Stabilising Cobalt Sulphide Nanocapsules with Nitrogen-Doped Carbon for High-Performance Sodium-Ion Storage
Corresponding Author: Xiu Song Zhao
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 48
Abstract
Conversion-type anode materials with a high charge storage capability generally suffer from large volume expansion, poor electron conductivity, and sluggish metal ion transport kinetics. The electrode material described in this paper, namely cobalt sulphide nanoparticles encapsulated in carbon cages (Co9S8@NC), can circumvent these problems. This electrode material exhibited a reversible sodium-ion storage capacity of 705 mAh g−1 at 100 mA g−1 with an extraordinary rate capability and good cycling stability. Mechanistic study using the in situ transmission electron microscope technique revealed that the volumetric expansion of the Co9S8 nanoparticles is buffered by the carbon cages, enabling a stable electrode–electrolyte interface. In addition, the carbon shell with high-content doped nitrogen significantly enhances the electron conductivity of the Co9S8@NC electrode material and provides doping-induced active sites to accommodate sodium ions. By integrating the Co9S8@NC as negative electrode with a cellulose-derived porous hard carbon/graphene oxide composite as positive electrode and 1 M NaPF6 in diglyme as the electrolyte, the sodium-ion capacitor full cell can achieve energy densities of 101.4 and 45.8 Wh kg−1 at power densities of 200 and 10,000 W kg−1, respectively.
Highlights:
1 Cobalt sulphide nanoparticles are encapsulated in nitrogen-rich carbon cages via a simple and scalable method.
2 Insight into sodium storage mechanism is systematically studied via in situ TEM and XRD techniques.
3 The sodium-ion capacitor device achieved high energy densities of 101.4 and 45.8 Wh kg−1 at power densities of 200 and 10,000 W kg−1, respectively, holding promise for practical applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Xiao, S.H. Lee, Y.-K. Sun, The application of metal sulfides in sodium ion batteries. Adv. Energy Mater. 7(3), 1601329 (2017). https://doi.org/10.1002/aenm.201601329
- Q. Zhou, L. Liu, G. Guo, Z. Yan, J. Tan, Z. Huang, X. Chen, X. Wang, Sandwich-like cobalt sulfide-graphene composite—an anode material with excellent electrochemical performance for sodium ion batteries. RSC Adv. 5(88), 71644–71651 (2015). https://doi.org/10.1039/C5RA12478F
- R. Thangavel, A. Samuthira Pandian, H.V. Ramasamy, Y.-S. Lee, Rapidly synthesized, few-layered pseudocapacitive SnS2 anode for high-power sodium ion batteries. ACS Appl. Mater. Interfaces 9(46), 40187–40196 (2017). https://doi.org/10.1021/acsami.7b11040
- Y. Zhao, Q. Pang, Y. Wei, L. Wei, Y. Ju, B. Zou, Y. Gao, G. Chen, Co9S8/Co as a high-performance anode for sodium-ion batteries with an ether-based electrolyte. Chemsuschem 10(23), 4778–4785 (2017). https://doi.org/10.1002/cssc.201701334
- Y. Wang, Y. Wang, Y.-X. Wang, X. Feng, W. Chen et al., In situ formation of Co9S8 nanoclusters in sulfur-doped carbon foam as a sustainable and high-rate sodium-ion anode. ACS Appl. Mater. Interfaces 11(21), 19218–19226 (2019). https://doi.org/10.1021/acsami.9b05134
