Pt-Containing Ag2S-Noble Metal Nanocomposites as Highly Active Electrocatalysts for the Oxidation of Formic Acid
Corresponding Author: Jun Yang
Nano-Micro Letters,
Vol. 6 No. 3 (2014), Article Number: 252-257
Abstract
Nanocomposites with synergistic effect are of great interest for their enhanced properties in a given application. Herein, we reported the high catalytic activity of Pt-containing Ag2S-noble metal nanocomposites in formic acid oxidation, which is a key reaction in direct formic acid fuel cell. The electrochemical measurements including voltammograms and chronoamperograms are used to characterize the catalytic property of Pt-containing nanocomposites for the oxidation of formic acid. In view of the limited literatures on using nanocomposites consisting of semiconductor and noble metals for catalyzing the reactions of polymer electrolyte membrane-based fuel cells, this study provides a helpful exploration for expanding the application of semiconductor-noble metal nanocomposites.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. C. H. Steele and A. Heinzel, “Materials for fuel-cell technologies”, Nature 414(6861), 345–352 (2001). http://dx.doi.org/10.1038/35104620
- M. L. Perry and T. F. Fuller, “A historical perspective of fuel cell technology in the 20th century”, J. Electrochem. Soc. 149(7), S59–S67 (2002). http://dx.doi.org/10.1149/1.1488651
- X. Yu and P. G. Pickup, “Recent advances in direct formic acid fuel cells (DFAFC)”, J. Power Sources 182(1), 124–132 (2008). http://dx.doi.org/10.1016/j.jpowsour.2008.03.075
- R. Parsons and T. VanderNoot, “The oxidation of small organic molecules: A survey of recent fuel cell related research”, J. Electroanal. Chem. Interfacial Electrochem. 257(1–2), 9–45 (1988). http://dx.doi.org/10.1016/0022-0728(88)87028-1
- N. M. Markovi鎍nd P. N. Ross, “Surface science studies of model fuel cell electrocatalysts”, Surf. Sci. Rep. 45(4–6), 117–229 (2002). http://dx.doi.org/10.1016/S0167-5729(01)00022-X
- F. A. de Brujin V. A. T. Dam and G. J. M. Janssen, “Review: durability and degradation issues of PEM fuel cell components”, Fuel Cells 8(1), 3–22 (2008). http://dx.doi.org/10.1002/fuce.200700053
- Y. Pan R. Zhang and S. L. Blair, “Anode poisoning study in direct formic acid fuel cells”, Electrochem. Solid-State Lett. 12(3), B23–B26 (2009). http://dx.doi.org/10.1149/1.3054278
- R. S. Jayashree J. S. Spendelow J. Yeom C. Rastogi M. A. Shannon and P. J. A. Kenis, “Characterization and application of electrodeposited Pt, Pt/Pd, and Pd catalyst structures for direct formic acid micro fuel cells”, Electrochim. Acta 50(24), 4674–4682 (2005). http://dx.doi.org/10.1016/j.electacta.2005.02.018
- J. B. Xu T. S. Zhao and Z. X. Liang, “Carbon supported platinum-gold alloy catalyst for direct formic acid fuel cells”, J. Power Sources 185(2), 857–861 (2008). http://dx.doi.org/10.1016/j.jpowsour.2008.09.039
- J. Chen B. Lim E. P. Lee and Y. Xia, “Shapecontrolled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications”, Nano Today 4(1), 81–95 (2009). http://dx.doi.org/10.1016/j.nantod.2008.09.002
- Z. Peng and H. Yang, “Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property”, Nano Today 4(2), 143–164 (2009). http://dx.doi.org/10.1016/j.nantod.2008.10.010
- A. Chen and P. Holt-Hindle, “Platinum-based nanostructured materials: Synthesis, properties, and applications”, Chem. Rev. 110(6), 3767–3804 (2010). http://dx.doi.org/10.1021/cr9003902
- J. Yang and J. Y. Ying, “Nanocomposites of Ag2S and noble metals”, Angew. Chem. Int. Ed. 50(20), 4637–4643 (2011). http://dx.doi.org/10.1002/anie.201101213
- J. Yang X. Chen F. Ye C. Wang Y. Zheng and Yang, “Core-shell CdSe@Pt nanocomposites with superior electrocatalytic activity enhanced by lateral strain effect”, J. Mater. Chem. 21(25), 9088–9094 (2011). http://dx.doi.org
- C. Rice S. Ha R. I. Masel P. Waszczuk A. Wieckowski and T. Barnard, “Direct formic acid fuel cells”, J. Power Sources 111(1), 83–89 (2002). http://dx.doi.org/10.1016/S0378-7753(02)00271-9
- C. Rice S. Ha R. I. Masel and A. Wieckowski, “Catalysts for direct formic acid fuel cells”, J. Power Sources 115(2), 229–235 (2003). http://dx.doi.org/10.1016/S0378-7753(03)00026-0
- Y. W. Rhee S. Y. Ha and R. I. Masel, “Crossover of formic acid through Nafion® membranes”, J. Power Sources 117(1–2), 35–38 (2003). http://dx.doi.org/10.1016/S0378-7753(03)00352-5
- J. Yang E. H. Sargent S. O. Kelley and J. Y. Ying, “A general phase-transfer protocol for metal ions and its application in nanocrystal synthesis”, Nat. Mater. 8(8), 683–689 (2009). http://dx.doi.org/10.1038/nmat2490
- C. D. Wagner A. V. Naumkin A. Kraut-Vass J. W. Allison C. J. Powell and J. J. R. Rumble, NIST Standard Reference Database 20, Version 3.2 (Web Version).
