Ultrasensitive Chemiresistive Gas Sensors Based on Dual-Mesoporous Zinc Stannate Composites for Room Temperature Rice Quality Monitoring
Corresponding Author: Chao Zhang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 115
Abstract
The integration of dual-mesoporous structures, the construction of heterojunctions, and the incorporation of highly concentrated oxygen vacancies are pivotal for advancing metal oxide-based gas sensors. Nonetheless, achieving an optimal design that simultaneously combines mesoporous structures, precise heterojunction modulation, and controlled oxygen vacancies through a one-step process remains challenging. This study proposes an innovative method for fabricating zinc stannate semiconductors featuring dual-mesoporous structures and tunable oxygen vacancies via a direct solution precursor plasma spray technique. As a proof of concept, the resulting zinc stannate-based coatings are applied to detect 2-undecanone, a key biomarker for rice aging. Remarkably, the zinc oxide/zinc stannate heterojunctions with a well-defined secondary pore structure exhibit exceptional gas-sensing performance for 2-undecanone at room temperature. Furthermore, practical experiments indicate that the developed sensor effectively identifies adulteration in various rice varieties. These results underscore the potential of this method for designing metal oxides with tailored properties for high-performance gas sensors. The enhanced adsorption capacity and dual-mesoporous features of this semiconductor make it a promising candidate for sensing applications in agricultural food safety inspections.
Highlights:
1 Dual-mesoporous heterostructured semiconducting metal oxides were directly fabricated using a simple template-free method, optimizing porosity and improving surface area for enhanced gas-sensing.
2 The fabricated sensor exhibited high sensitivity (11.03 for 13 ppm), a rapid response time (21 s), and an impressively low theoretical detection limit (431 ppb) for 2-Undecanone at room temperature.
3 An innovative real-time method was developed for analyzing characteristic biomarkers of rice aging, enabling accurate and timely monitoring of rice quality.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L.G. Dias, A. Hacke, S.F. Bergara, O.V. Villela, L.R.B. Mariutti et al., Identification of volatiles and odor-active compounds of aromatic rice by OSME analysis and SPME/GC-MS. Food Res. Int. 142, 110206 (2021). https://doi.org/10.1016/j.foodres.2021.110206
- X. Hu, C. Fang, W. Zhang, L. Lu, Z. Guo et al., Change in volatiles, soluble sugars and fatty acids of glutinous rice, Japonica rice and indica rice during storage. LWT 174, 114416 (2023). https://doi.org/10.1016/j.lwt.2022.114416
- X. Hu, L. Lu, Z. Guo, Z. Zhu, Volatile compounds, affecting factors and evaluation methods for rice aroma: a review. Trends Food Sci. Technol. 97, 136–146 (2020). https://doi.org/10.1016/j.tifs.2020.01.003
- C.-H. Lee, Y.-Y. Lee, Y.-C. Chang, W.-L. Pon, S.-P. Lee et al., A carnivorous mushroom paralyzes and kills nematodes via a volatile ketone. Sci. Adv. 9, eade4809 (2023). https://doi.org/10.1126/sciadv.ade4809
- S. Ma, L. Shen, S. Ma, J. Wen, J. Xu, Emerging zinc stannate and its application in volatile organic compounds sensing. Coord. Chem. Rev. 490, 215217 (2023). https://doi.org/10.1016/j.ccr.2023.215217
