Origin of Excellent Charge Storage Properties of Defective Tin Disulphide in Magnesium/Lithium-Ion Hybrid Batteries
Corresponding Author: Xiu Song Zhao
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 177
Abstract
Lithium-ion batteries (LIBs) are excellent electrochemical energy sources, albeit with existing challenges, including high costs and safety concerns. Magnesium-ion batteries (MIBs) are one of the potential alternatives. However, the performance of MIBs is poor due to their sluggish solid-state Mg2+ diffusion kinetics and severe electrode polarizability. Rechargeable magnesium-ion/lithium-ion (Mg2+/Li+) hybrid batteries (MLHBs) with Mg2+ and Li+ as the charge carriers create a synergy between LIBs and MIBs with significantly improved charge transport kinetics and reliable safety features. However, MLHBs are yet to reach a reasonable electrochemical performance as expected. This work reports a composite electrode material with highly defective two-dimensional (2D) tin sulphide nanosheets (SnSx) encapsulated in three-dimensional (3D) holey graphene foams (HGF) (SnSx/HGF), which exhibits a specific capacity as high as 600 mAh g−1 at 50 mA g−1 and a compelling specific energy density of ~ 330 Wh kg−1. The excellent electrochemical performance surpasses previously reported hybrid battery systems based on intercalation-type cathode materials under comparable conditions. The role played by the defects in the SnSx/HGF composite is studied to understand the origin of the observed excellent electrochemical performance. It is found that it is closely related to the defect structure in SnSx, which offers percolation pathways for efficient ion transport and increased internal surface area assessable to the charge carriers. The defective sites also absorb structural stress caused by Mg2+ and Li+ insertion. This work is an important step towards realizing high-capacity cathode materials with fast charge transport kinetics for hybrid batteries.
Highlights:
1 Defects in SnSx play an important role in enhancing charge storage capacity and transport kinetics in magnesium/lithium-ion hybrid batteries.
2 Defective SnSx is a promising conversion-type cathode for magnesium/lithium-ion hybrid batteries.
3 The co-insertion of Mg2+/Li+ enhances hybrid battery performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Energy storage grand challenge market report 20USA (2020). https://www.energy.gov/energy-storage-grand-challenge/downloads/energy-storage-market-report-2020
- I. Marriam, M. Tebyetekerwa, Z. Xu, H. Chathuranga, S. Chen et al., Techniques enabling inorganic materials into wearable fiber/yarn and flexible lithium-ion batteries. Energy Storage Mater. 43, 62–84 (2021). https://doi.org/10.1016/j.ensm.2021.08.039
- L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 226, 272–288 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.060
- Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14, 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
- Y. Tian, G. Zeng, A. Rutt, T. Shi, H. Kim et al., Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem. Rev. 121(3), 1623–1669 (2021). https://doi.org/10.1021/acs.chemrev.0c00767
- D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar et al., Prototype systems for rechargeable magnesium batteries. Nature 407(6805), 724–727 (2000). https://doi.org/10.1038/35037553