- C. Guo, W. Zhang, Y. Liu, J. He, S. Yang, M. Liu, Q. Wang, Z. Guo, Constructing CoO/Co3S4 heterostructures embedded in N-doped carbon frameworks for high-performance sodium-ion batteries. Adv. Funct. Mater. 29(29), 1901925 (2019). https://doi.org/10.1002/adfm.201901925
- Q. Su, G. Du, J. Zhang, Y. Zhong, B. Xu, Y. Yang, S. Neupane, W. Li, In situ transmission electron microscopy observation of electrochemical sodiation of individual Co9S8-filled carbon nanotubes. ACS Nano 8(4), 3620–3627 (2014). https://doi.org/10.1021/nn500194q
- M.Á. Muñoz-Márquez, D. Saurel, J.L. Gómez-Cámer, M. Casas-Cabanas, E. Castillo-Martínez, T. Rojo, Na-ion batteries for large scale applications: a review on anode materials and solid electrolyte interphase formation. Adv. Energy Mater. 7(20), 1700463 (2017). https://doi.org/10.1002/aenm.201700463
- M. Walter, T. Zünd, M.V. Kovalenko, Pyrite (FeS2) nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials. Nanoscale 7(20), 9158–9163 (2015). https://doi.org/10.1039/C5NR00398A
- X. Xie, Z. Ao, D. Su, J. Zhang, G. Wang, MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: the role of the two-dimensional heterointerface. Adv. Funct. Mater. 25(9), 1393–1403 (2015). https://doi.org/10.1002/adfm.201404078
- J. Bai, B. Xi, H. Mao, Y. Lin, X. Ma, J. Feng, S. Xiong, One-step construction of N, P-codoped porous carbon sheets/CoP hybrids with enhanced lithium and potassium storage. Adv. Mater. 30(35), 1802310 (2018). https://doi.org/10.1002/adma.201802310
- T. Wang, H.C. Chen, F. Yu, X.S. Zhao, H. Wang, Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Mater. 16, 545–573 (2019). https://doi.org/10.1016/j.ensm.2018.09.007
- F. Yu, Z. Chang, X. Yuan, F. Wang, Y. Zhu et al., Ultrathin NiCo2S4@graphene with a core-shell structure as a high performance positive electrode for hybrid supercapacitors. J. Mater. Chem. A 6(14), 5856–5861 (2018). https://doi.org/10.1039/C8TA00835C
- F. Yao, F. Güneş, H.Q. Ta, S.M. Lee, S.J. Chae et al., Diffusion mechanism of lithium ion through basal plane of layered graphene. J. Am. Chem. Soc. 134(20), 8646–8654 (2012). https://doi.org/10.1021/ja301586m
- A.L.M. Reddy, A. Srivastava, S.R. Gowda, H. Gullapalli, M. Dubey, P.M. Ajayan, Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4(11), 6337–6342 (2010). https://doi.org/10.1021/nn101926g
- W. Yang, J. Zhou, S. Wang, W. Zhang, Z. Wang, F. Lv, K. Wang, Q. Sun, S. Guo, Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy Environ. Sci. 12(5), 1605–1612 (2019). https://doi.org/10.1039/C9EE00536F
- X. Xu, H. Zeng, D. Han, K. Qiao, W. Xing, M.J. Rood, Z. Yan, Nitrogen and sulfur co-doped graphene nanosheets to improve anode materials for sodium-ion batteries. ACS Appl. Mater. Interfaces 10(43), 37172–37180 (2018). https://doi.org/10.1021/acsami.8b15940
- R.R. Gaddam, A.H. Farokh Niaei, M. Hankel, D.J. Searles, N.A. Kumar, X.S. Zhao, Capacitance-enhanced sodium-ion storage in nitrogen-rich hard carbon. J. Mater. Chem. A 5(42), 22186–22192 (2017). https://doi.org/10.1039/C7TA06754B
- T. Zhang, H. Qu, K. Sun, S. Li, Facile fabrication of Co9S8 embedded in a boron and nitrogen co-doped carbon matrix as sodium-ion battery anode. ChemElectroChem 6(6), 1776–1783 (2019). https://doi.org/10.1002/celc.201801843
