Skin-Inspired Ultra-Linear Flexible Iontronic Pressure Sensors for Wearable Musculoskeletal Monitoring
Corresponding Author: Jun Yang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 55
Abstract
The growing prevalence of exercise-induced tibial stress fractures demands wearable sensors capable of monitoring dynamic musculoskeletal loads with medical-grade precision. While flexible pressure-sensing insoles show clinical potential, their development has been hindered by the intrinsic trade-off between high sensitivity and full-range linearity (R2 > 0.99 up to 1 MPa) in conventional designs. Inspired by the tactile sensing mechanism of human skin, where dermal stratification enables wide-range pressure adaptation and ion-channel-regulated signaling maintains linear electrical responses, we developed a dual-mechanism flexible iontronic pressure sensor (FIPS). This innovative design synergistically combines two bioinspired components: interdigitated fabric microstructures enabling pressure-proportional contact area expansion (∝ P1/3) and iontronic film facilitating self-adaptive ion concentration modulation (∝ P2/3), which together generate a linear capacitance-pressure response (C ∝ P). The FIPS achieves breakthrough performance: 242 kPa−1 sensitivity with 0.997 linearity across 0–1 MPa, yielding a record linear sensing factor (LSF = 242,000). The design is validated across various substrates and ionic materials, demonstrating its versatility. Finally, the FIPS-driven design enables a smart insole demonstrating 1.8% error in tibial load assessment during gait analysis, outperforming nonlinear counterparts (6.5% error) in early fracture-risk prediction. The biomimetic design framework establishes a universal approach for developing high-performance linear sensors, establishing generalized principles for medical-grade wearable devices.
Highlights:
1 Bioinspired dual-mechanism sensor combining fabric microstructures (∝ P1/3 contact area) and ionic film (∝ P2/3 ion modulation) achieves 242 kPa−1 sensitivity with 0.997 linearity (0–1 MPa), yielding record LSF of 242,000.
2 Medical-grade validation via smart insole demonstrates 1.8% GRF error (vs. 6.5% in nonlinear sensors), enabling precise early fracture-risk prediction and validating medical-grade wearables.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.R. Kardouni, C.J. McKinnon, K.M. Taylor, J.M. Hughes, Timing of stress fractures in soldiers during the first 6 career months: a retrospective cohort study. J. Athl. Train. 56(12), 1278–1284 (2021). https://doi.org/10.4085/1062-6050-0380.19
- K. Kaewpradub, K. Veenuttranon, H. Jantapaso, P. Mittraparp-Arthorn, I. Jeerapan, A fully-printed wearable bandage-based electrochemical sensor with pH correction for wound infection monitoring. Nano-Micro Lett. 17(1), 71 (2024). https://doi.org/10.1007/s40820-024-01561-8
- J. Shi, S. Xie, Z. Liu, M. Cai, C.F. Guo, Non-hygroscopic ionogel-based humidity-insensitive iontronic sensor arrays for intra-articular pressure sensing. Natl. Sci. Rev. 11(11), nwae351 (2024). https://doi.org/10.1093/nsr/nwae351
- J. Chang, J. Li, J. Ye, B. Zhang, J. Chen et al., AI-enabled piezoelectric wearable for joint torque monitoring. Nano-Micro Lett. 17(1), 247 (2025). https://doi.org/10.1007/s40820-025-01753-w
- Z. Xu, C. Zhang, F. Wang, J. Yu, G. Yang et al., Smart textiles for personalized sports and healthcare. Nano-Micro Lett. 17(1), 232 (2025). https://doi.org/10.1007/s40820-025-01749-6