- H.D. Yoo, I. Shterenberg, Y. Gofer, G. Gershinsky, N. Pour et al., Mg rechargeable batteries: an on-going challenge. Energy Environ. Sci. 6(8), 2265–2279 (2013). https://doi.org/10.1039/c3ee40871j
- R. Davidson, A. Verma, D. Santos, F. Hao, C. Fincher et al., Formation of magnesium dendrites during electrodeposition. ACS Energy Lett. 4(2), 375–376 (2018). https://doi.org/10.1021/acsenergylett.8b02470
- P. Bonnick, J. Muldoon, A trip to oz and a peak behind the curtain of magnesium batteries. Adv. Funct. Mater. 30(21), 1910510 (2020). https://doi.org/10.1002/adfm.201910510
- M. Matsui, Study on electrochemically deposited mg metal. J. Power Sour. 196(16), 7048–7055 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.141
- E. Levi, M.D. Levi, O. Chasid, D. Aurbach, A review on the problems of the solid state ions diffusion in cathodes for rechargeable mg batteries. J. Electroceram. 22(1–3), 13–19 (2007). https://doi.org/10.1007/s10832-007-9370-5
- S. Yagi, T. Ichitsubo, Y. Shirai, S. Yanai, T. Doi et al., A concept of dual-salt polyvalent-metal storage battery. J. Mater. Chem. A 2(4), 1144–1149 (2014). https://doi.org/10.1039/c3ta13668j
- X. Fan, R.R. Gaddam, N.A. Kumar, X.S. Zhao, A hybrid Mg2+/Li+ battery based on interlayer-expanded MoS2/graphene cathode. Adv. Energy Mater. 7(19), 1700317 (2017). https://doi.org/10.1002/aenm.201700317
- P. Wang, X. Yan, Recent advances in Mg-Li and Mg-Na hybrid batteries. Energy Storage Mater. 45, 142–181 (2022). https://doi.org/10.1016/j.ensm.2021.11.027
- B. Pan, Z. Feng, N. Sa, S.D. Han, Q. Ma et al., Advanced hybrid battery with a magnesium metal anode and a spinel LiMn2O4 cathode. Chem. Commun. 52(64), 9961–9964 (2016). https://doi.org/10.1039/c6cc04133g
- N. Wang, H. Yuan, Y. NuLi, J. Yang, J. Wang, Prelithiation activates Fe2(MoO4)3 cathode for rechargeable hybrid Mg2+/Li+ batteries. ACS Appl. Mater. Interfaces 9(44), 38455–38466 (2017). https://doi.org/10.1021/acsami.7b10705
- J.H. Cho, M. Aykol, S. Kim, J.H. Ha, C. Wolverton et al., Controlling the intercalation chemistry to design high-performance dual-salt hybrid rechargeable batteries. J. Am. Chem. Soc. 136(46), 16116–16119 (2014). https://doi.org/10.1021/ja508463z
- H.Y. Li, N.L. Okamoto, T. Hatakeyama, Y. Kumagai, F. Oba et al., Fast diffusion of multivalent ions facilitated by concerted interactions in dual-ion battery systems. Adv. Energy Mater. 8(27), 1801475 (2018). https://doi.org/10.1002/aenm.201801475
- Y. Zhang, J.J. Xie, Y.L. Han, C.L. Li, Dual-salt mg-based batteries with conversion cathodes. Adv. Funct. Mater. 25(47), 7300–7308 (2015). https://doi.org/10.1002/adfm.201503639
- M. Rashad, M. Asif, Y.X. Wang, Z. He, I. Ahmed, Recent advances in electrolytes and cathode materials for magnesium and hybrid-ion batteries. Energy Storage Mater. 25, 342–375 (2020). https://doi.org/10.1016/j.ensm.2019.10.004
- R.M. Sun, C.Y. Pei, J.Z. Sheng, D.D. Wang, L. Wu et al., High-rate and long-life VS2 cathodes for hybrid magnesium-based battery. Energy Storage Mater. 12, 61–68 (2018). https://doi.org/10.1016/j.ensm.2017.11.012
- J. Zhang, Z. Chang, Z. Zhang, A. Du, S. Dong et al., Current design strategies for rechargeable magnesium-based batteries. ACS Nano 15(10), 15594–15624 (2021). https://doi.org/10.1021/acsnano.1c06530