- M. Yin, X. Feng, D. Zhao, Y. Zhao, H. Li et al., Hierarchical Co9S8@carbon hollow microspheres as an anode for sodium ion batteries with ultralong cycling stability. ACS Sustain. Chem. Engin. 7(6), 6122–6130 (2019). https://doi.org/10.1021/acssuschemeng.8b06345
- Y. Zhang, N. Wang, P. Xue, Y. Liu, B. Tang, Z. Bai, S. Dou, Co9S8@carbon nanospheres as high-performance anodes for sodium ion battery. Chem. Engineer. J. 343, 512–519 (2018). https://doi.org/10.1016/j.cej.2018.03.048
- X. Liu, H. Liu, Y. Zhao, Y. Dong, Q. Fan, Q. Kuang, Synthesis of the carbon-coated nanoparticle Co9S8 and its electrochemical performance as an anode material for sodium-ion batteries. Langmuir 32(48), 12593–12602 (2016). https://doi.org/10.1021/acs.langmuir.6b02870
- L.-L. Feng, G.-D. Li, Y. Liu, Y. Wu, H. Chen, Y. Wang, Y.-C. Zou, D. Wang, X. Zou, Carbon-armored Co9S8 nanoparticles as all-ph efficient and durable h2-evolving electrocatalysts. ACS Appl. Mater. Interfaces 7(1), 980–988 (2015). https://doi.org/10.1021/am507811a
- X. Sun, H. Lu, P. Liu, T.E. Rufford, R.R. Gaddam, X. Fan, X. Zhao, A reduced graphene oxide-NiO composite electrode with a high and stable capacitance. Sustain. Energy Fuels 2(3), 673–678 (2018). https://doi.org/10.1039/C7SE00420F
- S. Park, R.S. Ruoff, Chemical methods for the production of graphenes. Nat. Nanotechn. 4(4), 217 (2009). https://doi.org/10.1038/nnano.2009.58
- R. Li, Y. Dai, B. Chen, J. Zou, B. Jiang, H. Fu, Nitrogen-doped Co/Co9S8/partly-graphitized carbon as durable catalysts for oxygen reduction in microbial fuel cells. J. Power Sources 307, 1–10 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.115
- X. Zhang, S. Liu, Y. Zang, R. Liu, G. Liu et al., Co/Co9S8@S, N-doped porous graphene sheets derived from S, N dual organic ligands assembled co-MOFs as superior electrocatalysts for full water splitting in alkaline media. Nano Energy 30, 93–102 (2016). https://doi.org/10.1016/j.nanoen.2016.09.040
- Z. Chen, R. Wu, M. Liu, H. Wang, H. Xu et al., General synthesis of dual carbon-confined metal sulfides quantum dots toward high-performance anodes for sodium-ion batteries. Adv. Funct. Mater. 27(38), 1702046 (2017). https://doi.org/10.1002/adfm.201702046
- E. Vijayakumar, S.-H. Kang, K.-S. Ahn, Facile electrochemical synthesis of manganese cobalt sulfide counter electrode for quantum dot-sensitized solar cells. J. Electrochem. Soc. 165(5), F375–F380 (2018). https://doi.org/10.1149/2.1211805jes
- H. Li, Z. Li, Z. Wu, M. Sun, S. Han, C. Cai, W. Shen, Y. Fu, Nanocomposites of cobalt sulfide embedded carbon nanotubes with enhanced supercapacitor performance. J. Electrochem. Soc. 166(6), A1031–A1037 (2019). https://doi.org/10.1149/2.0531906jes
- L. Tang, R. Ji, X. Li, K.S. Teng, S.P. Lau, Energy-level structure of nitrogen-doped graphene quantum dots. J. Mater. Chem. C 1(32), 4908–4915 (2013). https://doi.org/10.1039/C3TC30877D
- X. Wang, C.-G. Liu, D. Neff, P.F. Fulvio, R.T. Mayes et al., Nitrogen-enriched ordered mesoporous carbons through direct pyrolysis in ammonia with enhanced capacitive performance. J. Mater. Chem. A 1(27), 7920–7926 (2013). https://doi.org/10.1039/C3TA11342F
- S. Huang, Y. Li, Y. Feng, H. An, P. Long, C. Qin, W. Feng, Nitrogen and fluorine co-doped graphene as a high-performance anode material for lithium-ion batteries. J. Mater. Chem. A 3(46), 23095–23105 (2015). https://doi.org/10.1039/C5TA06012E
