Engineering Renewable Lignocellulosic Biomass as Sustainable Solar-Driven Interfacial Evaporators
Corresponding Author: Jun Yang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 174
Abstract
The increasing scarcity of freshwater resources has driven the rapid emergence of solar-driven interfacial evaporators (SDIEs) as a sustainable approach to harvest fresh water by utilizing solar energy. Lignocellulosic biomass, featuring natural abundance, excellent renewability, unique natural structures, and superior biodegradability compared to the synthetic polymers, is highly attractive for constructing solar steam generators. This review aims to offer an innovative and in-depth insight into designing and optimizing high-performance integrated solar interfacial evaporators derived from renewable lignocellulosic biomass. First, the structural characteristics of lignocellulosic biomass are briefly introduced, serving as photothermal layer or supporting substrates in SDIEs. Secondly, the fabrication methods and processing technologies of lignocellulosic biomass-based evaporators are summarized from the perspective of photothermal layer and supporting substrates. Next, the most recent advances of regulation and optimization strategies are proposed to improve evaporation efficiency. Subsequently, this review summarizes the diverse functionalities of SDIEs, including desalination, power generation, wastewater treatment and antimicrobial, atmospheric water harvesting, and photocatalytic hydrogen production. Finally, the challenges in this field and outlook on the future development are discussed, which are anticipated to provide new opportunities for the advancement of lignocellulosic biomass-based SDIEs.
Highlights:
1 This review systematically summarizes solar evaporator design and optimization using renewable lignocellulosic biomass.
2 Unique structural merits and fabrication methods for photothermal layer and hydrophilic substrate are thoroughly discussed.
3 Multifunctional integrated applications beyond desalination are highlighted.
4 Current challenges and future development opportunities for scalable biomass-based evaporators are outlined.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Zhu, Y. Li, F. Chen, X. Zhu, J. Dai et al., Plasmonic wood for high-efficiency solar steam generation. Adv. Energy Mater. 8(4), 1701028 (2018). https://doi.org/10.1002/aenm.201701028
- Y. Li, T. Gao, Z. Yang, C. Chen, W. Luo et al., 3D-printed, all-in-one evaporator for high-efficiency solar steam generation under 1 Sun illumination. Adv. Mater. 29(26), 1700981 (2017). https://doi.org/10.1002/adma.201700981
- X. Li, J. Li, J. Lu, N. Xu, C. Chen et al., Enhancement of interfacial solar vapor generation by environmental energy. Joule 2(7), 1331–1338 (2018). https://doi.org/10.1016/j.joule.2018.04.004
- Y. Kuang, C. Chen, S. He, E.M. Hitz, Y. Wang et al., A high-performance self-regenerating solar evaporator for continuous water desalination. Adv. Mater. 31(23), e1900498 (2019). https://doi.org/10.1002/adma.201900498
- X.-J. Zha, X. Zhao, J.-H. Pu, L.-S. Tang, K. Ke et al., Flexible anti-biofouling MXene/cellulose fibrous membrane for sustainable solar-driven water purification. ACS Appl. Mater. Interfaces 11(40), 36589–36597 (2019). https://doi.org/10.1021/acsami.9b10606
- P. Xiao, J. He, F. Ni, C. Zhang, Y. Liang et al., Exploring interface confined water flow and evaporation enables solar-thermal-electro integration towards clean water and electricity harvest via asymmetric functionalization strategy. Nano Energy 68, 104385 (2020). https://doi.org/10.1016/j.nanoen.2019.104385
- N. Li, L. Qiao, J. He, S. Wang, L. Yu et al., Solar-driven interfacial evaporation and self-powered water wave detection based on an all-cellulose monolithic design. Adv. Funct. Mater. 31(7), 2008681 (2021). https://doi.org/10.1002/adfm.202008681
- J. Liu, J. Gui, W. Zhou, X. Tian, Z. Liu et al., Self-regulating and asymmetric evaporator for efficient solar water-electricity generation. Nano Energy 86, 106112 (2021). https://doi.org/10.1016/j.nanoen.2021.106112
- Y. Chen, J. Yang, L. Zhu, X. Jia, S. Wang et al., An integrated highly hydrated cellulose network with a synergistic photothermal effect for efficient solar-driven water evaporation and salt resistance. J. Mater. Chem. A 9(27), 15482–15492 (2021). https://doi.org/10.1039/D1TA04325K
- X. Lin, P. Wang, R. Hong, X. Zhu, Y. Liu et al., Fully lignocellulosic biomass-based double-layered porous hydrogel for efficient solar steam generation. Adv. Funct. Mater. 32(51), 2209262 (2022). https://doi.org/10.1002/adfm.202209262
- X. Dong, H. Li, L. Gao, C. Chen, X. Shi et al., Janus fibrous mats based suspended type evaporator for salt resistant solar desalination and salt recovery. Small 18(13), 2107156 (2022). https://doi.org/10.1002/smll.202107156
- Y. Gu, D. Wang, Y. Gao, Y. Yue, W. Yang et al., Solar-powered high-performance lignin-wood evaporator for solar steam generation. Adv. Funct. Mater. 33(43), 2306947 (2023). https://doi.org/10.1002/adfm.202306947
- P. Zhu, Z. Yu, H. Sun, D. Zheng, Y. Zheng et al., 3D printed cellulose nanofiber aerogel scaffold with hierarchical porous structures for fast solar-driven atmospheric water harvesting. Adv. Mater. 36(1), e2306653 (2024). https://doi.org/10.1002/adma.202306653
- The United Nations World Water Development Report, UNESCO (France, Paris, 2024), p.2024
- L. Chen, X. Mu, Y. Guo, H. Lu, Y. Yang et al., MXene-doped kapok fiber aerogels with oleophobicity for efficient interfacial solar steam generation. J. Colloid Interface Sci. 626, 35–46 (2022). https://doi.org/10.1016/j.jcis.2022.06.143
- S. Lin, H. Zhao, L. Zhu, T. He, S. Chen et al., Seawater desalination technology and engineering in China: a review. Desalination 498, 114728 (2021). https://doi.org/10.1016/j.desal.2020.114728
- E.J. Okampo, N. Nwulu, Optimisation of renewable energy powered reverse osmosis desalination systems: a state-of-the-art review. Renew. Sustain. Energy Rev. 140, 110712 (2021). https://doi.org/10.1016/j.rser.2021.110712
- N. Kim, J. Elbert, C. Kim, X. Su, Redox-copolymers for nanofiltration-enabled electrodialysis. ACS Energy Lett. 8(5), 2097–2105 (2023). https://doi.org/10.1021/acsenergylett.3c00482
- H. Yang, M. Fu, Z. Zhan, R. Wang, Y. Jiang, Study on combined freezing-based desalination processes with microwave treatment. Desalination 475, 114201 (2020). https://doi.org/10.1016/j.desal.2019.114201
- M. Tayefeh, An innovative rearrangement and comprehensive comparison of the combination of compressed air energy storage (CAES) with multi stage flash (MSF) desalination and multi effect distillation (MED) systems. J. Energy Storage 52, 105025 (2022). https://doi.org/10.1016/j.est.2022.105025
- J. Li, L. Mu, Q. Liu, Y. Zhang, R. Zhang et al., A review: Fabric-based solar driven interfacial evaporator. Nano Energy 132, 110394 (2024). https://doi.org/10.1016/j.nanoen.2024.110394
- C. Onggowarsito, S. Mao, X.S. Zhang, A. Feng, H. Xu et al., Updated perspective on solar steam generation application. Energy Environ. Sci. 17(6), 2088–2099 (2024). https://doi.org/10.1039/d3ee04073a
- C. Liu, D. Deng, Z. Xiao, A novel suspended suspension bridge-like evaporator with antibacterial properties for achieving stable solar evaporation in concentrated saline water. Desalination 574, 117223 (2024). https://doi.org/10.1016/j.desal.2023.117223