- J. Cabana, L. Monconduit, D. Larcher, M.R. Palacín, Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22(35), E170–E192 (2010). https://doi.org/10.1002/adma.201000717
- M. Mao, T. Gao, S. Hou, C. Wang, A critical review of cathodes for rechargeable Mg batteries. Chem. Soc. Rev. 47(23), 8804–8841 (2018). https://doi.org/10.1039/C8CS00319J
- D.D. Vaughn, O.D. Hentz, S. Chen, D. Wang, R.E. Schaak, Formation of sns nanoflowers for lithium ion batteries. Chem. Commun. 48(45), 5608–5610 (2012). https://doi.org/10.1039/c2cc32033a
- T.J. Kim, C. Kirn, D. Son, M. Choi, B. Park, Novel SnS2-nanosheet anodes for lithium-ion batteries. J. Power Sour. 167(2), 529–535 (2007). https://doi.org/10.1016/j.jpowsour.2007.02.040
- T. Zhou, W.K. Pang, C. Zhang, J. Yang, Z. Chen et al., Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-sns. ACS Nano 8(8), 8323–8333 (2014). https://doi.org/10.1021/nn503582c
- D. Chao, C. Zhu, P. Yang, X. Xia, J. Liu et al., Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 7, 12122 (2016). https://doi.org/10.1038/ncomms12122
- X. Zhou, J. Tian, J. Hu, C. Li, High rate magnesium–sulfur battery with improved cyclability based on metal–organic framework derivative carbon host. Adv. Mater. 30(7), 1704166 (2018). https://doi.org/10.1002/adma.201704166
- J. Tian, X. Zhou, Q. Wu, C. Li, Li-salt mediated mg-rhodizonate batteries based on ultra-large cathode grains enabled by K-ion pillaring. Energy Storage Mater. 22, 218–227 (2019). https://doi.org/10.1016/j.ensm.2019.01.019
- Y. Li, X. Zhou, J. Hu, Y. Zheng, M. Huang et al., Reversible mg metal anode in conventional electrolyte enabled by durable heterogeneous SEI with low surface diffusion barrier. Energy Storage Mater. 46, 1–9 (2022). https://doi.org/10.1016/j.ensm.2021.12.023
- D.H. Youn, S.K. Stauffer, P. Xiao, H. Park, Y. Nam et al., Simple synthesis of nanocrystalline tin sulfide/N-doped reduced graphene oxide composites as lithium ion battery anodes. ACS Nano 10(12), 10778–10788 (2016). https://doi.org/10.1021/acsnano.6b04214
- V.K. LaMer, R.H. Dinegar, Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 72(11), 4847–4854 (1950). https://doi.org/10.1021/ja01167a001
- M.P. Hendricks, M.P. Campos, G.T. Cleveland, I.J. Plante, J.S. Owen, A tunable library of substituted thiourea precursors to metal sulfide nanocrystals. Science 348(6240), 1226–1230 (2015). https://doi.org/10.1126/science.aaa2951
- J.H. Ahn, M.J. Lee, H. Heo, J.H. Sung, K. Kim et al., Deterministic two-dimensional polymorphism growth of hexagonal N-type SnS2 and orthorhombic P-type SnS crystals. Nano Lett. 15(6), 3703–3708 (2015). https://doi.org/10.1021/acs.nanolett.5b00079
- G.L. Ye, Y.J. Gong, S.D. Lei, Y.M. He, B. Li et al., Synthesis of large-scale atomic-layer SnS2 through chemical vapor deposition. Nano Res. 10(7), 2386–2394 (2017). https://doi.org/10.1007/s12274-017-1436-3
- Y. Zheng, T. Zhou, C. Zhang, J. Mao, H. Liu et al., Boosted charge transfer in SnS/SnO2 heterostructures: toward high rate capability for sodium-ion batteries. Angew. Chem. Int. Ed. 128(10), 3469–3474 (2016). https://doi.org/10.1002/anie.201510978
- P. Heitjans, S. Indris, Diffusion and ionic conduction in nanocrystalline ceramics. J. Phys. Condens. Matter 15(30), R1257 (2003). https://doi.org/10.1557/PROC-676-Y6.6
- P. Heitjans, E. Tobschall, M. Wilkening, Ion transport and diffusion in nanocrystalline and glassy ceramics. Eur. Phys. J. Spec. Top. 161(1), 97–108 (2008). https://doi.org/10.1140/epjst/e2008-00753-4