- W. Ai, Z. Luo, J. Jiang, J. Zhu, Z. Du et al., Nitrogen and sulfur codoped graphene: multifunctional electrode materials for high-performance Li-ion batteries and oxygen reduction reaction. Adv. Mater. 26(35), 6186–6192 (2014). https://doi.org/10.1002/adma.201401427
- J. Mujtaba, H. Sun, G. Huang, Y. Zhao, H. Arandiyan, G. Sun, S. Xu, J. Zhu, Co9S8 nanoparticles encapsulated in nitrogen-doped mesoporous carbon networks with improved lithium storage properties. RSC Adv. 6(38), 31775–31781 (2016). https://doi.org/10.1039/C6RA03126A
- H. Yoon, A. Xu, G.E. Sterbinsky, D.A. Arena, Z. Wang et al., In situ non-aqueous nucleation and growth of next generation rare-earth-free permanent magnets. Phys. Chem. Chem. Phys. 17(2), 1070–1076 (2015). https://doi.org/10.1039/C4CP04451G
- Y. Wu, M. Gong, M.-C. Lin, C. Yuan, M. Angell et al., 3D graphitic foams derived from chloroaluminate anion intercalation for ultrafast aluminum-ion battery. Adv. Mater. 28(41), 9218–9222 (2016). https://doi.org/10.1002/adma.201602958
- X.F. Lu, Y. Chen, S. Wang, S. Gao, X.W. Lou, Interfacing manganese oxide and cobalt in porous graphitic carbon polyhedrons boosts oxygen electrocatalysis for Zn-air batteries. Adv. Mater. (2019). https://doi.org/10.1002/adma.201902339
- J. Zhang, D.-W. Wang, W. Lv, S. Zhang, Q. Liang, D. Zheng, F. Kang, Q.-H. Yang, Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy Environ. Sci. 10(1), 370–376 (2017). https://doi.org/10.1039/C6EE03367A
- H.-S. Kim, J.B. Cook, H. Lin, J.S. Ko, S.H. Tolbert, V. Ozolins, B. Dunn, Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nat. Mater. 16, 454 (2016). https://doi.org/10.1038/nmat4810
- Y. Long, J. Yang, X. Gao, X. Xu, W. Fan, J. Yang, S. Hou, Y. Qian, Solid-solution anion-enhanced electrochemical performances of metal sulfides/selenides for sodium-ion capacitors: the case of FeS2-xSex. ACS Appl. Mater. Interfaces 10(13), 10945–10954 (2018). https://doi.org/10.1021/acsami.8b00931
- H. Chen, C. Dai, Y. Li, R. Zhan, M.-Q. Wang et al., An excellent full sodium-ion capacitor derived from a single Ti-based metal-organic framework. J. Mater. Chem. A 6(48), 24860–24868 (2018). https://doi.org/10.1039/C8TA09072F
- X. Zhao, W. Cai, Y. Yang, X. Song, Z. Neale, H.-E. Wang, J. Sui, G. Cao, MoSe2 nanosheets perpendicularly grown on graphene with Mo-C bonding for sodium-ion capacitors. Nano Energy 47, 224–234 (2018). https://doi.org/10.1016/j.nanoen.2018.03.002
- Y. Wu, X. Fan, R.R. Gaddam, Q. Zhao, D. Yang, X. Sun, C. Wang, X.S. Zhao, Mesoporous niobium pentoxide/carbon composite electrodes for sodium-ion capacitors. J. Power Sources 408, 82–90 (2018). https://doi.org/10.1016/j.jpowsour.2018.10.080
References
Y. Xiao, S.H. Lee, Y.-K. Sun, The application of metal sulfides in sodium ion batteries. Adv. Energy Mater. 7(3), 1601329 (2017). https://doi.org/10.1002/aenm.201601329
Q. Zhou, L. Liu, G. Guo, Z. Yan, J. Tan, Z. Huang, X. Chen, X. Wang, Sandwich-like cobalt sulfide-graphene composite—an anode material with excellent electrochemical performance for sodium ion batteries. RSC Adv. 5(88), 71644–71651 (2015). https://doi.org/10.1039/C5RA12478F
R. Thangavel, A. Samuthira Pandian, H.V. Ramasamy, Y.-S. Lee, Rapidly synthesized, few-layered pseudocapacitive SnS2 anode for high-power sodium ion batteries. ACS Appl. Mater. Interfaces 9(46), 40187–40196 (2017). https://doi.org/10.1021/acsami.7b11040