- Z. Li, H. Li, S. Wang, F. Yang, W. Zhou, Mesoporous black TiO2/MoS2/Cu2S hierarchical tandem heterojunctions toward optimized photothermal-photocatalytic fuel production. Chem. Eng. J. 427, 131830 (2022). https://doi.org/10.1016/j.cej.2021.131830
- S. Hao, H. Han, Z. Yang, M. Chen, Y. Jiang et al., Recent advancements on photothermal conversion and antibacterial applications over MXenes-based materials. Nano Lett. 14(1), 178 (2022). https://doi.org/10.1007/s40820-022-00901-w
- Y. Zhao, T. Zhao, Y. Cao, J. Sun, Q. Zhou et al., Temperature-sensitive lipid-coated carbon nanotubes for synergistic photothermal therapy and gene therapy. ACS Nano 15(4), 6517–6529 (2021). https://doi.org/10.1021/acsnano.0c08790
- S. Yang, Y. Zhang, J. Bai, Y. He, X. Zhao et al., Integrating dual-interfacial liquid metal based nanodroplet architectures and micro-nanostructured engineering for high efficiency solar energy harvesting. ACS Nano 16(9), 15086–15099 (2022). https://doi.org/10.1021/acsnano.2c06245
- F.S. Awad, H.D. Kiriarachchi, K.M. AbouZeid, Ü. Özgür, M.S. El-Shall, Plasmonic graphene polyurethane nanocomposites for efficient solar water desalination. ACS Appl. Energy Mater. 1(3), 976–985 (2018). https://doi.org/10.1021/acsaem.8b00109
- Y. Wang, Q. Zhang, Z. Liu, G. Yang, F. Peng, Photothermal water evaporation and purification on the interface evaporator constructed by Cu@Bi2WO6-C. Sep. Purif. Technol. 347, 127702 (2024). https://doi.org/10.1016/j.seppur.2024.127702
- X. Yin, S. Luo, Z. Liu, M. Guo, High-efficiency wood-based evaporators in solar interfacial evaporation: design and application. Desalination 583, 117668 (2024). https://doi.org/10.1016/j.desal.2024.117668
- W. Wu, Y. Xu, X. Ma, Z. Tian, C. Zhang et al., Cellulose-based interfacial solar evaporators: structural regulation and performance manipulation. Adv. Funct. Mater. 33(36), 2302351 (2023). https://doi.org/10.1002/adfm.202302351
- Y. Yue, Y. Wang, J. Li, W. Cheng, G. Han et al., High strength and ultralight lignin-mediated fire-resistant aerogel for repeated oil/water separation. Carbon 193, 285–297 (2022). https://doi.org/10.1016/j.carbon.2022.03.015
- J. Li, W. Liu, X. Qiu, X. Zhao, Z. Chen et al., Lignin: a sustainable photothermal block for smart elastomers. Green Chem. 24(2), 823–836 (2022). https://doi.org/10.1039/d1gc03571a
- S. Wu, F. Shen, F. Yang, L. Chen, M. Huang et al., All-biomass-based solar steam generator with deep eutectic solvent lignin porous carbon/silver nanop coatings for efficient water evaporation. ACS Appl. Nano Mater. 7(14), 16564–16574 (2024). https://doi.org/10.1021/acsanm.4c02563
- Z. Chen, B. Dang, X. Luo, W. Li, J. Li et al., Deep eutectic solvent-assisted in situ wood delignification: a promising strategy to enhance the efficiency of wood-based solar steam generation devices. ACS Appl. Mater. Interfaces 11(29), 26032–26037 (2019). https://doi.org/10.1021/acsami.9b08244
- L. Shu, X.-F. Zhang, Z. Wang, J. Liu, J. Yao, Cellulose-based bi-layer hydrogel evaporator with a low evaporation enthalpy for efficient solar desalination. Carbohydr. Polym. 327, 121695 (2024). https://doi.org/10.1016/j.carbpol.2023.121695
- W. Lu, D. Jiang, Z. Wang, X. Zhang, Q. Ding et al., Simultaneous efficient evaporation and stable electricity generation enabled by a wooden evaporator based on composite photothermal effect. Chem. Eng. J. 496, 154361 (2024). https://doi.org/10.1016/j.cej.2024.154361
- Z. Wei, C. Cai, Y. Huang, Y. Wang, Y. Fu, Biomimetic surface strategy of spectrum-tailored liquid metal via blackbody inspiration for highly efficient solar steam generation, desalination, and electricity generation. Nano Energy 86, 106138 (2021). https://doi.org/10.1016/j.nanoen.2021.106138
- K. Liu, W. Zhang, H. Cheng, L. Luo, B. Wang et al., A nature-inspired monolithic integrated cellulose aerogel-based evaporator for efficient solar desalination. ACS Appl. Mater. Interfaces 13(8), 10612–10622 (2021). https://doi.org/10.1021/acsami.0c22245
- Q. Shao, Y. Luo, M. Cao, X. Qiu, D. Zheng, Lignin with enhanced photothermal performance for the preparation of a sustainable solar-driven double-layer biomass evaporator. Chem. Eng. J. 476, 146678 (2023). https://doi.org/10.1016/j.cej.2023.146678
- X. Wu, Z. Wu, Y. Wang, T. Gao, Q. Li et al., All-cold evaporation under one sun with zero energy loss by using a heatsink inspired solar evaporator. Adv. Sci. 8(7), 2002501 (2021). https://doi.org/10.1002/advs.202002501
- F. Zhao, Y. Guo, X. Zhou, W. Shi, G. Yu, Materials for solar-powered water evaporation. Nat. Rev. Mater. 5(5), 388–401 (2020). https://doi.org/10.1038/s41578-020-0182-4
- X. Zhou, F. Zhao, Y. Guo, B. Rosenberger, G. Yu, Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci. Adv. 5(6), eaaw5484 (2019). https://doi.org/10.1126/sciadv.aaw5484
- L. Chen, S. He, W. Huang, D. Liu, T. Bi et al., 3D-printed tripodal porous wood-mimetic cellulosic composite evaporator for salt-free water desalination. Compos. Part B Eng. 263, 110830 (2023). https://doi.org/10.1016/j.compositesb.2023.110830
- X. Han, S. Ding, L. Fan, Y. Zhou, S. Wang, Janus biocomposite aerogels constituted of cellulose nanofibrils and MXenes for application as single-module solar-driven interfacial evaporators. J. Mater. Chem. A 9(34), 18614–18622 (2021). https://doi.org/10.1039/D1TA04991G
- L. Song, X.-F. Zhang, Z. Wang, T. Zheng, J. Yao, Fe3O4/polyvinyl alcohol decorated delignified wood evaporator for continuous solar steam generation. Desalination 507, 115024 (2021). https://doi.org/10.1016/j.desal.2021.115024
- C. Liu, P. Luan, Q. Li, Z. Cheng, P. Xiang et al., Biopolymers derived from trees as sustainable multifunctional materials: a review. Adv. Mater. 33(28), e2001654 (2021). https://doi.org/10.1002/adma.202001654
- H. Zhu, W. Luo, P.N. Ciesielski, Z. Fang, J.Y. Zhu et al., Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 116(16), 9305–9374 (2016). https://doi.org/10.1021/acs.chemrev.6b00225
- R. Fillet, V. Nicolas, V. Fierro, A. Celzard, A review of natural materials for solar evaporation. Sol. Energy Mater. Sol. Cells 219, 110814 (2021). https://doi.org/10.1016/j.solmat.2020.110814
- F. Jiang, T. Li, Y. Li, Y. Zhang, A. Gong et al., Wood-based nanotechnologies toward sustainability. Adv. Mater. 30(1), 1703453 (2018). https://doi.org/10.1002/adma.201703453
- L. Christersson, Poplar plantations for paper and energy in the south of Sweden. Biomass Bioenergy 32(11), 997–1000 (2008). https://doi.org/10.1016/j.biombioe.2007.12.018
- Y. Dong, Y. Tan, K. Wang, Y. Cai, J. Li et al., Reviewing wood-based solar-driven interfacial evaporators for desalination. Water Res. 223, 119011 (2022). https://doi.org/10.1016/j.watres.2022.119011
- Q. Jiang, S. Singamaneni, Water from wood: pouring through pores. Joule 1(3), 429–430 (2017). https://doi.org/10.1016/j.joule.2017.10.018
- C. Chen, Y. Kuang, S. Zhu, I. Burgert, T. Keplinger et al., Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 5(9), 642–666 (2020). https://doi.org/10.1038/s41578-020-0195-z
- J. Credou, T. Berthelot, Cellulose: from biocompatible to bioactive material. J. Mater. Chem. B 2(30), 4767–4788 (2014). https://doi.org/10.1039/C4TB00431K
- K. Jedvert, T. Heinze, Cellulose modification and shaping–a review. J. Polym. Eng. 37(9), 845–860 (2017). https://doi.org/10.1515/polyeng-2016-0272
- J. Wang, D. Zhang, F. Chu, Wood-derived functional polymeric materials. Adv. Mater. 33(28), 2001135 (2021). https://doi.org/10.1002/adma.202001135
- R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40(7), 3941–3994 (2011). https://doi.org/10.1039/c0cs00108b