- Y. Cheng, Y. Shao, L.R. Parent, M.L. Sushko, G. Li et al., Interface promoted reversible Mg insertion in nanostructured tin-antimony alloys. Adv. Mater. 27(42), 6598–6605 (2015). https://doi.org/10.1002/adma.201502378
- P. Yu, C. Li, X. Guo, Sodium storage and pseudocapacitive charge in textured Li4Ti5O12 thin films. J. Phys. Chem. C 118(20), 10616–10624 (2014). https://doi.org/10.1021/jp5010693
- T.S. Arthur, K. Kato, J. Germain, J. Guo, P.A. Glans et al., Amorphous V2O5–P2O5 as high-voltage cathodes for magnesium batteries. Chem. Commun. 51(86), 15657–15660 (2015). https://doi.org/10.1039/C5CC07161E
- H.S. Kim, Y.H. Chung, S.H. Kang, Y.E. Sung, Electrochemical behavior of carbon-coated SnS2 for use as the anode in lithium-ion batteries. Electrochim. Acta 54(13), 3606–3610 (2009). https://doi.org/10.1016/j.electacta.2009.01.030
- B. Qu, G. Ji, B. Ding, M. Lu, W. Chen et al., Origin of the increased Li+-storage capacity of stacked SnS2/graphene nanocomposite. ChemElectroChem 2(8), 1138–1143 (2015). https://doi.org/10.1002/celc.201500134
- H.S. Im, Y.J. Cho, Y.R. Lim, C.S. Jung, D.M. Jang et al., Phase evolution of tin nanocrystals in lithium ion batteries. ACS Nano 7(12), 11103–11111 (2013). https://doi.org/10.1021/nn404837d
- J. Zai, X. Qian, K. Wang, C. Yu, L. Tao et al., 3D-hierarchical SnS2 micro/nano-structures: controlled synthesis, formation mechanism and lithium ion storage performances. CrystEngComm 14(4), 1364–1375 (2012). https://doi.org/10.1039/C1CE05950E
- J. Chang, R.T. Haasch, J. Kim, T. Spila, P.V. Braun et al., Synergetic role of Li+ during mg electrodeposition/dissolution in borohydride diglyme electrolyte solution: voltammetric stripping behaviors on a Pt microelectrode indicative of Mg–Li alloying and facilitated dissolution. ACS Appl. Mater. Interfaces 7(4), 2494–2502 (2015). https://doi.org/10.1021/am507375t
- Y. Zhao, J. Li, N. Wang, C. Wu, G. Dong et al., Fully reversible conversion between SnO2 and Sn in SWNTs@ SnO2@ ppy coaxial nanocable as high performance anode material for lithium ion batteries. J. Phys. Chem. C 116(35), 18612–18617 (2012). https://doi.org/10.1021/jp304095y
- S. Liu, X. Lu, J. Xie, G. Cao, T. Zhu et al., Preferential c-axis orientation of ultrathin SnS2 nanoplates on graphene as high-performance anode for Li-ion batteries. ACS Appl. Mater. Interfaces 5(5), 1588–1595 (2013). https://doi.org/10.1021/am302124f
- C. Xia, F. Zhang, H. Liang, H.N. Alshareef, Layered SnS sodium ion battery anodes synthesized near room temperature. Nano Res. 10(12), 4368–4377 (2017). https://doi.org/10.1007/s12274-017-1722-0
- S. Zhang, B. Chowdari, Z. Wen, J. Jin, J. Yang, Constructing highly oriented configuration by few-layer MoS2: toward high-performance lithium-ion batteries and hydrogen evolution reactions. ACS Nano 9(12), 12464–12472 (2015). https://doi.org/10.1021/acsnano.5b05891
- Z. Song, G. Wang, Y. Chen, Q. Chang, Y. Lu et al., Construction of hierarchical NiS@C/rGO heterostructures for enhanced sodium storage. Chem. Eng. J. 435, 134633 (2022). https://doi.org/10.1016/j.cej.2022.134633
- Z. Wang, Q. Su, J. Shi, H. Deng, G.Q. Yin et al., Comparison of tetragonal and cubic tin as anode for mg ion batteries. ACS Appl. Mater. Interfaces 6(9), 6786–6789 (2014). https://doi.org/10.1021/am500554y