- Y. Li, W. Zhang, C. Zhao, W. Li, E. Dong et al., Breaking the saturation of sensitivity for ultrawide range flexible pressure sensors by soft-strain effect. Adv. Mater. 36(36), 2405405 (2024). https://doi.org/10.1002/adma.202405405
- Z. Wang, S. Wang, B. Lan, Y. Sun, L. Huang et al., Piezotronic sensor for bimodal monitoring of achilles tendon behavior. Nano-Micro Lett. 17(1), 241 (2025). https://doi.org/10.1007/s40820-025-01757-6
- Y. Chang, L. Wang, R. Li, Z. Zhang, Q. Wang et al., First decade of interfacial iontronic sensing: from droplet sensors to artificial skins. Adv. Mater. 33(7), 2003464 (2021). https://doi.org/10.1002/adma.202003464
- Z. Zhu, R. Li, T. Pan, Imperceptible epidermal-iontronic interface for wearable sensing. Adv. Mater. 30(6), 1705122 (2018). https://doi.org/10.1002/adma.201705122
- H. Yuk, B. Lu, X. Zhao, Hydrogel bioelectronics. Chem. Soc. Rev. 48(6), 1642–1667 (2019). https://doi.org/10.1039/c8cs00595h
- R. Chen, T. Luo, J. Wang, R. Wang, C. Zhang et al., Nonlinearity synergy: an elegant strategy for realizing high-sensitivity and wide-linear-range pressure sensing. Nat. Commun. 14(1), 6641 (2023). https://doi.org/10.1038/s41467-023-42361-9
- B. Zhu, J. Guo, W. Li, T. Luo, F. Lei et al., Integrated electromechanical structure for iontronic pressure sensors with linear high-sensitivity response and robust sensing stability. Adv. Funct. Mater. 34(42), 2406762 (2024). https://doi.org/10.1002/adfm.202406762
- Z. Liu, M. Cai, S. Hong, J. Shi, S. Xie et al., Data-driven inverse design of flexible pressure sensors. Proc. Natl. Acad. Sci. U. S. A. 121(28), e2320222121 (2024). https://doi.org/10.1073/pnas.2320222121
- Y.-D. Tang, P. Wang, G.-X. Li, G.-Y. Wang, W. Yu et al., Flexible and ultra-sensitive planar supercapacitive pressure sensor based on porous ionic foam. Adv. Eng. Mater. 25(1), 2200814 (2023). https://doi.org/10.1002/adem.202200814
- N. Bai, Y. Xue, S. Chen, L. Shi, J. Shi et al., A robotic sensory system with high spatiotemporal resolution for texture recognition. Nat. Commun. 14(1), 7121 (2023). https://doi.org/10.1038/s41467-023-42722-4
- Y. Ren, Z. Liu, G. Jin, M. Yang, Y. Shao et al., Electric-field-induced gradient ionogels for highly sensitive, broad-range-response, and freeze/heat-resistant ionic fingers. Adv. Mater. 33(12), 2008486 (2021). https://doi.org/10.1002/adma.202008486
- X. Dong, Y. Wei, S. Chen, Y. Lin, L. Liu et al., A linear and large-range pressure sensor based on a graphene/silver nanowires nanobiocomposites network and a hierarchical structural sponge. Compos. Sci. Technol. 155, 108–116 (2018). https://doi.org/10.1016/j.compscitech.2017.11.028
- C.-Y. Huang, G. Yang, P. Huang, J.-M. Hu, Z.-H. Tang et al., Flexible pressure sensor with an excellent linear response in a broad detection range for human motion monitoring. ACS Appl. Mater. Interfaces 15(2), 3476–3485 (2023). https://doi.org/10.1021/acsami.2c19465
- L. Zhang, S. Zhang, C. Wang, Q. Zhou, H. Zhang et al., Highly sensitive capacitive flexible pressure sensor based on a high-permittivity MXene nanocomposite and 3D network electrode for wearable electronics. ACS Sens. 6(7), 2630–2641 (2021). https://doi.org/10.1021/acssensors.1c00484