- J. Zakzeski, P.C.A. Bruijnincx, A.L. Jongerius, B.M. Weckhuysen, The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110(6), 3552–3599 (2010). https://doi.org/10.1021/cr900354u
- C. Li, X. Zhao, A. Wang, G.W. Huber, T. Zhang, Catalytic transformation of lignin for the production of chemicals and fuels. Chem. Rev. 115(21), 11559–11624 (2015). https://doi.org/10.1021/acs.chemrev.5b00155
- A.J. Ragauskas, G.T. Beckham, M.J. Biddy, R. Chandra, F. Chen et al., Lignin valorization: improving lignin processing in the biorefinery. Science 344(6185), 1246843 (2014). https://doi.org/10.1126/science.1246843
- W. Schutyser, T. Renders, S. Van den Bosch, S.F. Koelewijn, G.T. Beckham et al., Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 47(3), 852–908 (2018). https://doi.org/10.1039/C7CS00566K
- M. Schuetz, A. Benske, R.A. Smith, Y. Watanabe, Y. Tobimatsu et al., Laccases direct lignification in the discrete secondary cell wall domains of protoxylem. Plant Physiol. 166(2), 798–807 (2014). https://doi.org/10.1104/pp.114.245597
- N. Ithal, J. Recknor, D. Nettleton, T. Maier, T.J. Baum et al., Developmental transcript profiling of cyst nematode feeding cells in soybean roots. Mol. Plant Microbe Interact. 20(5), 510–525 (2007). https://doi.org/10.1094/MPMI-20-5-0510
- B.M. Upton, A.M. Kasko, Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem. Rev. 116(4), 2275–2306 (2016). https://doi.org/10.1021/acs.chemrev.5b00345
- H.-M. Wang, T.-Q. Yuan, G.-Y. Song, R.-C. Sun, Advanced and versatile lignin-derived biodegradable composite film materials toward a sustainable world. Green Chem. 23(11), 3790–3817 (2021). https://doi.org/10.1039/D1GC00790D
- C. Ma, T.-H. Kim, K. Liu, M.-G. Ma, S.-E. Choi et al., Multifunctional lignin-based composite materials for emerging applications. Front. Bioeng. Biotechnol. 9, 708976 (2021). https://doi.org/10.3389/fbioe.2021.708976
- H. Yang, B. Yu, X. Xu, S. Bourbigot, H. Wang et al., Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials. Green Chem. 22(7), 2129–2161 (2020). https://doi.org/10.1039/d0gc00449a
- M. Farooq, T. Zou, G. Riviere, M.H. Sipponen, M. Österberg, Strong, ductile, and waterproof cellulose nanofibril composite films with colloidal lignin ps. Biomacromol 20(2), 693–704 (2019). https://doi.org/10.1021/acs.biomac.8b01364
- X. Zhang, W. Liu, D. Yang, X. Qiu, Biomimetic supertough and strong biodegradable polymeric materials with improved thermal properties and excellent UV-blocking performance. Adv. Funct. Mater. 29(4), 1806912 (2019). https://doi.org/10.1002/adfm.201806912
- Y. Su, S. Tang, M. Cai, Y. Nie, B. Hu et al., Thermal oxidative aging mechanism of lignin modified bitumen. Constr. Build. Mater. 363, 129863 (2023). https://doi.org/10.1016/j.conbuildmat.2022.129863
- C. Fang, W. Liu, X. Qiu, Preparation of polyetheramine-grafted lignin and its application in UV-resistant polyurea coatings. Macromol. Mater. Eng. 304(10), 1900257 (2019). https://doi.org/10.1002/mame.201900257
- N. Chen, W. Liu, J. Huang, X. Qiu, Preparation of octopus-like lignin-grafted cationic polyacrylamide flocculant and its application for water flocculation. Int. J. Biol. Macromol. 146, 9–17 (2020). https://doi.org/10.1016/j.ijbiomac.2019.12.245
- Y. Xue, W. Liang, Y. Li, Y. Wu, X. Peng et al., Fluorescent pH-sensing probe based on biorefinery wood lignosulfonate and its application in human cancer cell bioimaging. J. Agric. Food Chem. 64(51), 9592–9600 (2016). https://doi.org/10.1021/acs.jafc.6b04583
- X. Zhao, C. Huang, D. Xiao, P. Wang, X. Luo et al., Melanin-inspired design: preparing sustainable photothermal materials from lignin for energy generation. ACS Appl. Mater. Interfaces 13(6), 7600–7607 (2021). https://doi.org/10.1021/acsami.0c21256
- Z. Qi, W. Zhang, X. Han, K. Yang, H. Cai, In-situ lignin regeneration facilitated corn straw-based photothermal evaporator with high cost-effectiveness. Ind. Crops Prod. 213, 118420 (2024). https://doi.org/10.1016/j.indcrop.2024.118420
- L. Hao, N. Liu, H. Bai, P. He, R. Niu et al., High-performance solar-driven interfacial evaporation through molecular design of antibacterial, biomass-derived hydrogels. J. Colloid Interface Sci. 608, 840–852 (2022). https://doi.org/10.1016/j.jcis.2021.10.035
- S. Jiang, Z. Zhang, T. Zhou, S. Duan, Z. Yang et al., Lignin hydrogel-based solar-driven evaporator for cost-effective and highly efficient water purification. Desalination 531, 115706 (2022). https://doi.org/10.1016/j.desal.2022.115706
- Y. Chen, R. Hou, L. Yang, C. Chen, J. Cui et al., Elastic, janus 3d evaporator with arch-shaped design for low-footprint and high-performance solar-driven zero-liquid discharge. Desalination 583, 117644 (2024). https://doi.org/10.1016/j.desal.2024.117644
- W. Li, T. Li, B. Deng, T. Xu, G. Wang et al., Fabrication of a facile self-floating lignin-based carbon Janus evaporators for efficient and stable solar desalination. Adv. Compos. Hybrid Mater. 7(2), 52 (2024). https://doi.org/10.1007/s42114-024-00849-y
- Y. Zou, P. Yang, L. Yang, N. Li, G. Duan et al., Boosting solar steam generation by photothermal enhanced polydopamine/wood composites. Polymer 217, 123464 (2021). https://doi.org/10.1016/j.polymer.2021.123464
- X. Huang, L. Li, X. Zhao, J. Zhang, Highly salt-resistant interfacial solar evaporators based on Melamine@Silicone nanops for stable long-term desalination and water harvesting. J. Colloid Interface Sci. 646, 141–149 (2023). https://doi.org/10.1016/j.jcis.2023.05.035
- Y. Ming, S. Shi, W. Cai, J. Liu, D. Chen et al., A scalable wood-based interfacial evaporator assisted with localized joule heating for round-the-clock operations. Chem. Eng. J. 504, 158690 (2025). https://doi.org/10.1016/j.cej.2024.158690
- C. Tan, X. Wu, L. Xia, J. Su, J. Wu et al., Jujuncao-stem-based interfacial solar-driven evaporator with natural two-phase composite structures of functional partition and inherent ultralow vaporization enthalpy of water for stable and efficient steam production. ACS Appl. Mater. Interfaces 16(3), 4295–4305 (2024). https://doi.org/10.1021/acsami.3c17962
- Z. Wang, Y. Yan, X. Shen, Q. Sun, C. Jin, Candle soot nanop-decorated wood for efficient solar vapor generation. Sustain. Energy Fuels 4(1), 354–361 (2020). https://doi.org/10.1039/c9se00617f
- M. Gao, L. Zhu, C.K. Peh, G.W. Ho, Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 12(3), 841–864 (2019). https://doi.org/10.1039/C8EE01146J
- S. He, C. Chen, Y. Kuang, R. Mi, Y. Liu et al., Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination. Energy Environ. Sci. 12(5), 1558–1567 (2019). https://doi.org/10.1039/C9EE00945K
- X. Chen, S. He, M.M. Falinski, Y. Wang, T. Li et al., Sustainable off-grid desalination of hypersaline waters using Janus wood evaporators. Energy Environ. Sci. 14(10), 5347–5357 (2021). https://doi.org/10.1039/d1ee01505b
- Y. Pang, X. Chu, L. Song, L. Jin, C. Ma et al., Laser-engraved wood-based evaporators: a sustainable approach for solar interfacial evaporation. Chem. Eng. J. 479, 147891 (2024). https://doi.org/10.1016/j.cej.2023.147891
- M. Zhu, Y. Li, G. Chen, F. Jiang, Z. Yang et al., Tree-inspired design for high-efficiency water extraction. Adv. Mater. 29(44), 1704107 (2017). https://doi.org/10.1002/adma.201704107
- M.M. Ghafurian, H. Niazmand, E. Ebrahimnia-Bajestan, R.A. Taylor, Wood surface treatment techniques for enhanced solar steam generation. Renew. Energy 146, 2308–2315 (2020). https://doi.org/10.1016/j.renene.2019.08.036
- G. Xue, K. Liu, Q. Chen, P. Yang, J. Li et al., Robust and low-cost flame-treated wood for high-performance solar steam generation. ACS Appl. Mater. Interfaces 9(17), 15052–15057 (2017). https://doi.org/10.1021/acsami.7b01992