Y. Zhao, Q. Pang, Y. Wei, L. Wei, Y. Ju, B. Zou, Y. Gao, G. Chen, Co9S8/Co as a high-performance anode for sodium-ion batteries with an ether-based electrolyte. Chemsuschem 10(23), 4778–4785 (2017). https://doi.org/10.1002/cssc.201701334
Y. Wang, Y. Wang, Y.-X. Wang, X. Feng, W. Chen et al., In situ formation of Co9S8 nanoclusters in sulfur-doped carbon foam as a sustainable and high-rate sodium-ion anode. ACS Appl. Mater. Interfaces 11(21), 19218–19226 (2019). https://doi.org/10.1021/acsami.9b05134
C. Guo, W. Zhang, Y. Liu, J. He, S. Yang, M. Liu, Q. Wang, Z. Guo, Constructing CoO/Co3S4 heterostructures embedded in N-doped carbon frameworks for high-performance sodium-ion batteries. Adv. Funct. Mater. 29(29), 1901925 (2019). https://doi.org/10.1002/adfm.201901925
Q. Su, G. Du, J. Zhang, Y. Zhong, B. Xu, Y. Yang, S. Neupane, W. Li, In situ transmission electron microscopy observation of electrochemical sodiation of individual Co9S8-filled carbon nanotubes. ACS Nano 8(4), 3620–3627 (2014). https://doi.org/10.1021/nn500194q
M.Á. Muñoz-Márquez, D. Saurel, J.L. Gómez-Cámer, M. Casas-Cabanas, E. Castillo-Martínez, T. Rojo, Na-ion batteries for large scale applications: a review on anode materials and solid electrolyte interphase formation. Adv. Energy Mater. 7(20), 1700463 (2017). https://doi.org/10.1002/aenm.201700463
M. Walter, T. Zünd, M.V. Kovalenko, Pyrite (FeS2) nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials. Nanoscale 7(20), 9158–9163 (2015). https://doi.org/10.1039/C5NR00398A
X. Xie, Z. Ao, D. Su, J. Zhang, G. Wang, MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: the role of the two-dimensional heterointerface. Adv. Funct. Mater. 25(9), 1393–1403 (2015). https://doi.org/10.1002/adfm.201404078
J. Bai, B. Xi, H. Mao, Y. Lin, X. Ma, J. Feng, S. Xiong, One-step construction of N, P-codoped porous carbon sheets/CoP hybrids with enhanced lithium and potassium storage. Adv. Mater. 30(35), 1802310 (2018). https://doi.org/10.1002/adma.201802310
T. Wang, H.C. Chen, F. Yu, X.S. Zhao, H. Wang, Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Mater. 16, 545–573 (2019). https://doi.org/10.1016/j.ensm.2018.09.007
F. Yu, Z. Chang, X. Yuan, F. Wang, Y. Zhu et al., Ultrathin NiCo2S4@graphene with a core-shell structure as a high performance positive electrode for hybrid supercapacitors. J. Mater. Chem. A 6(14), 5856–5861 (2018). https://doi.org/10.1039/C8TA00835C
F. Yao, F. Güneş, H.Q. Ta, S.M. Lee, S.J. Chae et al., Diffusion mechanism of lithium ion through basal plane of layered graphene. J. Am. Chem. Soc. 134(20), 8646–8654 (2012). https://doi.org/10.1021/ja301586m
A.L.M. Reddy, A. Srivastava, S.R. Gowda, H. Gullapalli, M. Dubey, P.M. Ajayan, Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4(11), 6337–6342 (2010). https://doi.org/10.1021/nn101926g
W. Yang, J. Zhou, S. Wang, W. Zhang, Z. Wang, F. Lv, K. Wang, Q. Sun, S. Guo, Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy Environ. Sci. 12(5), 1605–1612 (2019). https://doi.org/10.1039/C9EE00536F
X. Xu, H. Zeng, D. Han, K. Qiao, W. Xing, M.J. Rood, Z. Yan, Nitrogen and sulfur co-doped graphene nanosheets to improve anode materials for sodium-ion batteries. ACS Appl. Mater. Interfaces 10(43), 37172–37180 (2018). https://doi.org/10.1021/acsami.8b15940