- J. Huang, X. Tang, F. Wang, Z. Wang, Y. Niu et al., Multi-hierarchical microstructures boosted linearity of flexible capacitive pressure sensor. Adv. Eng. Mater. 24(9), 2101767 (2022). https://doi.org/10.1002/adem.202101767
- Y. Lee, J. Park, S. Cho, Y.-E. Shin, H. Lee et al., Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range. ACS Nano 12(4), 4045–4054 (2018). https://doi.org/10.1021/acsnano.8b01805
- S. Pyo, J. Lee, W. Kim, E. Jo, J. Kim, Multi-layered, hierarchical fabric-based tactile sensors with high sensitivity and linearity in ultrawide pressure range. Adv. Funct. Mater. 29(35), 1902484 (2019). https://doi.org/10.1002/adfm.201902484
- G. Zhu, H. Dai, Y. Yao, W. Tang, J. Shi et al., 3D printed skin-inspired flexible pressure sensor with gradient porous structure for tunable high sensitivity and wide linearity range. Adv. Mater. Technol. 7(7), 2101239 (2022). https://doi.org/10.1002/admt.202101239
- B. Chen, L. Zhang, H. Li, X. Lai, X. Zeng, Skin-inspired flexible and high-performance MXene@polydimethylsiloxane piezoresistive pressure sensor for human motion detection. J. Colloid Interface Sci. 617, 478–488 (2022). https://doi.org/10.1016/j.jcis.2022.03.013
- B. Ji, Q. Zhou, J. Wu, Y. Gao, W. Wen et al., Synergistic optimization toward the sensitivity and linearity of flexible pressure sensor via double conductive layer and porous microdome array. ACS Appl. Mater. Interfaces 12(27), 31021–31035 (2020). https://doi.org/10.1021/acsami.0c08910
- Y. Shi, X. Lu, W. Wang, X. Meng, J. Zhao et al., Multilayer flexible pressure sensor with high sensitivity over wide linearity detection range. IEEE Trans. Instrum. Meas. 70, 1–9 (2021). https://doi.org/10.1109/tim.2021.3101307
- C. Wang, D. Gong, P. Feng, Y. Cheng, X. Cheng et al., Ultra-sensitive and wide sensing-range flexible pressure sensors based on the carbon nanotube film/stress-induced square frustum structure. ACS Appl. Mater. Interfaces 15(6), 8546–8554 (2023). https://doi.org/10.1021/acsami.2c22727
- X. Cui, Y. Jiang, L. Hu, M. Cao, H. Xie et al., Synergistically microstructured flexible pressure sensors with high sensitivity and ultrawide linear range for full-range human physiological monitoring. Adv. Mater. Technol. 8(1), 2200609 (2023). https://doi.org/10.1002/admt.202200609
- J. He, P. Xiao, W. Lu, J. Shi, L. Zhang et al., A universal high accuracy wearable pulse monitoring system via high sensitivity and large linearity graphene pressure sensor. Nano Energy 59, 422–433 (2019). https://doi.org/10.1016/j.nanoen.2019.02.036
- B. Zhu, Z. Xu, X. Liu, Z. Wang, Y. Zhang et al., High-linearity flexible pressure sensor based on the Gaussian-curve-shaped microstructure for human physiological signal monitoring. ACS Sens. 8(8), 3127–3135 (2023). https://doi.org/10.1021/acssensors.3c00818
- N. Bai, L. Wang, Y. Xue, Y. Wang, X. Hou et al., Graded interlocks for iontronic pressure sensors with high sensitivity and high linearity over a broad range. ACS Nano 16(3), 4338–4347 (2022). https://doi.org/10.1021/acsnano.1c10535
- M. Zhong, L. Zhang, X. Liu, Y. Zhou, M. Zhang et al., Wide linear range and highly sensitive flexible pressure sensor based on multistage sensing process for health monitoring and human-machine interfaces. Chem. Eng. J. 412, 128649 (2021). https://doi.org/10.1016/j.cej.2021.128649
- S. Wu, C. Yang, J. Hu, M. Pan, W. Meng et al., Normal-direction graded hemispheres for ionic flexible sensors with a record-high linearity in a wide working range. ACS Appl. Mater. Interfaces 15(40), 47733–47744 (2023). https://doi.org/10.1021/acsami.3c09580