- F. Shen, J. Xu, J. Yan, S. Wu, C. He et al., Facile fabrication of functionalized wood evaporator through deep eutectic solvent delignification for efficient solar-driven water purification. J. Environ. Chem. Eng. 11(6), 111234 (2023). https://doi.org/10.1016/j.jece.2023.111234
- Y. Zhang, W. Deng, M. Wu, C. Liu, G. Yu et al., A dual-functional lignin containing pulp foam for solar evaporation and contaminant adsorption. Desalination 573, 117153 (2024). https://doi.org/10.1016/j.desal.2023.117153
- Z. Wang, Y. Zou, Y. Li, Y. Cheng, Metal-containing polydopamine nanomaterials: catalysis, energy, and theranostics. Small 16(18), 1907042 (2020). https://doi.org/10.1002/smll.201907042
- S.-L. Wu, H. Chen, H.-L. Wang, X. Chen, H.-C. Yang et al., Solar-driven evaporators for water treatment: challenges and opportunities. Environ. Sci. Water Res. Technol. 7(1), 24–39 (2021). https://doi.org/10.1039/d0ew00725k
- Y. Li, Q. Gong, L. Han, X. Liu, Y. Yang et al., Carboxymethyl cellulose assisted polyaniline in conductive hydrogels for high-performance self-powered strain sensors. Carbohydr. Polym. 298, 120060 (2022). https://doi.org/10.1016/j.carbpol.2022.120060
- S. Chen, D. Zheng, Q. Cen, C.G. Yoo, L. Zhong et al., Multifunctional super-hydrophilic MXene/biomass composite aerogel evaporator for efficient solar-driven desalination and wastewater treatment. Small 20(35), 2400603 (2024). https://doi.org/10.1002/smll.202400603
- I. Ibrahim, D.H. Seo, A.M. McDonagh, H.K. Shon, L. Tijing, Semiconductor photothermal materials enabling efficient solar steam generation toward desalination and wastewater treatment. Desalination 500, 114853 (2021). https://doi.org/10.1016/j.desal.2020.114853
- J. Hao, L. Zhou, M. Qiu, Nearly total absorption of light and heat generation by plasmonic metamaterials. Phys. Rev. B 83(16), 165107 (2011). https://doi.org/10.1103/physrevb.83.165107
- M. Habib Ullah, C.-S. Ha, In situ prepared polypyrrole–Ag nanocomposites: optical properties and morphology. J. Mater. Sci. 51(16), 7536–7544 (2016). https://doi.org/10.1007/s10853-016-0033-2
- J. He, W. Han, H. Jiang, T. Zhang, X. Wang et al., Enhancing thermal localization efficiency in a wood-based solar steam generator with inverted-pyramid structure. Desalination 574, 117271 (2024). https://doi.org/10.1016/j.desal.2023.117271
- Q. Zhang, L. Li, B. Jiang, H. Zhang, N. He et al., Flexible and mildew-resistant wood-derived aerogel for stable and efficient solar desalination. ACS Appl. Mater. Interfaces 12(25), 28179–28187 (2020). https://doi.org/10.1021/acsami.0c05806
- W. Chao, Y. Li, X. Sun, G. Cao, C. Wang et al., Enhanced wood-derived photothermal evaporation system by in situ incorporated lignin carbon quantum dots. Chem. Eng. J. 405, 126703 (2021). https://doi.org/10.1016/j.cej.2020.126703
- B. Butterfield, The structure of wood: form and function. In: Primary Wood Processing. (Springer Netherlands, 2006), pp.1–22. https://doi.org/10.1007/1-4020-4393-7_1
- E.T. Engelund, L.G. Thygesen, S. Svensson, C.A.S. Hill, A critical discussion of the physics of wood–water interactions. Wood Sci. Technol. 47(1), 141–161 (2013). https://doi.org/10.1007/s00226-012-0514-7
- E.T. Choong, F.O. Tesoro, Relationship of capillary pressure and water saturation in wood. Wood Sci. Technol. 23(2), 139–150 (1989). https://doi.org/10.1007/BF00350936
- Y. Xu, C. Tang, J. Ma, D. Liu, D. Qi et al., Low-tortuosity water microchannels boosting energy utilization for high water flux solar distillation. Environ. Sci. Technol. 54(8), 5150–5158 (2020). https://doi.org/10.1021/acs.est.9b06072
- E.E. Thybring, M. Kymäläinen, L. Rautkari, Experimental techniques for characterising water in wood covering the range from dry to fully water-saturated. Wood Sci. Technol. 52(2), 297–329 (2018). https://doi.org/10.1007/s00226-017-0977-7
- L. Tian, J. Luan, K.-K. Liu, Q. Jiang, S. Tadepalli et al., Plasmonic biofoam: a versatile optically active material. Nano Lett. 16(1), 609–616 (2016). https://doi.org/10.1021/acs.nanolett.5b04320
- Q. Jiang, H. Gholami Derami, D. Ghim, S. Cao, Y.-S. Jun et al., Polydopamine-filled bacterial nanocellulose as a biodegradable interfacial photothermal evaporator for highly efficient solar steam generation. J. Mater. Chem. A 5(35), 18397–18402 (2017). https://doi.org/10.1039/C7TA04834C
- Z. Yu, P. Wu, Biomimetic MXene-polyvinyl alcohol composite hydrogel with vertically aligned channels for highly efficient solar steam generation. Adv. Mater. Technol. 5(6), 2000065 (2020). https://doi.org/10.1002/admt.202000065
- Z. Zhou, L. Luo, X. Feng, Z. Mao, L. Rong et al., Double-layered cellulosic interfacial evaporator via upcycling of waste cotton fabrics for efficient solar desalination. Sep. Purif. Technol. 349, 127817 (2024). https://doi.org/10.1016/j.seppur.2024.127817
- K. Zhou, L. Yin, K. Gong, Q. Wu, 3D vascular-structured flame-retardant cellulose-based photothermal aerogel for solar-driven interfacial evaporation and wastewater purification. Chem. Eng. J. 464, 142616 (2023). https://doi.org/10.1016/j.cej.2023.142616
- J. Yuan, X. Lei, C. Yi, H. Jiang, F. Liu et al., 3D-printed hierarchical porous cellulose/alginate/carbon black hydrogel for high-efficiency solar steam generation. Chem. Eng. J. 430, 132765 (2022). https://doi.org/10.1016/j.cej.2021.132765
- P. Qiu, F. Liu, C. Xu, H. Chen, F. Jiang et al., Porous three-dimensional carbon foams with interconnected microchannels for high-efficiency solar-to-vapor conversion and desalination. J. Mater. Chem. A 7(21), 13036–13042 (2019). https://doi.org/10.1039/C9TA00041K
- X.-P. Li, X. Li, H. Li, Y. Zhao, W. Li et al., 2D ferrous ion-crosslinked Ti3C2Tx MXene aerogel evaporators for efficient solar steam generation. Adv. Sustain. Syst. 5(12), 2100263 (2021). https://doi.org/10.1002/adsu.202100263
- Y. Guo, F. Zhao, X. Zhou, Z. Chen, G. Yu, Tailoring nanoscale surface topography of hydrogel for efficient solar vapor generation. Nano Lett. 19(4), 2530–2536 (2019). https://doi.org/10.1021/acs.nanolett.9b00252
- F. Jiang, H. Liu, Y. Li, Y. Kuang, X. Xu et al., Lightweight, mesoporous, and highly absorptive all-nanofiber aerogel for efficient solar steam generation. ACS Appl. Mater. Interfaces 10(1), 1104–1112 (2018). https://doi.org/10.1021/acsami.7b15125
- X. Wu, G.Y. Chen, W. Zhang, X. Liu, H. Xu, A plant-transpiration-process-inspired strategy for highly efficient solar evaporation. Adv. Sustain. Syst. 1(6), 1700046 (2017). https://doi.org/10.1002/adsu.201700046
- D. Fan, Y. Lu, X. Xu, Y. Tang, H. Zhang et al., Multifunctional wood-based hydrogels for wastewater treatment and interfacial solar steam generation. Chem. Eng. J. 471, 144421 (2023). https://doi.org/10.1016/j.cej.2023.144421
- M. Cao, B.-W. Liu, L. Zhang, Z.-C. Peng, Y.-Y. Zhang et al., Fully biomass-based aerogels with ultrahigh mechanical modulus, enhanced flame retardancy, and great thermal insulation applications. Compos. Part B Eng. 225, 109309 (2021). https://doi.org/10.1016/j.compositesb.2021.109309
- W. Li, X. Tian, X. Li, J. Liu, C. Li et al., An environmental energy-enhanced solar steam evaporator derived from MXene-decorated cellulose acetate cigarette filter with ultrahigh solar steam generation efficiency. J. Colloid Interface Sci. 606, 748–757 (2022). https://doi.org/10.1016/j.jcis.2021.08.043
- X. Wu, Y. Wang, P. Wu, J. Zhao, Y. Lu et al., Dual-zone photothermal evaporator for antisalt accumulation and highly efficient solar steam generation. Adv. Funct. Mater. 31(34), 2102618 (2021). https://doi.org/10.1002/adfm.202102618