- R. Demir-Cakan, M. Morcrette, A. Guéguen, R. Dedryvère, J.M. Tarascon, Li–s batteries: simple approaches for superior performance. Energy Environ. Sci. 6(1), 176–182 (2013). https://doi.org/10.1039/c2ee23411d
- Z. Zhao-Karger, X. Zhao, D. Wang, T. Diemant, R.J. Behm et al., Performance improvement of magnesium sulfur batteries with modified non-nucleophilic electrolytes. Adv. Energy Mater. 5(3), 1401155 (2015). https://doi.org/10.1002/aenm.201401155
- R. Rauh, K. Abraham, G. Pearson, J. Surprenant, S. Brummer, A lithium/dissolved sulfur battery with an organic electrolyte. J. Electrochem. Soc. 126(4), 523 (1979). https://doi.org/10.1149/1.2129079
- M. Wang, X. Li, M. Gao, H. Pan, Y. Liu, A novel synthesis of MgS and its application as electrode material for lithium-ion batteries. J. Alloys Compd. 603, 158–166 (2014). https://doi.org/10.1016/j.jallcom.2014.03.052
- T. Gao, M. Noked, A.J. Pearse, E. Gillette, X. Fan et al., Enhancing the reversibility of Mg/S battery chemistry through Li+ mediation. J. Am. Chem. Soc. 137(38), 12388–12393 (2015). https://doi.org/10.1021/jacs.5b07820
- D. Chao, P. Liang, Z. Chen, L. Bai, H. Shen et al., Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10(11), 10211–10219 (2016). https://doi.org/10.1021/acsnano.6b05566
References
Energy storage grand challenge market report 20USA (2020). https://www.energy.gov/energy-storage-grand-challenge/downloads/energy-storage-market-report-2020
I. Marriam, M. Tebyetekerwa, Z. Xu, H. Chathuranga, S. Chen et al., Techniques enabling inorganic materials into wearable fiber/yarn and flexible lithium-ion batteries. Energy Storage Mater. 43, 62–84 (2021). https://doi.org/10.1016/j.ensm.2021.08.039
L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 226, 272–288 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.060
Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14, 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
Y. Tian, G. Zeng, A. Rutt, T. Shi, H. Kim et al., Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem. Rev. 121(3), 1623–1669 (2021). https://doi.org/10.1021/acs.chemrev.0c00767
D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar et al., Prototype systems for rechargeable magnesium batteries. Nature 407(6805), 724–727 (2000). https://doi.org/10.1038/35037553
H.D. Yoo, I. Shterenberg, Y. Gofer, G. Gershinsky, N. Pour et al., Mg rechargeable batteries: an on-going challenge. Energy Environ. Sci. 6(8), 2265–2279 (2013). https://doi.org/10.1039/c3ee40871j
R. Davidson, A. Verma, D. Santos, F. Hao, C. Fincher et al., Formation of magnesium dendrites during electrodeposition. ACS Energy Lett. 4(2), 375–376 (2018). https://doi.org/10.1021/acsenergylett.8b02470
P. Bonnick, J. Muldoon, A trip to oz and a peak behind the curtain of magnesium batteries. Adv. Funct. Mater. 30(21), 1910510 (2020). https://doi.org/10.1002/adfm.201910510
M. Matsui, Study on electrochemically deposited mg metal. J. Power Sour. 196(16), 7048–7055 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.141
E. Levi, M.D. Levi, O. Chasid, D. Aurbach, A review on the problems of the solid state ions diffusion in cathodes for rechargeable mg batteries. J. Electroceram. 22(1–3), 13–19 (2007). https://doi.org/10.1007/s10832-007-9370-5
S. Yagi, T. Ichitsubo, Y. Shirai, S. Yanai, T. Doi et al., A concept of dual-salt polyvalent-metal storage battery. J. Mater. Chem. A 2(4), 1144–1149 (2014). https://doi.org/10.1039/c3ta13668j