R.R. Gaddam, A.H. Farokh Niaei, M. Hankel, D.J. Searles, N.A. Kumar, X.S. Zhao, Capacitance-enhanced sodium-ion storage in nitrogen-rich hard carbon. J. Mater. Chem. A 5(42), 22186–22192 (2017). https://doi.org/10.1039/C7TA06754B
T. Zhang, H. Qu, K. Sun, S. Li, Facile fabrication of Co9S8 embedded in a boron and nitrogen co-doped carbon matrix as sodium-ion battery anode. ChemElectroChem 6(6), 1776–1783 (2019). https://doi.org/10.1002/celc.201801843
M. Yin, X. Feng, D. Zhao, Y. Zhao, H. Li et al., Hierarchical Co9S8@carbon hollow microspheres as an anode for sodium ion batteries with ultralong cycling stability. ACS Sustain. Chem. Engin. 7(6), 6122–6130 (2019). https://doi.org/10.1021/acssuschemeng.8b06345
Y. Zhang, N. Wang, P. Xue, Y. Liu, B. Tang, Z. Bai, S. Dou, Co9S8@carbon nanospheres as high-performance anodes for sodium ion battery. Chem. Engineer. J. 343, 512–519 (2018). https://doi.org/10.1016/j.cej.2018.03.048
X. Liu, H. Liu, Y. Zhao, Y. Dong, Q. Fan, Q. Kuang, Synthesis of the carbon-coated nanoparticle Co9S8 and its electrochemical performance as an anode material for sodium-ion batteries. Langmuir 32(48), 12593–12602 (2016). https://doi.org/10.1021/acs.langmuir.6b02870
L.-L. Feng, G.-D. Li, Y. Liu, Y. Wu, H. Chen, Y. Wang, Y.-C. Zou, D. Wang, X. Zou, Carbon-armored Co9S8 nanoparticles as all-ph efficient and durable h2-evolving electrocatalysts. ACS Appl. Mater. Interfaces 7(1), 980–988 (2015). https://doi.org/10.1021/am507811a
X. Sun, H. Lu, P. Liu, T.E. Rufford, R.R. Gaddam, X. Fan, X. Zhao, A reduced graphene oxide-NiO composite electrode with a high and stable capacitance. Sustain. Energy Fuels 2(3), 673–678 (2018). https://doi.org/10.1039/C7SE00420F
S. Park, R.S. Ruoff, Chemical methods for the production of graphenes. Nat. Nanotechn. 4(4), 217 (2009). https://doi.org/10.1038/nnano.2009.58
R. Li, Y. Dai, B. Chen, J. Zou, B. Jiang, H. Fu, Nitrogen-doped Co/Co9S8/partly-graphitized carbon as durable catalysts for oxygen reduction in microbial fuel cells. J. Power Sources 307, 1–10 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.115
X. Zhang, S. Liu, Y. Zang, R. Liu, G. Liu et al., Co/Co9S8@S, N-doped porous graphene sheets derived from S, N dual organic ligands assembled co-MOFs as superior electrocatalysts for full water splitting in alkaline media. Nano Energy 30, 93–102 (2016). https://doi.org/10.1016/j.nanoen.2016.09.040
Z. Chen, R. Wu, M. Liu, H. Wang, H. Xu et al., General synthesis of dual carbon-confined metal sulfides quantum dots toward high-performance anodes for sodium-ion batteries. Adv. Funct. Mater. 27(38), 1702046 (2017). https://doi.org/10.1002/adfm.201702046
E. Vijayakumar, S.-H. Kang, K.-S. Ahn, Facile electrochemical synthesis of manganese cobalt sulfide counter electrode for quantum dot-sensitized solar cells. J. Electrochem. Soc. 165(5), F375–F380 (2018). https://doi.org/10.1149/2.1211805jes
H. Li, Z. Li, Z. Wu, M. Sun, S. Han, C. Cai, W. Shen, Y. Fu, Nanocomposites of cobalt sulfide embedded carbon nanotubes with enhanced supercapacitor performance. J. Electrochem. Soc. 166(6), A1031–A1037 (2019). https://doi.org/10.1149/2.0531906jes