- Y. Yue, Y. Wang, Y. Bai, J. Han, W. Cheng et al., A loofah-based all-day-round solar evaporator with phenolic lignin as the light-absorbing material for a highly efficient photothermal conversion. Chem. Eng. J. 477, 147298 (2023). https://doi.org/10.1016/j.cej.2023.147298
- B. Ma, F. Xiong, H. Wang, M. Wen, J. Yang et al., A gravity-inspired design for robust and photothermal superhydrophobic coating with dual–size lignin micro–nanospheres. J. Clean. Prod. 435, 140506 (2024). https://doi.org/10.1016/j.jclepro.2023.140506
- M.H. Tran, D.-P. Phan, E.Y. Lee, Review on lignin modifications toward natural UV protection ingredient for lignin-based sunscreens. Green Chem. 23(13), 4633–4646 (2021). https://doi.org/10.1039/D1GC01139A
- J. Wang, Y. Qian, L. Li, X. Qiu, Atomic force microscopy and molecular dynamics simulations for study of lignin solution self-assembly mechanisms in organic–aqueous solvent mixtures. Chemsuschem 13(17), 4420–4427 (2020). https://doi.org/10.1002/cssc.201903132
- S. Li, L. Shi, C. Wang, F. Yue, F. Lu, Naphthalene structures derived from lignins during phenolation. Chemsuschem 13(20), 5549–5555 (2020). https://doi.org/10.1002/cssc.202001693
- X. Yu, S. Chen, W. Wang, T. Deng, H. Wang, Empowering alkali lignin with high performance in Pickering emulsion by selective phenolation for the protection and controlled-release of agrochemical. J. Clean. Prod. 339, 130769 (2022). https://doi.org/10.1016/j.jclepro.2022.130769
- J. Lei, L. Chen, J. Lin, W. Liu, Q. Xiong et al., Mechanism study of the photothermal function of lignin: the effect of electron-withdrawing groups. Green Chem. 26(4), 2143–2156 (2024). https://doi.org/10.1039/D3GC04125E
- Y. Zou, T. Wang, X. Lin, L. Yang, Y. Li, Regulation of the light absorption and photothermal performance of melanin-like polymers. Acc. Chem. Res. 58(18), 2815–2829 (2025). https://doi.org/10.1021/acs.accounts.5c00346
- Z. Lou, Q. Wang, U.I. Kara, R.S. Mamtani, X. Zhou et al., Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagnetic wave absorbers. Nano Lett. 14(1), 11 (2021). https://doi.org/10.1007/s40820-021-00750-z
- T. Yang, H. Zhang, C. Huang, C. Cai, C. Gerhard et al., Sustainable porous scaffolds with retained lignin as an effective light-absorbing material for efficient photothermal energy conversion. Small Methods 7(11), 2300913 (2023). https://doi.org/10.1002/smtd.202300913
- X. Zhao, L. Shi, B. Tian, S. Li, S. Liu et al., Harnessing solar energy for electrocatalytic biorefinery using lignin-derived photothermal materials. J. Mater. Chem. A 11(23), 12308–12314 (2023). https://doi.org/10.1039/D3TA01023F
- C. Liu, B. Luo, Z. Zou, X. Li, X. Zhang et al., Robust sustainable interfacial evaporators from lignin for wastewater treatment. Adv. Mater. (2025). https://doi.org/10.1002/adma.202513323
- Y. Zou, X. Wang, Y. Li, Y. Cheng, Design of metal ion-catecholate complexes towards advanced materials. Mater. Today 79, 112–133 (2024). https://doi.org/10.1016/j.mattod.2024.07.010
- Q. Shao, Y. Li, Z. Liang, Z. Chen, A. Xu et al., Lignin: a multifunctional and sustainable photothermal material for solar-driven thermoelectric generation and desalination. Compos. Part B Eng. 284, 111694 (2024). https://doi.org/10.1016/j.compositesb.2024.111694
- W. Li, Z. Li, K. Bertelsmann, D.E. Fan, Portable low-pressure solar steaming-collection unisystem with polypyrrole origamis. Adv. Mater. 31(29), e1900720 (2019). https://doi.org/10.1002/adma.201900720
- X. Hu, Y. Song, Y. Lv, B. Wang, J. Bai et al., 3D aerogel membrane-based evaporator with sandwich structure for superior solar-driven evaporation. Desalination 573, 117141 (2024). https://doi.org/10.1016/j.desal.2023.117141
- J. Li, Y. Li, W. Song, X. Li, L. Yang et al., Boosting interfacial solar steam generation by three-dimensional bilayer cellulose aerogels. J. Colloid Interface Sci. 650, 339–349 (2023). https://doi.org/10.1016/j.jcis.2023.06.205
- S. Zhang, Y. Deng, A. Libanori, Y. Zhou, J. Yang et al., In situ grown silver-polymer framework with coordination complexes for functional artificial tissues. Adv. Mater. 35(24), e2207916 (2023). https://doi.org/10.1002/adma.202207916
- C. Li, L. Fan, R. Zhu, X. Li, P. Wen et al., Adjusting channel size within PVA-based hydrogels via ice templating for enhanced solar steam generation. ACS Appl. Energy Mater. 3(9), 9216–9225 (2020). https://doi.org/10.1021/acsaem.0c01584
- S. Mao, C. Onggowarsito, A. Feng, S. Zhang, Q. Fu et al., A cryogel solar vapor generator with rapid water replenishment and high intermediate water content for seawater desalination. J. Mater. Chem. A 11(2), 858–867 (2023). https://doi.org/10.1039/D2TA08317E
- L. Zang, L. Sun, S. Zhang, C. Finnerty, A. Kim et al., Nanofibrous hydrogel-reduced graphene oxide membranes for effective solar-driven interfacial evaporation and desalination. Chem. Eng. J. 422, 129998 (2021). https://doi.org/10.1016/j.cej.2021.129998
- C. Li, B. Zhu, Z. Liu, J. Zhao, R. Meng et al., Polyelectrolyte-based photothermal hydrogel with low evaporation enthalpy for solar-driven salt-tolerant desalination. Chem. Eng. J. 431, 134224 (2022). https://doi.org/10.1016/j.cej.2021.134224
- J. Sun, R. Teng, J. Tan, M. Xu, C. Ma et al., An integrated cellulose aerogel evaporator with improved thermal management and reduced enthalpy of evaporation using a hierarchical coordinated control strategy. J. Mater. Chem. A 11(12), 6248–6257 (2023). https://doi.org/10.1039/D2TA07122C
- C. Lei, W. Guan, Y. Guo, W. Shi, Y. Wang et al., Polyzwitterionic hydrogels for highly efficient high salinity solar desalination. Angew. Chem. Int. Ed. 61(36), e202208487 (2022). https://doi.org/10.1002/anie.202208487
- Q. Shao, S. Jiang, Molecular understanding and design of zwitterionic materials. Adv. Mater. 27(1), 15–26 (2015). https://doi.org/10.1002/adma.201404059
- S. Xiao, Y. Zhang, M. Shen, F. Chen, P. Fan et al., Structural dependence of salt-responsive polyzwitterionic brushes with an anti-polyelectrolyte effect. Langmuir 34(1), 97–105 (2018). https://doi.org/10.1021/acs.langmuir.7b03667
- C. Finnerty, L. Zhang, D.L. Sedlak, K.L. Nelson, B. Mi, Synthetic graphene oxide leaf for solar desalination with zero liquid discharge. Environ. Sci. Technol. 51(20), 11701–11709 (2017). https://doi.org/10.1021/acs.est.7b03040
- G. Ni, S.H. Zandavi, S.M. Javid, S.V. Boriskina, T.A. Cooper et al., A salt-rejecting floating solar still for low-cost desalination. Energy Environ. Sci. 11(6), 1510–1519 (2018). https://doi.org/10.1039/c8ee00220g
- Z. Wang, J. Gao, J. Zhou, J. Gong, L. Shang et al., Engineering metal-phenolic networks for solar desalination with directional salt crystallization. Adv. Mater. 35(1), e2209015 (2023). https://doi.org/10.1002/adma.202209015
- Q. Huang, C. Du, C. Guo, C. Huang, X. Wang, A high-efficiency salt-rejecting solar evaporator with optimized porous structure for continuous solar desalination. Appl. Therm. Eng. 187, 116515 (2021). https://doi.org/10.1016/j.applthermaleng.2020.116515
- Y.-Z. Chen, H.-C. Yang, H.-N. Li, J.-H. Xin, C. Zhang et al., Self-flipping solar seesaw evaporators leverage scaling to de-scale. Small 20(29), e2310952 (2024). https://doi.org/10.1002/smll.202310952
- H. Peng, D. Wang, S. Fu, Unidirectionally driving nanofluidic transportation via an asymmetric textile pump for simultaneous salt-resistant solar desalination and drenching-induced power generation. ACS Appl. Mater. Interfaces 13(32), 38405–38415 (2021). https://doi.org/10.1021/acsami.1c10877