- H. Cao, Z. Hu, X. Wei, H. Wang, X. Tian et al., Conductometric ethanol gas sensor based on a bilayer film consisting of SnO2 film and SnO2/ZnSnO3 porous film prepared by magnetron sputtering. Sens. Actuat. B Chem. 382, 133562 (2023). https://doi.org/10.1016/j.snb.2023.133562
- J. Ma, Y. Li, J. Li, X. Yang, Y. Ren et al., Rationally designed dual-mesoporous transition metal oxides/noble metal nanocomposites for fabrication of gas sensors in real-time detection of 3-hydroxy-2-butanone biomarker. Adv. Funct. Mater. 32, 2107439 (2022). https://doi.org/10.1002/adfm.202107439
- X. Wang, H. Li, X. Zhu, M. Xia, T. Tao et al., Improving ethanol sensitivity of ZnSnO3 sensor at low temperature with multi-measures: Mg doping, nano-TiO2 decoration and UV radiation. Sens. Actuat. B Chem. 297, 126745 (2019). https://doi.org/10.1016/j.snb.2019.126745
- H. Yuan, S.A.A.A. Aljneibi, J. Yuan, Y. Wang, H. Liu et al., ZnO nanosheets abundant in oxygen vacancies derived from metal-organic frameworks for ppb-level gas sensing. Adv. Mater. 31, e1807161 (2019). https://doi.org/10.1002/adma.201807161
- Z. Wang, J. Miao, H. Zhang, D. Wang, J. Sun, Hollow cubic ZnSnO3 with abundant oxygen vacancies for H2S gas sensing. J. Hazard. Mater. 391, 122226 (2020). https://doi.org/10.1016/j.jhazmat.2020.122226
- C. Zhang, J. Xu, H. Li, H. Liao, Role of ruthenium incorporation on room-temperature nonanal sensing properties of Ru-loaded urchin-like W18O49 hierarchical nanostructure. Sens. Actuat. B Chem. 353, 131096 (2022). https://doi.org/10.1016/j.snb.2021.131096
- B. Jiang, H. Xue, P. Wang, H. Du, Y. Kang et al., Noble-metal-metalloid alloy architectures: mesoporous amorphous iridium-tellurium alloy for electrochemical N2 reduction. J. Am. Chem. Soc. 145, 6079–6086 (2023). https://doi.org/10.1021/jacs.2c10637
- C. Huang, X. Shang, X. Zhou, Z. Zhang, X. Huang et al., Hierarchical conductive metal-organic framework films enabling efficient interfacial mass transfer. Nat. Commun. 14, 3850 (2023). https://doi.org/10.1038/s41467-023-39630-y
- L.-Y. Zhu, L.-X. Ou, L.-W. Mao, X.-Y. Wu, Y.-P. Liu et al., Advances in noble metal-decorated metal oxide nanomaterials for chemiresistive gas sensors: overview. Nano-Micro Lett. 15, 89 (2023). https://doi.org/10.1007/s40820-023-01047-z
- H.J. Han, G.R. Lee, Y. Xie, H. Jang, D.J. Hynek et al., Unconventional grain growth suppression in oxygen-rich metal oxide nanoribbons. Sci. Adv. 7, eabh2012 (2021). https://doi.org/10.1126/sciadv.abh2012
- F. Ling, L. Wang, F. Liu, M. Ma, S. Zhang et al., Multi-scale structure engineering of ZnSnO3 for ultra-long-life aqueous zinc-metal batteries. Adv. Mater. 35, e2208764 (2023). https://doi.org/10.1002/adma.202208764
- C. Tuc Altaf, N.S. Sahsuvar, N. Abdullayeva, O. Coskun, A. Kumtepe et al., Inverted configuration of Cu(In, Ga)S2/In2S3 on 3D-ZnO/ZnSnO3 bilayer system for highly efficient photoelectrochemical water splitting. ACS Sustain. Chem. Eng. 8, 15209–15222 (2020). https://doi.org/10.1021/acssuschemeng.0c04846
- R. Zhang, P. Zang, D. Yang, J. Li, N. Hu et al., A phase engineering strategy of perovskite-type ZnSnO3: Nd for boosting the sonodynamic therapy performance. Adv. Funct. Mater. 33, 2300522 (2023). https://doi.org/10.1002/adfm.202300522