- J. S. Lee E. V. Shevchenko and D. V. Talapin, “Au-PbS core-shell nanocrystals: Plasmonic absorption enhancement and electrical doping via intra-particle charge transfer”, J. Am. Chem. Soc. 130(30), 9673–9675 (2008). http://dx.doi.org/10.1021/ja802890f
References
B. C. H. Steele and A. Heinzel, “Materials for fuel-cell technologies”, Nature 414(6861), 345–352 (2001). http://dx.doi.org/10.1038/35104620
M. L. Perry and T. F. Fuller, “A historical perspective of fuel cell technology in the 20th century”, J. Electrochem. Soc. 149(7), S59–S67 (2002). http://dx.doi.org/10.1149/1.1488651
X. Yu and P. G. Pickup, “Recent advances in direct formic acid fuel cells (DFAFC)”, J. Power Sources 182(1), 124–132 (2008). http://dx.doi.org/10.1016/j.jpowsour.2008.03.075
R. Parsons and T. VanderNoot, “The oxidation of small organic molecules: A survey of recent fuel cell related research”, J. Electroanal. Chem. Interfacial Electrochem. 257(1–2), 9–45 (1988). http://dx.doi.org/10.1016/0022-0728(88)87028-1
N. M. Markovi鎍nd P. N. Ross, “Surface science studies of model fuel cell electrocatalysts”, Surf. Sci. Rep. 45(4–6), 117–229 (2002). http://dx.doi.org/10.1016/S0167-5729(01)00022-X
F. A. de Brujin V. A. T. Dam and G. J. M. Janssen, “Review: durability and degradation issues of PEM fuel cell components”, Fuel Cells 8(1), 3–22 (2008). http://dx.doi.org/10.1002/fuce.200700053
Y. Pan R. Zhang and S. L. Blair, “Anode poisoning study in direct formic acid fuel cells”, Electrochem. Solid-State Lett. 12(3), B23–B26 (2009). http://dx.doi.org/10.1149/1.3054278
R. S. Jayashree J. S. Spendelow J. Yeom C. Rastogi M. A. Shannon and P. J. A. Kenis, “Characterization and application of electrodeposited Pt, Pt/Pd, and Pd catalyst structures for direct formic acid micro fuel cells”, Electrochim. Acta 50(24), 4674–4682 (2005). http://dx.doi.org/10.1016/j.electacta.2005.02.018
J. B. Xu T. S. Zhao and Z. X. Liang, “Carbon supported platinum-gold alloy catalyst for direct formic acid fuel cells”, J. Power Sources 185(2), 857–861 (2008). http://dx.doi.org/10.1016/j.jpowsour.2008.09.039
J. Chen B. Lim E. P. Lee and Y. Xia, “Shapecontrolled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications”, Nano Today 4(1), 81–95 (2009). http://dx.doi.org/10.1016/j.nantod.2008.09.002
Z. Peng and H. Yang, “Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property”, Nano Today 4(2), 143–164 (2009). http://dx.doi.org/10.1016/j.nantod.2008.10.010
A. Chen and P. Holt-Hindle, “Platinum-based nanostructured materials: Synthesis, properties, and applications”, Chem. Rev. 110(6), 3767–3804 (2010). http://dx.doi.org/10.1021/cr9003902
J. Yang and J. Y. Ying, “Nanocomposites of Ag2S and noble metals”, Angew. Chem. Int. Ed. 50(20), 4637–4643 (2011). http://dx.doi.org/10.1002/anie.201101213
J. Yang X. Chen F. Ye C. Wang Y. Zheng and Yang, “Core-shell CdSe@Pt nanocomposites with superior electrocatalytic activity enhanced by lateral strain effect”, J. Mater. Chem. 21(25), 9088–9094 (2011). http://dx.doi.org
C. Rice S. Ha R. I. Masel P. Waszczuk A. Wieckowski and T. Barnard, “Direct formic acid fuel cells”, J. Power Sources 111(1), 83–89 (2002). http://dx.doi.org/10.1016/S0378-7753(02)00271-9
C. Rice S. Ha R. I. Masel and A. Wieckowski, “Catalysts for direct formic acid fuel cells”, J. Power Sources 115(2), 229–235 (2003). http://dx.doi.org/10.1016/S0378-7753(03)00026-0
Y. W. Rhee S. Y. Ha and R. I. Masel, “Crossover of formic acid through Nafion® membranes”, J. Power Sources 117(1–2), 35–38 (2003). http://dx.doi.org/10.1016/S0378-7753(03)00352-5
J. Yang E. H. Sargent S. O. Kelley and J. Y. Ying, “A general phase-transfer protocol for metal ions and its application in nanocrystal synthesis”, Nat. Mater. 8(8), 683–689 (2009). http://dx.doi.org/10.1038/nmat2490
C. D. Wagner A. V. Naumkin A. Kraut-Vass J. W. Allison C. J. Powell and J. J. R. Rumble, NIST Standard Reference Database 20, Version 3.2 (Web Version).
J. S. Lee E. V. Shevchenko and D. V. Talapin, “Au-PbS core-shell nanocrystals: Plasmonic absorption enhancement and electrical doping via intra-particle charge transfer”, J. Am. Chem. Soc. 130(30), 9673–9675 (2008). http://dx.doi.org/10.1021/ja802890f