- V.-D. Dao, N.H. Vu, H.-L. Thi Dang, S. Yun, Recent advances and challenges for water evaporation-induced electricity toward applications. Nano Energy 85, 105979 (2021). https://doi.org/10.1016/j.nanoen.2021.105979
- G. Liu, T. Chen, J. Xu, G. Li, K. Wang, Solar evaporation for simultaneous steam and power generation. J. Mater. Chem. A 8(2), 513–531 (2020). https://doi.org/10.1039/C9TA12211G
- M.S. Irshad, X. Wang, N. Arshad, M.Q. Javed, T. Shamim et al., Bifunctional in situ polymerized nanocomposites for convective solar desalination and enhanced photo-thermoelectric power generation. Environ. Sci. Nano 9(5), 1685–1698 (2022). https://doi.org/10.1039/D1EN01018B
- V.-D. Dao, N.H. Vu, H.-S. Choi, All day Limnobium laevigatum inspired nanogenerator self-driven via water evaporation. J. Power. Sources 448, 227388 (2020). https://doi.org/10.1016/j.jpowsour.2019.227388
- P. Yang, K. Liu, Q. Chen, J. Li, J. Duan et al., Solar-driven simultaneous steam production and electricity generation from salinity. Energy Environ. Sci. 10(9), 1923–1927 (2017). https://doi.org/10.1039/c7ee01804e
- Y. Zou, J. Zhao, J. Zhu, X. Guo, P. Chen et al., A mussel-inspired polydopamine-filled cellulose aerogel for solar-enabled water remediation. ACS Appl. Mater. Interfaces 13(6), 7617–7624 (2021). https://doi.org/10.1021/acsami.0c22584
- Z. Wang, R. Jin, S. Zhang, X. Han, P. Guo et al., Bioinspired, sustainable, high-efficiency solar evaporators for sewage purification. Adv. Funct. Mater. 33(47), 2306806 (2023). https://doi.org/10.1002/adfm.202306806
- M. Zeng, I. Echols, P. Wang, S. Lei, J. Luo et al., Highly biocompatible, underwater superhydrophilic and multifunctional biopolymer membrane for efficient oil–water separation and aqueous pollutant removal. ACS Sustainable Chem. Eng. 6(3), 3879–3887 (2018). https://doi.org/10.1021/acssuschemeng.7b04219
- L. Gan, S. Shang, E. Hu, C.W.M. Yuen, S.-X. Jiang, Konjac glucomannan/graphene oxide hydrogel with enhanced dyes adsorption capability for methyl blue and methyl orange. Appl. Surf. Sci. 357, 866–872 (2015). https://doi.org/10.1016/j.apsusc.2015.09.106
- H.-Y. Zhao, J. Huang, J. Zhou, L.-F. Chen, C. Wang et al., Biomimetic design of macroporous 3D truss materials for efficient interfacial solar steam generation. ACS Nano 16(3), 3554–3562 (2022). https://doi.org/10.1021/acsnano.1c10184
- R. Li, Y. Shi, L. Shi, M. Alsaedi, P. Wang, Harvesting water from air: using anhydrous salt with sunlight. Environ. Sci. Technol. 52(9), 5398–5406 (2018). https://doi.org/10.1021/acs.est.7b06373
- H. Lu, W. Shi, Y. Guo, W. Guan, C. Lei et al., Materials engineering for atmospheric water harvesting: progress and perspectives. Adv. Mater. 34(12), e2110079 (2022). https://doi.org/10.1002/adma.202110079
- X. Wang, X. Li, G. Liu, J. Li, X. Hu et al., An interfacial solar heating assisted liquid sorbent atmospheric water generator. Angew. Chem. Int. Ed. 58(35), 12054–12058 (2019). https://doi.org/10.1002/anie.201905229
- H. Park, I. Haechler, G. Schnoering, M.D. Ponte, T.M. Schutzius et al., Enhanced atmospheric water harvesting with sunlight-activated sorption ratcheting. ACS Appl. Mater. Interfaces 14(1), 2237–2245 (2022). https://doi.org/10.1021/acsami.1c18852
- R. Deng, F. Lu, Y.-T. Li, H.-C. Yang, J. Huang, Wood-based capillary enhancers for accelerated moisture capture and solar-powered release. J. Colloid Interface Sci. 653, 454–462 (2024). https://doi.org/10.1016/j.jcis.2023.09.087
- B. Gido, E. Friedler, D.M. Broday, Liquid-desiccant vapor separation reduces the energy requirements of atmospheric moisture harvesting. Environ. Sci. Technol. 50(15), 8362–8367 (2016). https://doi.org/10.1021/acs.est.6b01280
- H. Zhou, L. Yan, D. Tang, T. Xu, L. Dai et al., Solar-driven drum-type atmospheric water harvester based on bio-based gels with fast adsorption/desorption kinetics. Adv. Mater. 36(32), e2403876 (2024). https://doi.org/10.1002/adma.202403876
- S. Guo, X. Li, J. Li, B. Wei, Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems. Nat. Commun. 12(1), 1343 (2021). https://doi.org/10.1038/s41467-021-21526-4
- S. Fang, X. Lyu, T. Tong, A.I. Lim, T. Li et al., Turning dead leaves into an active multifunctional material as evaporator, photocatalyst, and bioplastic. Nat. Commun. 14, 1203 (2023). https://doi.org/10.1038/s41467-023-36783-8
- W. Zhou, H. Huang, Y. Wu, J. Wang, Y. Yamauchi et al., Construction of a 2D lamellar membrane for a combination of photocatalytic hydrogen evolution and photothermal water evaporation. Chem. Eng. J. 471, 144395 (2023). https://doi.org/10.1016/j.cej.2023.144395
- D.-C. Wang, J.-Z. Lv, S. Zhong, Y. Wu, Y. Liu et al., One-step conversion of biomass to reduced graphene oxide at room temperature. Nat. Sustain. 7(12), 1699–1708 (2024). https://doi.org/10.1038/s41893-024-01480-x
- Y. Su, R. Gu, Y. Li, W. Wu, Z. Yu et al., Seawater interfacial evaporation in composite gel enables photovoltaic cooling, simultaneous seawater desalination, and enhanced uranium extraction. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202420651
- L. Li, Z. Yu, B. Jin, X. Yu, Y. Su et al., Hierarchical photothermal network spontaneously facilitates co-extraction of clean water and boron. Adv. Funct. Mater. 35(42), 2505776 (2025). https://doi.org/10.1002/adfm.202505776
- L. Zhu, L. Zhu, T. Shi, K. Zhao, W. He et al., Solar-powered hierarchical microenvironments with authigenic multi-field synergies for simultaneous extraction of freshwater and cesium. Adv. Sci. 12(28), 2505997 (2025). https://doi.org/10.1002/advs.202505997
- F. Lin, H. Mao, C. Luan, C. Zhong, W. Zhou et al., Isolating the salt and oil discharging area enables the continuous and effective purification of saline oily wastewater. Environ. Sci. Technol. 59(27), 13754–13764 (2025). https://doi.org/10.1021/acs.est.5c05630
- J. Ren, J. Xu, S. Tian, K. Shi, T. Gu et al., Hydrodynamic solar-driven interfacial evaporation-gone with the flow. Water Res. 266, 122432 (2024). https://doi.org/10.1016/j.watres.2024.122432
- M. Palimi, T. Kumar, S. Stark, K. Kassim, H. Wu et al., Enhanced interfacial evaporation with wind-driven rotating sailboat-style evaporators. Chem. Eng. J. 507, 160348 (2025). https://doi.org/10.1016/j.cej.2025.160348
- F. Wang, N. Xu, W. Zhao, L. Zhou, P. Zhu et al., A high-performing single-stage invert-structured solar water purifier through enhanced absorption and condensation. Joule 5(6), 1602–1612 (2021). https://doi.org/10.1016/j.joule.2021.04.009
- F. Yu, Z. Chen, Z. Guo, M.S. Irshad, L. Yu et al., Molybdenum carbide/carbon-based chitosan hydrogel as an effective solar water evaporation accelerator. ACS Sustain. Chem. Eng. 8(18), 7139–7149 (2020). https://doi.org/10.1021/acssuschemeng.0c01499
- W. Wang, Y. Shi, C. Zhang, S. Hong, L. Shi et al., Simultaneous production of fresh water and electricity via multistage solar photovoltaic membrane distillation. Nat. Commun. 10(1), 3012 (2019). https://doi.org/10.1038/s41467-019-10817-6
References
M. Zhu, Y. Li, F. Chen, X. Zhu, J. Dai et al., Plasmonic wood for high-efficiency solar steam generation. Adv. Energy Mater. 8(4), 1701028 (2018). https://doi.org/10.1002/aenm.201701028
Y. Li, T. Gao, Z. Yang, C. Chen, W. Luo et al., 3D-printed, all-in-one evaporator for high-efficiency solar steam generation under 1 Sun illumination. Adv. Mater. 29(26), 1700981 (2017). https://doi.org/10.1002/adma.201700981
