2O nanocrystal-templated growth of Cu2S nanocages with encapsulated au nanoparticles and in situ transmission X-ray microscopy study. Adv. Funct. Mater. 21, 792–797 (2011). doi:10.1002/adfm.201002108
J. Reszczynska, T. Grzyb, J.W. Sobczak, W. Lisowski, M. Gazda, B. Ohtani, A. Zaleska, Visible light activity of rare earth metal doped (Er3+, Yb3+ or Er3+/Yb3+) titania photocatalysts. Appl. Catal. B-Environ. 163, 40–49 (2015). doi:10.1016/j.apcatb.2014.07.010
J.Z. Bloh, R. Dillert, D.W. Bahnemann, Designing optimal metal-doped photocatalysts: correlation between photocatalytic activity, doping ratio, and particle size. J. Phys. Chem. C 116(48), 25558–25562 (2012). doi:10.1021/jp307313z
J.Y. Qin, J.P. Huo, P.Y. Zhang, J. Zeng, T.T. Wang, H.P. Zeng, Improving the photocatalytic hydrogen production of Ag/g-C3N4 nanocomposites by dye-sensitization under visible light irradiation. Nanoscale 8, 2249–2259 (2016). doi:10.1039/C5NR06346A
K. Kim, M.J. Kim, S. Kim, J.H. Jang, Towards visible light hydrogen generation: quantum dot-sensitization via efficient light harvesting of hybrid-TiO2. Sci. Rep. 3, 3330 (2013). doi:10.1038/srep03330
S.S. Chen, Y. Qi, T. Hisatomi, Q. Ding, T. Asai et al., Efficient visible-light-driven z-scheme overall water splitting using a MgTa2O6–xNy/TaON heterostructure photocatalyst for H2 evolution. Angew. Chem. Int. Ed. 127, 8618–8621 (2015). doi:10.1002/ange.201502686
J. Jiang, H. Li, L.Z. Zhang, New insight into daylight photocatalysis of AgBr@Ag: synergistic effect between semiconductor photocatalysis and plasmonic photocatalysis. Chem. Eur. J. 18, 6360–6369 (2012). doi:10.1002/chem.201102606
W. Ding, K. Liu, S.N. He, C.B. Gao, Y.D. Yin, Ligand-exchange assisted formation of Au/TiO2 schottky contact for visible-light photocatalysis. Nano Lett. 14(11), 6731–6736 (2014). doi:10.1021/nl503585m
S.N. Xiao, P.J. Liu, W. Zhu, G.S. Li, D.Q. Zhang, H.X. Li, Copper nanowires: a substitute for noble metals to enhance photocatalytic H2 generation. Nano Lett. 15(8), 4853–4858 (2015). doi:10.1021/acs.nanolett.5b00082
Y. Li, W.N. Wang, Z.L. Zhan, M.H. Woo, C.Y. Wu, P. Biswas, Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Appl. Catal. B-Environ. 100, 386–392 (2010). doi:10.1016/j.apcatb.2010.08.015
X. Lai, J.E. Halpert, D. Wang, Recent advances in micro-/nano-structured hollow spheres for energy applications: from simple to complex systems. Energy Environ. Sci. 5, 5604–5618 (2012). doi:10.1039/C1EE02426D
N. Liu, H. Wu, M.T. McDowell, Y. Yao, C.M. Wang, Y. Cui, A yolk–shell design for stabilized and scalable li-ion battery alloy anodes. Nano Lett. 12(6), 3315–3321 (2012). doi:10.1021/nl3014814
H. Hu, B.Y. Guan, B.Y. Xia, X.W. Lou, Sub-10 nm Fe3O4@Cu2−x S core–shell nanoparticles for dual-modal imaging and photothermal therapy. J. Am. Chem. Soc. 135(23), 8571–8577 (2013). doi:10.1021/ja4013497
L.L. Wang, H.M. Dou, Z. Lou, T. Zhang, Encapsuled nanoreactors (Au@SnO2): a new sensing material for chemical sensors. Nanoscale 5, 2686–2691 (2013). doi:10.1039/c2nr33088a
L.L. Wang, Z. Lou, J.N. Deng, R. Zhang, T. Zhang, Ethanol gas detection using a yolk–shell (core–shell) α-Fe2O3 nanospheres as sensing material. ACS Appl. Mater. Interfaces 7, 13098–13104 (2015). doi:10.1021/acsami.5b03978
L.L. Wang, W.B. Ng, J.A. Jackman, N.J. Cho, Graphene-functionalized natural microcapsules: modular building blocks for ultrahigh sensitivity bioelectronic platforms. Adv. Funct. Mater. 26, 2097–2103 (2016). doi:10.1002/adfm.201504940
Y.R. Wang, W.L. Yang, L. Zhang, Y. Hu, X.W. Lou, Formation of MS–Ag and MS (M = Pb, Cd, Zn) nanotubes via microwave-assisted cation exchange and their enhanced photocatalytic activities. Nanoscale 5, 10864–10867 (2013). doi:10.1039/c3nr03909a
S.H. Ye, X.J. He, L.X. Ding, Z.W. Pan, Y.X. Tong, M.M. Wu, G.R. Li, Cu2O template synthesis of high-performance PtCu alloy yolk–shell cube catalysts for direct methanol fuel cells. Chem. Commun. 50, 12337–12340 (2014). doi:10.1039/C4CC04108A
L. Kuai, B.Y. Geng, S.Z. Wang, Y. Sang, A general and high-yield galvanic displacement approach to AuM (M = Au, Pd, and Pt) core–shell nanostructures with porous shells and enhanced electrocatalytic performances. Chem. Eur. J. 18, 9423–9429 (2012). doi:10.1002/chem.201200893
Y. Lu, Y. Zhao, L. Yu, L. Dong, C. Shi, M.J. Hu, Y.J. Xu, L.P. Wen, S.H. Yu, Hydrophilic Co@Au yolk/shell nanospheres: synthesis, assembly, and application to gene delivery. Adv. Mater. 22, 1407–1411 (2010). doi:10.1002/adma.200903298
Z.H. Wei, Z.J. Zhou, M. Yang, C.H. Lin, Z.H. Zhao, D.T. Huang, Z. Chen, J.H. Cao, Multifunctional Ag@Fe2O3 yolk–shell nanoparticles for simultaneous capture, kill, and removal of pathogen. J. Mater. Chem. 21, 16344–16348 (2011). doi:10.1039/c1jm13691g
S.D. Sun, X.P. Song, C.C. Kong, S.H. Liang, B.J. Ding, Z.M. Yang, Unique polyhedral 26-facet CuS hollow architectures decorated with nanotwinned, mesostructural and single crystalline shells. CrystEngComm 13, 6200–6205 (2011). doi:10.1039/c1ce05563a
Q.P. Luo, X.Y. Yu, B.X. Lei, H.Y. Chen, D.B. Kuang, C.Y. Su, Reduced graphene oxide-hierarchical zno hollow sphere composites with enhanced photocurrent and photocatalytic activity. J. Phys. Chem. C 116(14), 8111–8117 (2012). doi:10.1021/jp2113329
X.W. Zou, H.Q. Fan, Y.M. Tian, M.G. Zhang, X.Y. Yan, Microwave-assisted hydrothermal synthesis of Cu/Cu2O hollow spheres with enhanced photocatalytic and gas sensing activities at room temperature. Dalton Trans. 44, 7811–7821 (2015). doi:10.1039/C4DT03417A