- J. Xu, H. Liao, C. Zhang, ZnSnO3 based gas sensors for pyridine volatile marker detection in rice aging during storage. Food Chem. 408, 135204 (2023). https://doi.org/10.1016/j.foodchem.2022.135204
- H. Lim, H. Kwon, H. Kang, J.E. Jang, H.-J. Kwon, Laser-induced and MOF-derived metal oxide/carbon composite for synergistically improved ethanol sensing at room temperature. Nano-Micro Lett. 16, 113 (2024). https://doi.org/10.1007/s40820-024-01332-5
- G. Jung, S. Ju, K. Choi, J. Kim, S. Hong et al., Reconfigurable manipulation of oxygen content on metal oxide surfaces and applications to gas sensing. ACS Nano 17, 17790–17798 (2023). https://doi.org/10.1021/acsnano.3c03034
- J. Wang, Y. Ren, H. Liu, Z. Li, X. Liu et al., Ultrathin 2D NbWO6 perovskite semiconductor based gas sensors with ultrahigh selectivity under low working temperature. Adv. Mater. 34, 2104958 (2022). https://doi.org/10.1002/adma.202104958
- J. Xu, C. Zhang, Oxygen vacancy engineering on cerium oxide nanowires for room-temperature linalool detection in rice aging. J. Adv. Ceram. 11, 1559–1570 (2022). https://doi.org/10.1007/s40145-022-0629-8
- F.A.A. Nugroho, I. Darmadi, L. Cusinato, A. Susarrey-Arce, H. Schreuders et al., Metal-polymer hybrid nanomaterials for plasmonic ultrafast hydrogen detection. Nat. Mater. 18, 489–495 (2019). https://doi.org/10.1038/s41563-019-0325-4
- A. Kumar, A. Sanger, A. Kumar, R. Chandra, Fast response ammonia sensors based on TiO2 and NiO nanostructured bilayer thin films. RSC Adv. 6, 77636–77643 (2016). https://doi.org/10.1039/c6ra14342c
- P. Wang, S. Guo, Z. Hu, L. Zhou, T. Li et al., Single-atom Cu stabilized on ultrathin WO2.72 nanowire for highly selective and ultrasensitive ppb-level toluene detection. Adv. Sci. 10, e2302778 (2023). https://doi.org/10.1002/advs.202302778
- X. Kou, F. Meng, K. Chen, T. Wang, P. Sun et al., High-performance acetone gas sensor based on Ru-doped SnO2 nanofibers. Sens. Actuat. B Chem. 320, 128292 (2020). https://doi.org/10.1016/j.snb.2020.128292
- E.K. Alenezy, Y.M. Sabri, A.E. Kandjani, D. Korcoban, S.S.A. Abdul Haroon Rashid et al., Low-temperature hydrogen sensor: enhanced performance enabled through photoactive Pd-decorated TiO2 colloidal crystals. ACS Sens. 5, 3902–3914 (2020). https://doi.org/10.1021/acssensors.0c01387
- H. Zhang, Z. Zhang, Z. Li, H. Han, W. Song et al., A chemiresistive-potentiometric multivariate sensor for discriminative gas detection. Nat. Commun. 14, 3495 (2023). https://doi.org/10.1038/s41467-023-39213-x
- S. Ma, J. Xu, Nanostructured metal oxide heterojunctions for chemiresistive gas sensors. J. Mater. Chem. A 11, 23742–23771 (2023). https://doi.org/10.1039/d3ta04953a
- Y. Li, K. Chen, Y. Liu, J. Ma, Y. Liao et al., Gadolinium-doped mesoporous tungsten oxides: rational synthesis, gas sensing performance, and mechanism investigation. Nano Res. 16, 7527–7536 (2023). https://doi.org/10.1007/s12274-022-5274-6
- Y. Zhu, Y. Zhao, J. Ma, X. Cheng, J. Xie et al., Mesoporous tungsten oxides with crystalline framework for highly sensitive and selective detection of foodborne pathogens. J. Am. Chem. Soc. 139, 10365–10373 (2017). https://doi.org/10.1021/jacs.7b04221
- D. Meena, B. Singh, A. Anand, M. Singh, M.C. Bhatnagar, Phase dependent selectivity shifting behavior of Cd2SnO4 nanops based gas sensor towards volatile organic compounds (VOC) at low operating temperature. J. Alloys Compd. 820, 153117 (2020). https://doi.org/10.1016/j.jallcom.2019.153117