X. Li, J. Li, J. Lu, N. Xu, C. Chen et al., Enhancement of interfacial solar vapor generation by environmental energy. Joule 2(7), 1331–1338 (2018). https://doi.org/10.1016/j.joule.2018.04.004
Y. Kuang, C. Chen, S. He, E.M. Hitz, Y. Wang et al., A high-performance self-regenerating solar evaporator for continuous water desalination. Adv. Mater. 31(23), e1900498 (2019). https://doi.org/10.1002/adma.201900498
X.-J. Zha, X. Zhao, J.-H. Pu, L.-S. Tang, K. Ke et al., Flexible anti-biofouling MXene/cellulose fibrous membrane for sustainable solar-driven water purification. ACS Appl. Mater. Interfaces 11(40), 36589–36597 (2019). https://doi.org/10.1021/acsami.9b10606
P. Xiao, J. He, F. Ni, C. Zhang, Y. Liang et al., Exploring interface confined water flow and evaporation enables solar-thermal-electro integration towards clean water and electricity harvest via asymmetric functionalization strategy. Nano Energy 68, 104385 (2020). https://doi.org/10.1016/j.nanoen.2019.104385
N. Li, L. Qiao, J. He, S. Wang, L. Yu et al., Solar-driven interfacial evaporation and self-powered water wave detection based on an all-cellulose monolithic design. Adv. Funct. Mater. 31(7), 2008681 (2021). https://doi.org/10.1002/adfm.202008681
J. Liu, J. Gui, W. Zhou, X. Tian, Z. Liu et al., Self-regulating and asymmetric evaporator for efficient solar water-electricity generation. Nano Energy 86, 106112 (2021). https://doi.org/10.1016/j.nanoen.2021.106112
Y. Chen, J. Yang, L. Zhu, X. Jia, S. Wang et al., An integrated highly hydrated cellulose network with a synergistic photothermal effect for efficient solar-driven water evaporation and salt resistance. J. Mater. Chem. A 9(27), 15482–15492 (2021). https://doi.org/10.1039/D1TA04325K
X. Lin, P. Wang, R. Hong, X. Zhu, Y. Liu et al., Fully lignocellulosic biomass-based double-layered porous hydrogel for efficient solar steam generation. Adv. Funct. Mater. 32(51), 2209262 (2022). https://doi.org/10.1002/adfm.202209262
X. Dong, H. Li, L. Gao, C. Chen, X. Shi et al., Janus fibrous mats based suspended type evaporator for salt resistant solar desalination and salt recovery. Small 18(13), 2107156 (2022). https://doi.org/10.1002/smll.202107156
Y. Gu, D. Wang, Y. Gao, Y. Yue, W. Yang et al., Solar-powered high-performance lignin-wood evaporator for solar steam generation. Adv. Funct. Mater. 33(43), 2306947 (2023). https://doi.org/10.1002/adfm.202306947
P. Zhu, Z. Yu, H. Sun, D. Zheng, Y. Zheng et al., 3D printed cellulose nanofiber aerogel scaffold with hierarchical porous structures for fast solar-driven atmospheric water harvesting. Adv. Mater. 36(1), e2306653 (2024). https://doi.org/10.1002/adma.202306653
The United Nations World Water Development Report, UNESCO (France, Paris, 2024), p.2024
L. Chen, X. Mu, Y. Guo, H. Lu, Y. Yang et al., MXene-doped kapok fiber aerogels with oleophobicity for efficient interfacial solar steam generation. J. Colloid Interface Sci. 626, 35–46 (2022). https://doi.org/10.1016/j.jcis.2022.06.143
S. Lin, H. Zhao, L. Zhu, T. He, S. Chen et al., Seawater desalination technology and engineering in China: a review. Desalination 498, 114728 (2021). https://doi.org/10.1016/j.desal.2020.114728
E.J. Okampo, N. Nwulu, Optimisation of renewable energy powered reverse osmosis desalination systems: a state-of-the-art review. Renew. Sustain. Energy Rev. 140, 110712 (2021). https://doi.org/10.1016/j.rser.2021.110712
N. Kim, J. Elbert, C. Kim, X. Su, Redox-copolymers for nanofiltration-enabled electrodialysis. ACS Energy Lett. 8(5), 2097–2105 (2023). https://doi.org/10.1021/acsenergylett.3c00482
H. Yang, M. Fu, Z. Zhan, R. Wang, Y. Jiang, Study on combined freezing-based desalination processes with microwave treatment. Desalination 475, 114201 (2020). https://doi.org/10.1016/j.desal.2019.114201
M. Tayefeh, An innovative rearrangement and comprehensive comparison of the combination of compressed air energy storage (CAES) with multi stage flash (MSF) desalination and multi effect distillation (MED) systems. J. Energy Storage 52, 105025 (2022). https://doi.org/10.1016/j.est.2022.105025
J. Li, L. Mu, Q. Liu, Y. Zhang, R. Zhang et al., A review: Fabric-based solar driven interfacial evaporator. Nano Energy 132, 110394 (2024). https://doi.org/10.1016/j.nanoen.2024.110394
C. Onggowarsito, S. Mao, X.S. Zhang, A. Feng, H. Xu et al., Updated perspective on solar steam generation application. Energy Environ. Sci. 17(6), 2088–2099 (2024). https://doi.org/10.1039/d3ee04073a
C. Liu, D. Deng, Z. Xiao, A novel suspended suspension bridge-like evaporator with antibacterial properties for achieving stable solar evaporation in concentrated saline water. Desalination 574, 117223 (2024). https://doi.org/10.1016/j.desal.2023.117223
Z. Li, H. Li, S. Wang, F. Yang, W. Zhou, Mesoporous black TiO2/MoS2/Cu2S hierarchical tandem heterojunctions toward optimized photothermal-photocatalytic fuel production. Chem. Eng. J. 427, 131830 (2022). https://doi.org/10.1016/j.cej.2021.131830
S. Hao, H. Han, Z. Yang, M. Chen, Y. Jiang et al., Recent advancements on photothermal conversion and antibacterial applications over MXenes-based materials. Nano Lett. 14(1), 178 (2022). https://doi.org/10.1007/s40820-022-00901-w
Y. Zhao, T. Zhao, Y. Cao, J. Sun, Q. Zhou et al., Temperature-sensitive lipid-coated carbon nanotubes for synergistic photothermal therapy and gene therapy. ACS Nano 15(4), 6517–6529 (2021). https://doi.org/10.1021/acsnano.0c08790
S. Yang, Y. Zhang, J. Bai, Y. He, X. Zhao et al., Integrating dual-interfacial liquid metal based nanodroplet architectures and micro-nanostructured engineering for high efficiency solar energy harvesting. ACS Nano 16(9), 15086–15099 (2022). https://doi.org/10.1021/acsnano.2c06245
F.S. Awad, H.D. Kiriarachchi, K.M. AbouZeid, Ü. Özgür, M.S. El-Shall, Plasmonic graphene polyurethane nanocomposites for efficient solar water desalination. ACS Appl. Energy Mater. 1(3), 976–985 (2018). https://doi.org/10.1021/acsaem.8b00109
Y. Wang, Q. Zhang, Z. Liu, G. Yang, F. Peng, Photothermal water evaporation and purification on the interface evaporator constructed by Cu@Bi2WO6-C. Sep. Purif. Technol. 347, 127702 (2024). https://doi.org/10.1016/j.seppur.2024.127702
X. Yin, S. Luo, Z. Liu, M. Guo, High-efficiency wood-based evaporators in solar interfacial evaporation: design and application. Desalination 583, 117668 (2024). https://doi.org/10.1016/j.desal.2024.117668
W. Wu, Y. Xu, X. Ma, Z. Tian, C. Zhang et al., Cellulose-based interfacial solar evaporators: structural regulation and performance manipulation. Adv. Funct. Mater. 33(36), 2302351 (2023). https://doi.org/10.1002/adfm.202302351
Y. Yue, Y. Wang, J. Li, W. Cheng, G. Han et al., High strength and ultralight lignin-mediated fire-resistant aerogel for repeated oil/water separation. Carbon 193, 285–297 (2022). https://doi.org/10.1016/j.carbon.2022.03.015
J. Li, W. Liu, X. Qiu, X. Zhao, Z. Chen et al., Lignin: a sustainable photothermal block for smart elastomers. Green Chem. 24(2), 823–836 (2022). https://doi.org/10.1039/d1gc03571a
S. Wu, F. Shen, F. Yang, L. Chen, M. Huang et al., All-biomass-based solar steam generator with deep eutectic solvent lignin porous carbon/silver nanop coatings for efficient water evaporation. ACS Appl. Nano Mater. 7(14), 16564–16574 (2024). https://doi.org/10.1021/acsanm.4c02563
Z. Chen, B. Dang, X. Luo, W. Li, J. Li et al., Deep eutectic solvent-assisted in situ wood delignification: a promising strategy to enhance the efficiency of wood-based solar steam generation devices. ACS Appl. Mater. Interfaces 11(29), 26032–26037 (2019). https://doi.org/10.1021/acsami.9b08244