X. Fan, R.R. Gaddam, N.A. Kumar, X.S. Zhao, A hybrid Mg2+/Li+ battery based on interlayer-expanded MoS2/graphene cathode. Adv. Energy Mater. 7(19), 1700317 (2017). https://doi.org/10.1002/aenm.201700317
P. Wang, X. Yan, Recent advances in Mg-Li and Mg-Na hybrid batteries. Energy Storage Mater. 45, 142–181 (2022). https://doi.org/10.1016/j.ensm.2021.11.027
B. Pan, Z. Feng, N. Sa, S.D. Han, Q. Ma et al., Advanced hybrid battery with a magnesium metal anode and a spinel LiMn2O4 cathode. Chem. Commun. 52(64), 9961–9964 (2016). https://doi.org/10.1039/c6cc04133g
N. Wang, H. Yuan, Y. NuLi, J. Yang, J. Wang, Prelithiation activates Fe2(MoO4)3 cathode for rechargeable hybrid Mg2+/Li+ batteries. ACS Appl. Mater. Interfaces 9(44), 38455–38466 (2017). https://doi.org/10.1021/acsami.7b10705
J.H. Cho, M. Aykol, S. Kim, J.H. Ha, C. Wolverton et al., Controlling the intercalation chemistry to design high-performance dual-salt hybrid rechargeable batteries. J. Am. Chem. Soc. 136(46), 16116–16119 (2014). https://doi.org/10.1021/ja508463z
H.Y. Li, N.L. Okamoto, T. Hatakeyama, Y. Kumagai, F. Oba et al., Fast diffusion of multivalent ions facilitated by concerted interactions in dual-ion battery systems. Adv. Energy Mater. 8(27), 1801475 (2018). https://doi.org/10.1002/aenm.201801475
Y. Zhang, J.J. Xie, Y.L. Han, C.L. Li, Dual-salt mg-based batteries with conversion cathodes. Adv. Funct. Mater. 25(47), 7300–7308 (2015). https://doi.org/10.1002/adfm.201503639
M. Rashad, M. Asif, Y.X. Wang, Z. He, I. Ahmed, Recent advances in electrolytes and cathode materials for magnesium and hybrid-ion batteries. Energy Storage Mater. 25, 342–375 (2020). https://doi.org/10.1016/j.ensm.2019.10.004
R.M. Sun, C.Y. Pei, J.Z. Sheng, D.D. Wang, L. Wu et al., High-rate and long-life VS2 cathodes for hybrid magnesium-based battery. Energy Storage Mater. 12, 61–68 (2018). https://doi.org/10.1016/j.ensm.2017.11.012
J. Zhang, Z. Chang, Z. Zhang, A. Du, S. Dong et al., Current design strategies for rechargeable magnesium-based batteries. ACS Nano 15(10), 15594–15624 (2021). https://doi.org/10.1021/acsnano.1c06530
J. Cabana, L. Monconduit, D. Larcher, M.R. Palacín, Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22(35), E170–E192 (2010). https://doi.org/10.1002/adma.201000717
M. Mao, T. Gao, S. Hou, C. Wang, A critical review of cathodes for rechargeable Mg batteries. Chem. Soc. Rev. 47(23), 8804–8841 (2018). https://doi.org/10.1039/C8CS00319J
D.D. Vaughn, O.D. Hentz, S. Chen, D. Wang, R.E. Schaak, Formation of sns nanoflowers for lithium ion batteries. Chem. Commun. 48(45), 5608–5610 (2012). https://doi.org/10.1039/c2cc32033a
T.J. Kim, C. Kirn, D. Son, M. Choi, B. Park, Novel SnS2-nanosheet anodes for lithium-ion batteries. J. Power Sour. 167(2), 529–535 (2007). https://doi.org/10.1016/j.jpowsour.2007.02.040
T. Zhou, W.K. Pang, C. Zhang, J. Yang, Z. Chen et al., Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-sns. ACS Nano 8(8), 8323–8333 (2014). https://doi.org/10.1021/nn503582c
D. Chao, C. Zhu, P. Yang, X. Xia, J. Liu et al., Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 7, 12122 (2016). https://doi.org/10.1038/ncomms12122
X. Zhou, J. Tian, J. Hu, C. Li, High rate magnesium–sulfur battery with improved cyclability based on metal–organic framework derivative carbon host. Adv. Mater. 30(7), 1704166 (2018). https://doi.org/10.1002/adma.201704166