- J.-Y. Jeon, S.-J. Park, T.-J. Ha, Functionalization of zinc oxide nanoflowers with palladium nanops via microwave absorption for room temperature-operating hydrogen gas sensors in the ppb level. ACS Appl. Mater. Interfaces 13, 25082–25091 (2021). https://doi.org/10.1021/acsami.1c03283
- B. Zong, S. Wu, Y. Yang, Q. Li, T. Tao et al., Smart gas sensors: recent developments and future prospective. Nano-Micro Lett. 17, 54 (2024). https://doi.org/10.1007/s40820-024-01543-w
- L. Xiang, Q. Li, C. Li, Q. Yang, F. Xu et al., Block copolymer self-assembly directed synthesis of porous materials with ordered bicontinuous structures and their potential applications. Adv. Mater. 35, e2207684 (2023). https://doi.org/10.1002/adma.202207684
- S. Dong, L. Xia, X. Chen, L. Cui, W. Zhu et al., Interfacial and electronic band structure optimization for the adsorption and visible-light photocatalytic activity of macroscopic ZnSnO3/graphene aerogel. Compos. Part B Eng. 215, 108765 (2021). https://doi.org/10.1016/j.compositesb.2021.108765
References
L.G. Dias, A. Hacke, S.F. Bergara, O.V. Villela, L.R.B. Mariutti et al., Identification of volatiles and odor-active compounds of aromatic rice by OSME analysis and SPME/GC-MS. Food Res. Int. 142, 110206 (2021). https://doi.org/10.1016/j.foodres.2021.110206
X. Hu, C. Fang, W. Zhang, L. Lu, Z. Guo et al., Change in volatiles, soluble sugars and fatty acids of glutinous rice, Japonica rice and indica rice during storage. LWT 174, 114416 (2023). https://doi.org/10.1016/j.lwt.2022.114416
X. Hu, L. Lu, Z. Guo, Z. Zhu, Volatile compounds, affecting factors and evaluation methods for rice aroma: a review. Trends Food Sci. Technol. 97, 136–146 (2020). https://doi.org/10.1016/j.tifs.2020.01.003
C.-H. Lee, Y.-Y. Lee, Y.-C. Chang, W.-L. Pon, S.-P. Lee et al., A carnivorous mushroom paralyzes and kills nematodes via a volatile ketone. Sci. Adv. 9, eade4809 (2023). https://doi.org/10.1126/sciadv.ade4809
S. Ma, L. Shen, S. Ma, J. Wen, J. Xu, Emerging zinc stannate and its application in volatile organic compounds sensing. Coord. Chem. Rev. 490, 215217 (2023). https://doi.org/10.1016/j.ccr.2023.215217
H. Cao, Z. Hu, X. Wei, H. Wang, X. Tian et al., Conductometric ethanol gas sensor based on a bilayer film consisting of SnO2 film and SnO2/ZnSnO3 porous film prepared by magnetron sputtering. Sens. Actuat. B Chem. 382, 133562 (2023). https://doi.org/10.1016/j.snb.2023.133562
J. Ma, Y. Li, J. Li, X. Yang, Y. Ren et al., Rationally designed dual-mesoporous transition metal oxides/noble metal nanocomposites for fabrication of gas sensors in real-time detection of 3-hydroxy-2-butanone biomarker. Adv. Funct. Mater. 32, 2107439 (2022). https://doi.org/10.1002/adfm.202107439
X. Wang, H. Li, X. Zhu, M. Xia, T. Tao et al., Improving ethanol sensitivity of ZnSnO3 sensor at low temperature with multi-measures: Mg doping, nano-TiO2 decoration and UV radiation. Sens. Actuat. B Chem. 297, 126745 (2019). https://doi.org/10.1016/j.snb.2019.126745
H. Yuan, S.A.A.A. Aljneibi, J. Yuan, Y. Wang, H. Liu et al., ZnO nanosheets abundant in oxygen vacancies derived from metal-organic frameworks for ppb-level gas sensing. Adv. Mater. 31, e1807161 (2019). https://doi.org/10.1002/adma.201807161