L. Tang, R. Ji, X. Li, K.S. Teng, S.P. Lau, Energy-level structure of nitrogen-doped graphene quantum dots. J. Mater. Chem. C 1(32), 4908–4915 (2013). https://doi.org/10.1039/C3TC30877D
X. Wang, C.-G. Liu, D. Neff, P.F. Fulvio, R.T. Mayes et al., Nitrogen-enriched ordered mesoporous carbons through direct pyrolysis in ammonia with enhanced capacitive performance. J. Mater. Chem. A 1(27), 7920–7926 (2013). https://doi.org/10.1039/C3TA11342F
S. Huang, Y. Li, Y. Feng, H. An, P. Long, C. Qin, W. Feng, Nitrogen and fluorine co-doped graphene as a high-performance anode material for lithium-ion batteries. J. Mater. Chem. A 3(46), 23095–23105 (2015). https://doi.org/10.1039/C5TA06012E
W. Ai, Z. Luo, J. Jiang, J. Zhu, Z. Du et al., Nitrogen and sulfur codoped graphene: multifunctional electrode materials for high-performance Li-ion batteries and oxygen reduction reaction. Adv. Mater. 26(35), 6186–6192 (2014). https://doi.org/10.1002/adma.201401427
J. Mujtaba, H. Sun, G. Huang, Y. Zhao, H. Arandiyan, G. Sun, S. Xu, J. Zhu, Co9S8 nanoparticles encapsulated in nitrogen-doped mesoporous carbon networks with improved lithium storage properties. RSC Adv. 6(38), 31775–31781 (2016). https://doi.org/10.1039/C6RA03126A
H. Yoon, A. Xu, G.E. Sterbinsky, D.A. Arena, Z. Wang et al., In situ non-aqueous nucleation and growth of next generation rare-earth-free permanent magnets. Phys. Chem. Chem. Phys. 17(2), 1070–1076 (2015). https://doi.org/10.1039/C4CP04451G
Y. Wu, M. Gong, M.-C. Lin, C. Yuan, M. Angell et al., 3D graphitic foams derived from chloroaluminate anion intercalation for ultrafast aluminum-ion battery. Adv. Mater. 28(41), 9218–9222 (2016). https://doi.org/10.1002/adma.201602958
X.F. Lu, Y. Chen, S. Wang, S. Gao, X.W. Lou, Interfacing manganese oxide and cobalt in porous graphitic carbon polyhedrons boosts oxygen electrocatalysis for Zn-air batteries. Adv. Mater. (2019). https://doi.org/10.1002/adma.201902339
J. Zhang, D.-W. Wang, W. Lv, S. Zhang, Q. Liang, D. Zheng, F. Kang, Q.-H. Yang, Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy Environ. Sci. 10(1), 370–376 (2017). https://doi.org/10.1039/C6EE03367A
H.-S. Kim, J.B. Cook, H. Lin, J.S. Ko, S.H. Tolbert, V. Ozolins, B. Dunn, Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nat. Mater. 16, 454 (2016). https://doi.org/10.1038/nmat4810
Y. Long, J. Yang, X. Gao, X. Xu, W. Fan, J. Yang, S. Hou, Y. Qian, Solid-solution anion-enhanced electrochemical performances of metal sulfides/selenides for sodium-ion capacitors: the case of FeS2-xSex. ACS Appl. Mater. Interfaces 10(13), 10945–10954 (2018). https://doi.org/10.1021/acsami.8b00931
H. Chen, C. Dai, Y. Li, R. Zhan, M.-Q. Wang et al., An excellent full sodium-ion capacitor derived from a single Ti-based metal-organic framework. J. Mater. Chem. A 6(48), 24860–24868 (2018). https://doi.org/10.1039/C8TA09072F
X. Zhao, W. Cai, Y. Yang, X. Song, Z. Neale, H.-E. Wang, J. Sui, G. Cao, MoSe2 nanosheets perpendicularly grown on graphene with Mo-C bonding for sodium-ion capacitors. Nano Energy 47, 224–234 (2018). https://doi.org/10.1016/j.nanoen.2018.03.002
Y. Wu, X. Fan, R.R. Gaddam, Q. Zhao, D. Yang, X. Sun, C. Wang, X.S. Zhao, Mesoporous niobium pentoxide/carbon composite electrodes for sodium-ion capacitors. J. Power Sources 408, 82–90 (2018). https://doi.org/10.1016/j.jpowsour.2018.10.080