J. Tian, X. Zhou, Q. Wu, C. Li, Li-salt mediated mg-rhodizonate batteries based on ultra-large cathode grains enabled by K-ion pillaring. Energy Storage Mater. 22, 218–227 (2019). https://doi.org/10.1016/j.ensm.2019.01.019
Y. Li, X. Zhou, J. Hu, Y. Zheng, M. Huang et al., Reversible mg metal anode in conventional electrolyte enabled by durable heterogeneous SEI with low surface diffusion barrier. Energy Storage Mater. 46, 1–9 (2022). https://doi.org/10.1016/j.ensm.2021.12.023
D.H. Youn, S.K. Stauffer, P. Xiao, H. Park, Y. Nam et al., Simple synthesis of nanocrystalline tin sulfide/N-doped reduced graphene oxide composites as lithium ion battery anodes. ACS Nano 10(12), 10778–10788 (2016). https://doi.org/10.1021/acsnano.6b04214
V.K. LaMer, R.H. Dinegar, Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 72(11), 4847–4854 (1950). https://doi.org/10.1021/ja01167a001
M.P. Hendricks, M.P. Campos, G.T. Cleveland, I.J. Plante, J.S. Owen, A tunable library of substituted thiourea precursors to metal sulfide nanocrystals. Science 348(6240), 1226–1230 (2015). https://doi.org/10.1126/science.aaa2951
J.H. Ahn, M.J. Lee, H. Heo, J.H. Sung, K. Kim et al., Deterministic two-dimensional polymorphism growth of hexagonal N-type SnS2 and orthorhombic P-type SnS crystals. Nano Lett. 15(6), 3703–3708 (2015). https://doi.org/10.1021/acs.nanolett.5b00079
G.L. Ye, Y.J. Gong, S.D. Lei, Y.M. He, B. Li et al., Synthesis of large-scale atomic-layer SnS2 through chemical vapor deposition. Nano Res. 10(7), 2386–2394 (2017). https://doi.org/10.1007/s12274-017-1436-3
Y. Zheng, T. Zhou, C. Zhang, J. Mao, H. Liu et al., Boosted charge transfer in SnS/SnO2 heterostructures: toward high rate capability for sodium-ion batteries. Angew. Chem. Int. Ed. 128(10), 3469–3474 (2016). https://doi.org/10.1002/anie.201510978
P. Heitjans, S. Indris, Diffusion and ionic conduction in nanocrystalline ceramics. J. Phys. Condens. Matter 15(30), R1257 (2003). https://doi.org/10.1557/PROC-676-Y6.6
P. Heitjans, E. Tobschall, M. Wilkening, Ion transport and diffusion in nanocrystalline and glassy ceramics. Eur. Phys. J. Spec. Top. 161(1), 97–108 (2008). https://doi.org/10.1140/epjst/e2008-00753-4
Y. Cheng, Y. Shao, L.R. Parent, M.L. Sushko, G. Li et al., Interface promoted reversible Mg insertion in nanostructured tin-antimony alloys. Adv. Mater. 27(42), 6598–6605 (2015). https://doi.org/10.1002/adma.201502378
P. Yu, C. Li, X. Guo, Sodium storage and pseudocapacitive charge in textured Li4Ti5O12 thin films. J. Phys. Chem. C 118(20), 10616–10624 (2014). https://doi.org/10.1021/jp5010693
T.S. Arthur, K. Kato, J. Germain, J. Guo, P.A. Glans et al., Amorphous V2O5–P2O5 as high-voltage cathodes for magnesium batteries. Chem. Commun. 51(86), 15657–15660 (2015). https://doi.org/10.1039/C5CC07161E
H.S. Kim, Y.H. Chung, S.H. Kang, Y.E. Sung, Electrochemical behavior of carbon-coated SnS2 for use as the anode in lithium-ion batteries. Electrochim. Acta 54(13), 3606–3610 (2009). https://doi.org/10.1016/j.electacta.2009.01.030
B. Qu, G. Ji, B. Ding, M. Lu, W. Chen et al., Origin of the increased Li+-storage capacity of stacked SnS2/graphene nanocomposite. ChemElectroChem 2(8), 1138–1143 (2015). https://doi.org/10.1002/celc.201500134
H.S. Im, Y.J. Cho, Y.R. Lim, C.S. Jung, D.M. Jang et al., Phase evolution of tin nanocrystals in lithium ion batteries. ACS Nano 7(12), 11103–11111 (2013). https://doi.org/10.1021/nn404837d