Z. Wang, J. Miao, H. Zhang, D. Wang, J. Sun, Hollow cubic ZnSnO3 with abundant oxygen vacancies for H2S gas sensing. J. Hazard. Mater. 391, 122226 (2020). https://doi.org/10.1016/j.jhazmat.2020.122226
C. Zhang, J. Xu, H. Li, H. Liao, Role of ruthenium incorporation on room-temperature nonanal sensing properties of Ru-loaded urchin-like W18O49 hierarchical nanostructure. Sens. Actuat. B Chem. 353, 131096 (2022). https://doi.org/10.1016/j.snb.2021.131096
B. Jiang, H. Xue, P. Wang, H. Du, Y. Kang et al., Noble-metal-metalloid alloy architectures: mesoporous amorphous iridium-tellurium alloy for electrochemical N2 reduction. J. Am. Chem. Soc. 145, 6079–6086 (2023). https://doi.org/10.1021/jacs.2c10637
C. Huang, X. Shang, X. Zhou, Z. Zhang, X. Huang et al., Hierarchical conductive metal-organic framework films enabling efficient interfacial mass transfer. Nat. Commun. 14, 3850 (2023). https://doi.org/10.1038/s41467-023-39630-y
L.-Y. Zhu, L.-X. Ou, L.-W. Mao, X.-Y. Wu, Y.-P. Liu et al., Advances in noble metal-decorated metal oxide nanomaterials for chemiresistive gas sensors: overview. Nano-Micro Lett. 15, 89 (2023). https://doi.org/10.1007/s40820-023-01047-z
H.J. Han, G.R. Lee, Y. Xie, H. Jang, D.J. Hynek et al., Unconventional grain growth suppression in oxygen-rich metal oxide nanoribbons. Sci. Adv. 7, eabh2012 (2021). https://doi.org/10.1126/sciadv.abh2012
F. Ling, L. Wang, F. Liu, M. Ma, S. Zhang et al., Multi-scale structure engineering of ZnSnO3 for ultra-long-life aqueous zinc-metal batteries. Adv. Mater. 35, e2208764 (2023). https://doi.org/10.1002/adma.202208764
C. Tuc Altaf, N.S. Sahsuvar, N. Abdullayeva, O. Coskun, A. Kumtepe et al., Inverted configuration of Cu(In, Ga)S2/In2S3 on 3D-ZnO/ZnSnO3 bilayer system for highly efficient photoelectrochemical water splitting. ACS Sustain. Chem. Eng. 8, 15209–15222 (2020). https://doi.org/10.1021/acssuschemeng.0c04846
R. Zhang, P. Zang, D. Yang, J. Li, N. Hu et al., A phase engineering strategy of perovskite-type ZnSnO3: Nd for boosting the sonodynamic therapy performance. Adv. Funct. Mater. 33, 2300522 (2023). https://doi.org/10.1002/adfm.202300522
J. Xu, H. Liao, C. Zhang, ZnSnO3 based gas sensors for pyridine volatile marker detection in rice aging during storage. Food Chem. 408, 135204 (2023). https://doi.org/10.1016/j.foodchem.2022.135204
H. Lim, H. Kwon, H. Kang, J.E. Jang, H.-J. Kwon, Laser-induced and MOF-derived metal oxide/carbon composite for synergistically improved ethanol sensing at room temperature. Nano-Micro Lett. 16, 113 (2024). https://doi.org/10.1007/s40820-024-01332-5
G. Jung, S. Ju, K. Choi, J. Kim, S. Hong et al., Reconfigurable manipulation of oxygen content on metal oxide surfaces and applications to gas sensing. ACS Nano 17, 17790–17798 (2023). https://doi.org/10.1021/acsnano.3c03034
J. Wang, Y. Ren, H. Liu, Z. Li, X. Liu et al., Ultrathin 2D NbWO6 perovskite semiconductor based gas sensors with ultrahigh selectivity under low working temperature. Adv. Mater. 34, 2104958 (2022). https://doi.org/10.1002/adma.202104958
J. Xu, C. Zhang, Oxygen vacancy engineering on cerium oxide nanowires for room-temperature linalool detection in rice aging. J. Adv. Ceram. 11, 1559–1570 (2022). https://doi.org/10.1007/s40145-022-0629-8