- F. Huang, G. Hu, Z. Yu, Y. Pan, H. Yao et al., Highly sensitive and wide linearity flexible pressure sensor with randomly distributed columnar arrays. J. Mater. Sci. 58(8), 3735–3751 (2023). https://doi.org/10.1007/s10853-023-08282-0
- Z. Xu, D. Wu, Z. Chen, Z. Wang, C. Cao et al., A flexible pressure sensor with highly customizable sensitivity and linearity via positive design of microhierarchical structures with a hyperelastic model. Microsyst. Nanoeng. 9, 5 (2023). https://doi.org/10.1038/s41378-022-00477-w
- Y. Yu, H. Yuk, G.A. Parada, Y. Wu, X. Liu et al., Multifunctional “hydrogel skins” on diverse polymers with arbitrary shapes. Adv. Mater. 31(7), e1807101 (2019). https://doi.org/10.1002/adma.201807101
- S. Chun, J.-S. Kim, Y. Yoo, Y. Choi, S.J. Jung et al., An artificial neural tactile sensing system. Nat. Electron. 4(6), 429–438 (2021). https://doi.org/10.1038/s41928-021-00585-x
- T.B.H. Schroeder, A. Guha, A. Lamoureux, G. VanRenterghem, D. Sept et al., An electric-eel-inspired soft power source from stacked hydrogels. Nature 552(7684), 214–218 (2017). https://doi.org/10.1038/nature24670
References
J.R. Kardouni, C.J. McKinnon, K.M. Taylor, J.M. Hughes, Timing of stress fractures in soldiers during the first 6 career months: a retrospective cohort study. J. Athl. Train. 56(12), 1278–1284 (2021). https://doi.org/10.4085/1062-6050-0380.19
K. Kaewpradub, K. Veenuttranon, H. Jantapaso, P. Mittraparp-Arthorn, I. Jeerapan, A fully-printed wearable bandage-based electrochemical sensor with pH correction for wound infection monitoring. Nano-Micro Lett. 17(1), 71 (2024). https://doi.org/10.1007/s40820-024-01561-8
J. Shi, S. Xie, Z. Liu, M. Cai, C.F. Guo, Non-hygroscopic ionogel-based humidity-insensitive iontronic sensor arrays for intra-articular pressure sensing. Natl. Sci. Rev. 11(11), nwae351 (2024). https://doi.org/10.1093/nsr/nwae351
J. Chang, J. Li, J. Ye, B. Zhang, J. Chen et al., AI-enabled piezoelectric wearable for joint torque monitoring. Nano-Micro Lett. 17(1), 247 (2025). https://doi.org/10.1007/s40820-025-01753-w
Z. Xu, C. Zhang, F. Wang, J. Yu, G. Yang et al., Smart textiles for personalized sports and healthcare. Nano-Micro Lett. 17(1), 232 (2025). https://doi.org/10.1007/s40820-025-01749-6
Y. Li, W. Zhang, C. Zhao, W. Li, E. Dong et al., Breaking the saturation of sensitivity for ultrawide range flexible pressure sensors by soft-strain effect. Adv. Mater. 36(36), 2405405 (2024). https://doi.org/10.1002/adma.202405405
Z. Wang, S. Wang, B. Lan, Y. Sun, L. Huang et al., Piezotronic sensor for bimodal monitoring of achilles tendon behavior. Nano-Micro Lett. 17(1), 241 (2025). https://doi.org/10.1007/s40820-025-01757-6
Y. Chang, L. Wang, R. Li, Z. Zhang, Q. Wang et al., First decade of interfacial iontronic sensing: from droplet sensors to artificial skins. Adv. Mater. 33(7), 2003464 (2021). https://doi.org/10.1002/adma.202003464
Z. Zhu, R. Li, T. Pan, Imperceptible epidermal-iontronic interface for wearable sensing. Adv. Mater. 30(6), 1705122 (2018). https://doi.org/10.1002/adma.201705122
H. Yuk, B. Lu, X. Zhao, Hydrogel bioelectronics. Chem. Soc. Rev. 48(6), 1642–1667 (2019). https://doi.org/10.1039/c8cs00595h