J. Zai, X. Qian, K. Wang, C. Yu, L. Tao et al., 3D-hierarchical SnS2 micro/nano-structures: controlled synthesis, formation mechanism and lithium ion storage performances. CrystEngComm 14(4), 1364–1375 (2012). https://doi.org/10.1039/C1CE05950E
J. Chang, R.T. Haasch, J. Kim, T. Spila, P.V. Braun et al., Synergetic role of Li+ during mg electrodeposition/dissolution in borohydride diglyme electrolyte solution: voltammetric stripping behaviors on a Pt microelectrode indicative of Mg–Li alloying and facilitated dissolution. ACS Appl. Mater. Interfaces 7(4), 2494–2502 (2015). https://doi.org/10.1021/am507375t
Y. Zhao, J. Li, N. Wang, C. Wu, G. Dong et al., Fully reversible conversion between SnO2 and Sn in SWNTs@ SnO2@ ppy coaxial nanocable as high performance anode material for lithium ion batteries. J. Phys. Chem. C 116(35), 18612–18617 (2012). https://doi.org/10.1021/jp304095y
S. Liu, X. Lu, J. Xie, G. Cao, T. Zhu et al., Preferential c-axis orientation of ultrathin SnS2 nanoplates on graphene as high-performance anode for Li-ion batteries. ACS Appl. Mater. Interfaces 5(5), 1588–1595 (2013). https://doi.org/10.1021/am302124f
C. Xia, F. Zhang, H. Liang, H.N. Alshareef, Layered SnS sodium ion battery anodes synthesized near room temperature. Nano Res. 10(12), 4368–4377 (2017). https://doi.org/10.1007/s12274-017-1722-0
S. Zhang, B. Chowdari, Z. Wen, J. Jin, J. Yang, Constructing highly oriented configuration by few-layer MoS2: toward high-performance lithium-ion batteries and hydrogen evolution reactions. ACS Nano 9(12), 12464–12472 (2015). https://doi.org/10.1021/acsnano.5b05891
Z. Song, G. Wang, Y. Chen, Q. Chang, Y. Lu et al., Construction of hierarchical NiS@C/rGO heterostructures for enhanced sodium storage. Chem. Eng. J. 435, 134633 (2022). https://doi.org/10.1016/j.cej.2022.134633
Z. Wang, Q. Su, J. Shi, H. Deng, G.Q. Yin et al., Comparison of tetragonal and cubic tin as anode for mg ion batteries. ACS Appl. Mater. Interfaces 6(9), 6786–6789 (2014). https://doi.org/10.1021/am500554y
R. Demir-Cakan, M. Morcrette, A. Guéguen, R. Dedryvère, J.M. Tarascon, Li–s batteries: simple approaches for superior performance. Energy Environ. Sci. 6(1), 176–182 (2013). https://doi.org/10.1039/c2ee23411d
Z. Zhao-Karger, X. Zhao, D. Wang, T. Diemant, R.J. Behm et al., Performance improvement of magnesium sulfur batteries with modified non-nucleophilic electrolytes. Adv. Energy Mater. 5(3), 1401155 (2015). https://doi.org/10.1002/aenm.201401155
R. Rauh, K. Abraham, G. Pearson, J. Surprenant, S. Brummer, A lithium/dissolved sulfur battery with an organic electrolyte. J. Electrochem. Soc. 126(4), 523 (1979). https://doi.org/10.1149/1.2129079
M. Wang, X. Li, M. Gao, H. Pan, Y. Liu, A novel synthesis of MgS and its application as electrode material for lithium-ion batteries. J. Alloys Compd. 603, 158–166 (2014). https://doi.org/10.1016/j.jallcom.2014.03.052
T. Gao, M. Noked, A.J. Pearse, E. Gillette, X. Fan et al., Enhancing the reversibility of Mg/S battery chemistry through Li+ mediation. J. Am. Chem. Soc. 137(38), 12388–12393 (2015). https://doi.org/10.1021/jacs.5b07820
D. Chao, P. Liang, Z. Chen, L. Bai, H. Shen et al., Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10(11), 10211–10219 (2016). https://doi.org/10.1021/acsnano.6b05566