F.A.A. Nugroho, I. Darmadi, L. Cusinato, A. Susarrey-Arce, H. Schreuders et al., Metal-polymer hybrid nanomaterials for plasmonic ultrafast hydrogen detection. Nat. Mater. 18, 489–495 (2019). https://doi.org/10.1038/s41563-019-0325-4
A. Kumar, A. Sanger, A. Kumar, R. Chandra, Fast response ammonia sensors based on TiO2 and NiO nanostructured bilayer thin films. RSC Adv. 6, 77636–77643 (2016). https://doi.org/10.1039/c6ra14342c
P. Wang, S. Guo, Z. Hu, L. Zhou, T. Li et al., Single-atom Cu stabilized on ultrathin WO2.72 nanowire for highly selective and ultrasensitive ppb-level toluene detection. Adv. Sci. 10, e2302778 (2023). https://doi.org/10.1002/advs.202302778
X. Kou, F. Meng, K. Chen, T. Wang, P. Sun et al., High-performance acetone gas sensor based on Ru-doped SnO2 nanofibers. Sens. Actuat. B Chem. 320, 128292 (2020). https://doi.org/10.1016/j.snb.2020.128292
E.K. Alenezy, Y.M. Sabri, A.E. Kandjani, D. Korcoban, S.S.A. Abdul Haroon Rashid et al., Low-temperature hydrogen sensor: enhanced performance enabled through photoactive Pd-decorated TiO2 colloidal crystals. ACS Sens. 5, 3902–3914 (2020). https://doi.org/10.1021/acssensors.0c01387
H. Zhang, Z. Zhang, Z. Li, H. Han, W. Song et al., A chemiresistive-potentiometric multivariate sensor for discriminative gas detection. Nat. Commun. 14, 3495 (2023). https://doi.org/10.1038/s41467-023-39213-x
S. Ma, J. Xu, Nanostructured metal oxide heterojunctions for chemiresistive gas sensors. J. Mater. Chem. A 11, 23742–23771 (2023). https://doi.org/10.1039/d3ta04953a
Y. Li, K. Chen, Y. Liu, J. Ma, Y. Liao et al., Gadolinium-doped mesoporous tungsten oxides: rational synthesis, gas sensing performance, and mechanism investigation. Nano Res. 16, 7527–7536 (2023). https://doi.org/10.1007/s12274-022-5274-6
Y. Zhu, Y. Zhao, J. Ma, X. Cheng, J. Xie et al., Mesoporous tungsten oxides with crystalline framework for highly sensitive and selective detection of foodborne pathogens. J. Am. Chem. Soc. 139, 10365–10373 (2017). https://doi.org/10.1021/jacs.7b04221
D. Meena, B. Singh, A. Anand, M. Singh, M.C. Bhatnagar, Phase dependent selectivity shifting behavior of Cd2SnO4 nanops based gas sensor towards volatile organic compounds (VOC) at low operating temperature. J. Alloys Compd. 820, 153117 (2020). https://doi.org/10.1016/j.jallcom.2019.153117
J.-Y. Jeon, S.-J. Park, T.-J. Ha, Functionalization of zinc oxide nanoflowers with palladium nanops via microwave absorption for room temperature-operating hydrogen gas sensors in the ppb level. ACS Appl. Mater. Interfaces 13, 25082–25091 (2021). https://doi.org/10.1021/acsami.1c03283
B. Zong, S. Wu, Y. Yang, Q. Li, T. Tao et al., Smart gas sensors: recent developments and future prospective. Nano-Micro Lett. 17, 54 (2024). https://doi.org/10.1007/s40820-024-01543-w
L. Xiang, Q. Li, C. Li, Q. Yang, F. Xu et al., Block copolymer self-assembly directed synthesis of porous materials with ordered bicontinuous structures and their potential applications. Adv. Mater. 35, e2207684 (2023). https://doi.org/10.1002/adma.202207684
S. Dong, L. Xia, X. Chen, L. Cui, W. Zhu et al., Interfacial and electronic band structure optimization for the adsorption and visible-light photocatalytic activity of macroscopic ZnSnO3/graphene aerogel. Compos. Part B Eng. 215, 108765 (2021). https://doi.org/10.1016/j.compositesb.2021.108765