R. Chen, T. Luo, J. Wang, R. Wang, C. Zhang et al., Nonlinearity synergy: an elegant strategy for realizing high-sensitivity and wide-linear-range pressure sensing. Nat. Commun. 14(1), 6641 (2023). https://doi.org/10.1038/s41467-023-42361-9
B. Zhu, J. Guo, W. Li, T. Luo, F. Lei et al., Integrated electromechanical structure for iontronic pressure sensors with linear high-sensitivity response and robust sensing stability. Adv. Funct. Mater. 34(42), 2406762 (2024). https://doi.org/10.1002/adfm.202406762
Z. Liu, M. Cai, S. Hong, J. Shi, S. Xie et al., Data-driven inverse design of flexible pressure sensors. Proc. Natl. Acad. Sci. U. S. A. 121(28), e2320222121 (2024). https://doi.org/10.1073/pnas.2320222121
Y.-D. Tang, P. Wang, G.-X. Li, G.-Y. Wang, W. Yu et al., Flexible and ultra-sensitive planar supercapacitive pressure sensor based on porous ionic foam. Adv. Eng. Mater. 25(1), 2200814 (2023). https://doi.org/10.1002/adem.202200814
N. Bai, Y. Xue, S. Chen, L. Shi, J. Shi et al., A robotic sensory system with high spatiotemporal resolution for texture recognition. Nat. Commun. 14(1), 7121 (2023). https://doi.org/10.1038/s41467-023-42722-4
Y. Ren, Z. Liu, G. Jin, M. Yang, Y. Shao et al., Electric-field-induced gradient ionogels for highly sensitive, broad-range-response, and freeze/heat-resistant ionic fingers. Adv. Mater. 33(12), 2008486 (2021). https://doi.org/10.1002/adma.202008486
X. Dong, Y. Wei, S. Chen, Y. Lin, L. Liu et al., A linear and large-range pressure sensor based on a graphene/silver nanowires nanobiocomposites network and a hierarchical structural sponge. Compos. Sci. Technol. 155, 108–116 (2018). https://doi.org/10.1016/j.compscitech.2017.11.028
C.-Y. Huang, G. Yang, P. Huang, J.-M. Hu, Z.-H. Tang et al., Flexible pressure sensor with an excellent linear response in a broad detection range for human motion monitoring. ACS Appl. Mater. Interfaces 15(2), 3476–3485 (2023). https://doi.org/10.1021/acsami.2c19465
L. Zhang, S. Zhang, C. Wang, Q. Zhou, H. Zhang et al., Highly sensitive capacitive flexible pressure sensor based on a high-permittivity MXene nanocomposite and 3D network electrode for wearable electronics. ACS Sens. 6(7), 2630–2641 (2021). https://doi.org/10.1021/acssensors.1c00484
J. Huang, X. Tang, F. Wang, Z. Wang, Y. Niu et al., Multi-hierarchical microstructures boosted linearity of flexible capacitive pressure sensor. Adv. Eng. Mater. 24(9), 2101767 (2022). https://doi.org/10.1002/adem.202101767
Y. Lee, J. Park, S. Cho, Y.-E. Shin, H. Lee et al., Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range. ACS Nano 12(4), 4045–4054 (2018). https://doi.org/10.1021/acsnano.8b01805
S. Pyo, J. Lee, W. Kim, E. Jo, J. Kim, Multi-layered, hierarchical fabric-based tactile sensors with high sensitivity and linearity in ultrawide pressure range. Adv. Funct. Mater. 29(35), 1902484 (2019). https://doi.org/10.1002/adfm.201902484
G. Zhu, H. Dai, Y. Yao, W. Tang, J. Shi et al., 3D printed skin-inspired flexible pressure sensor with gradient porous structure for tunable high sensitivity and wide linearity range. Adv. Mater. Technol. 7(7), 2101239 (2022). https://doi.org/10.1002/admt.202101239
B. Chen, L. Zhang, H. Li, X. Lai, X. Zeng, Skin-inspired flexible and high-performance MXene@polydimethylsiloxane piezoresistive pressure sensor for human motion detection. J. Colloid Interface Sci. 617, 478–488 (2022). https://doi.org/10.1016/j.jcis.2022.03.013
B. Ji, Q. Zhou, J. Wu, Y. Gao, W. Wen et al., Synergistic optimization toward the sensitivity and linearity of flexible pressure sensor via double conductive layer and porous microdome array. ACS Appl. Mater. Interfaces 12(27), 31021–31035 (2020). https://doi.org/10.1021/acsami.0c08910
Y. Shi, X. Lu, W. Wang, X. Meng, J. Zhao et al., Multilayer flexible pressure sensor with high sensitivity over wide linearity detection range. IEEE Trans. Instrum. Meas. 70, 1–9 (2021). https://doi.org/10.1109/tim.2021.3101307
C. Wang, D. Gong, P. Feng, Y. Cheng, X. Cheng et al., Ultra-sensitive and wide sensing-range flexible pressure sensors based on the carbon nanotube film/stress-induced square frustum structure. ACS Appl. Mater. Interfaces 15(6), 8546–8554 (2023). https://doi.org/10.1021/acsami.2c22727
X. Cui, Y. Jiang, L. Hu, M. Cao, H. Xie et al., Synergistically microstructured flexible pressure sensors with high sensitivity and ultrawide linear range for full-range human physiological monitoring. Adv. Mater. Technol. 8(1), 2200609 (2023). https://doi.org/10.1002/admt.202200609
J. He, P. Xiao, W. Lu, J. Shi, L. Zhang et al., A universal high accuracy wearable pulse monitoring system via high sensitivity and large linearity graphene pressure sensor. Nano Energy 59, 422–433 (2019). https://doi.org/10.1016/j.nanoen.2019.02.036
B. Zhu, Z. Xu, X. Liu, Z. Wang, Y. Zhang et al., High-linearity flexible pressure sensor based on the Gaussian-curve-shaped microstructure for human physiological signal monitoring. ACS Sens. 8(8), 3127–3135 (2023). https://doi.org/10.1021/acssensors.3c00818
N. Bai, L. Wang, Y. Xue, Y. Wang, X. Hou et al., Graded interlocks for iontronic pressure sensors with high sensitivity and high linearity over a broad range. ACS Nano 16(3), 4338–4347 (2022). https://doi.org/10.1021/acsnano.1c10535
M. Zhong, L. Zhang, X. Liu, Y. Zhou, M. Zhang et al., Wide linear range and highly sensitive flexible pressure sensor based on multistage sensing process for health monitoring and human-machine interfaces. Chem. Eng. J. 412, 128649 (2021). https://doi.org/10.1016/j.cej.2021.128649
S. Wu, C. Yang, J. Hu, M. Pan, W. Meng et al., Normal-direction graded hemispheres for ionic flexible sensors with a record-high linearity in a wide working range. ACS Appl. Mater. Interfaces 15(40), 47733–47744 (2023). https://doi.org/10.1021/acsami.3c09580
F. Huang, G. Hu, Z. Yu, Y. Pan, H. Yao et al., Highly sensitive and wide linearity flexible pressure sensor with randomly distributed columnar arrays. J. Mater. Sci. 58(8), 3735–3751 (2023). https://doi.org/10.1007/s10853-023-08282-0
Z. Xu, D. Wu, Z. Chen, Z. Wang, C. Cao et al., A flexible pressure sensor with highly customizable sensitivity and linearity via positive design of microhierarchical structures with a hyperelastic model. Microsyst. Nanoeng. 9, 5 (2023). https://doi.org/10.1038/s41378-022-00477-w
Y. Yu, H. Yuk, G.A. Parada, Y. Wu, X. Liu et al., Multifunctional “hydrogel skins” on diverse polymers with arbitrary shapes. Adv. Mater. 31(7), e1807101 (2019). https://doi.org/10.1002/adma.201807101
S. Chun, J.-S. Kim, Y. Yoo, Y. Choi, S.J. Jung et al., An artificial neural tactile sensing system. Nat. Electron. 4(6), 429–438 (2021). https://doi.org/10.1038/s41928-021-00585-x
T.B.H. Schroeder, A. Guha, A. Lamoureux, G. VanRenterghem, D. Sept et al., An electric-eel-inspired soft power source from stacked hydrogels. Nature 552(7684), 214–218 (2017). https://doi.org/10.1038/nature24670