L. Shu, X.-F. Zhang, Z. Wang, J. Liu, J. Yao, Cellulose-based bi-layer hydrogel evaporator with a low evaporation enthalpy for efficient solar desalination. Carbohydr. Polym. 327, 121695 (2024). https://doi.org/10.1016/j.carbpol.2023.121695
W. Lu, D. Jiang, Z. Wang, X. Zhang, Q. Ding et al., Simultaneous efficient evaporation and stable electricity generation enabled by a wooden evaporator based on composite photothermal effect. Chem. Eng. J. 496, 154361 (2024). https://doi.org/10.1016/j.cej.2024.154361
Z. Wei, C. Cai, Y. Huang, Y. Wang, Y. Fu, Biomimetic surface strategy of spectrum-tailored liquid metal via blackbody inspiration for highly efficient solar steam generation, desalination, and electricity generation. Nano Energy 86, 106138 (2021). https://doi.org/10.1016/j.nanoen.2021.106138
K. Liu, W. Zhang, H. Cheng, L. Luo, B. Wang et al., A nature-inspired monolithic integrated cellulose aerogel-based evaporator for efficient solar desalination. ACS Appl. Mater. Interfaces 13(8), 10612–10622 (2021). https://doi.org/10.1021/acsami.0c22245
Q. Shao, Y. Luo, M. Cao, X. Qiu, D. Zheng, Lignin with enhanced photothermal performance for the preparation of a sustainable solar-driven double-layer biomass evaporator. Chem. Eng. J. 476, 146678 (2023). https://doi.org/10.1016/j.cej.2023.146678
X. Wu, Z. Wu, Y. Wang, T. Gao, Q. Li et al., All-cold evaporation under one sun with zero energy loss by using a heatsink inspired solar evaporator. Adv. Sci. 8(7), 2002501 (2021). https://doi.org/10.1002/advs.202002501
F. Zhao, Y. Guo, X. Zhou, W. Shi, G. Yu, Materials for solar-powered water evaporation. Nat. Rev. Mater. 5(5), 388–401 (2020). https://doi.org/10.1038/s41578-020-0182-4
X. Zhou, F. Zhao, Y. Guo, B. Rosenberger, G. Yu, Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci. Adv. 5(6), eaaw5484 (2019). https://doi.org/10.1126/sciadv.aaw5484
L. Chen, S. He, W. Huang, D. Liu, T. Bi et al., 3D-printed tripodal porous wood-mimetic cellulosic composite evaporator for salt-free water desalination. Compos. Part B Eng. 263, 110830 (2023). https://doi.org/10.1016/j.compositesb.2023.110830
X. Han, S. Ding, L. Fan, Y. Zhou, S. Wang, Janus biocomposite aerogels constituted of cellulose nanofibrils and MXenes for application as single-module solar-driven interfacial evaporators. J. Mater. Chem. A 9(34), 18614–18622 (2021). https://doi.org/10.1039/D1TA04991G
L. Song, X.-F. Zhang, Z. Wang, T. Zheng, J. Yao, Fe3O4/polyvinyl alcohol decorated delignified wood evaporator for continuous solar steam generation. Desalination 507, 115024 (2021). https://doi.org/10.1016/j.desal.2021.115024
C. Liu, P. Luan, Q. Li, Z. Cheng, P. Xiang et al., Biopolymers derived from trees as sustainable multifunctional materials: a review. Adv. Mater. 33(28), e2001654 (2021). https://doi.org/10.1002/adma.202001654
H. Zhu, W. Luo, P.N. Ciesielski, Z. Fang, J.Y. Zhu et al., Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 116(16), 9305–9374 (2016). https://doi.org/10.1021/acs.chemrev.6b00225
R. Fillet, V. Nicolas, V. Fierro, A. Celzard, A review of natural materials for solar evaporation. Sol. Energy Mater. Sol. Cells 219, 110814 (2021). https://doi.org/10.1016/j.solmat.2020.110814
F. Jiang, T. Li, Y. Li, Y. Zhang, A. Gong et al., Wood-based nanotechnologies toward sustainability. Adv. Mater. 30(1), 1703453 (2018). https://doi.org/10.1002/adma.201703453
L. Christersson, Poplar plantations for paper and energy in the south of Sweden. Biomass Bioenergy 32(11), 997–1000 (2008). https://doi.org/10.1016/j.biombioe.2007.12.018
Y. Dong, Y. Tan, K. Wang, Y. Cai, J. Li et al., Reviewing wood-based solar-driven interfacial evaporators for desalination. Water Res. 223, 119011 (2022). https://doi.org/10.1016/j.watres.2022.119011
Q. Jiang, S. Singamaneni, Water from wood: pouring through pores. Joule 1(3), 429–430 (2017). https://doi.org/10.1016/j.joule.2017.10.018
C. Chen, Y. Kuang, S. Zhu, I. Burgert, T. Keplinger et al., Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 5(9), 642–666 (2020). https://doi.org/10.1038/s41578-020-0195-z
J. Credou, T. Berthelot, Cellulose: from biocompatible to bioactive material. J. Mater. Chem. B 2(30), 4767–4788 (2014). https://doi.org/10.1039/C4TB00431K
K. Jedvert, T. Heinze, Cellulose modification and shaping–a review. J. Polym. Eng. 37(9), 845–860 (2017). https://doi.org/10.1515/polyeng-2016-0272
J. Wang, D. Zhang, F. Chu, Wood-derived functional polymeric materials. Adv. Mater. 33(28), 2001135 (2021). https://doi.org/10.1002/adma.202001135
R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40(7), 3941–3994 (2011). https://doi.org/10.1039/c0cs00108b
J. Zakzeski, P.C.A. Bruijnincx, A.L. Jongerius, B.M. Weckhuysen, The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110(6), 3552–3599 (2010). https://doi.org/10.1021/cr900354u
C. Li, X. Zhao, A. Wang, G.W. Huber, T. Zhang, Catalytic transformation of lignin for the production of chemicals and fuels. Chem. Rev. 115(21), 11559–11624 (2015). https://doi.org/10.1021/acs.chemrev.5b00155
A.J. Ragauskas, G.T. Beckham, M.J. Biddy, R. Chandra, F. Chen et al., Lignin valorization: improving lignin processing in the biorefinery. Science 344(6185), 1246843 (2014). https://doi.org/10.1126/science.1246843
W. Schutyser, T. Renders, S. Van den Bosch, S.F. Koelewijn, G.T. Beckham et al., Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 47(3), 852–908 (2018). https://doi.org/10.1039/C7CS00566K
M. Schuetz, A. Benske, R.A. Smith, Y. Watanabe, Y. Tobimatsu et al., Laccases direct lignification in the discrete secondary cell wall domains of protoxylem. Plant Physiol. 166(2), 798–807 (2014). https://doi.org/10.1104/pp.114.245597
N. Ithal, J. Recknor, D. Nettleton, T. Maier, T.J. Baum et al., Developmental transcript profiling of cyst nematode feeding cells in soybean roots. Mol. Plant Microbe Interact. 20(5), 510–525 (2007). https://doi.org/10.1094/MPMI-20-5-0510
B.M. Upton, A.M. Kasko, Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem. Rev. 116(4), 2275–2306 (2016). https://doi.org/10.1021/acs.chemrev.5b00345
H.-M. Wang, T.-Q. Yuan, G.-Y. Song, R.-C. Sun, Advanced and versatile lignin-derived biodegradable composite film materials toward a sustainable world. Green Chem. 23(11), 3790–3817 (2021). https://doi.org/10.1039/D1GC00790D
C. Ma, T.-H. Kim, K. Liu, M.-G. Ma, S.-E. Choi et al., Multifunctional lignin-based composite materials for emerging applications. Front. Bioeng. Biotechnol. 9, 708976 (2021). https://doi.org/10.3389/fbioe.2021.708976
H. Yang, B. Yu, X. Xu, S. Bourbigot, H. Wang et al., Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials. Green Chem. 22(7), 2129–2161 (2020). https://doi.org/10.1039/d0gc00449a
M. Farooq, T. Zou, G. Riviere, M.H. Sipponen, M. Österberg, Strong, ductile, and waterproof cellulose nanofibril composite films with colloidal lignin ps. Biomacromol 20(2), 693–704 (2019). https://doi.org/10.1021/acs.biomac.8b01364
X. Zhang, W. Liu, D. Yang, X. Qiu, Biomimetic supertough and strong biodegradable polymeric materials with improved thermal properties and excellent UV-blocking performance. Adv. Funct. Mater. 29(4), 1806912 (2019). https://doi.org/10.1002/adfm.201806912
Y. Su, S. Tang, M. Cai, Y. Nie, B. Hu et al., Thermal oxidative aging mechanism of lignin modified bitumen. Constr. Build. Mater. 363, 129863 (2023). https://doi.org/10.1016/j.conbuildmat.2022.129863
C. Fang, W. Liu, X. Qiu, Preparation of polyetheramine-grafted lignin and its application in UV-resistant polyurea coatings. Macromol. Mater. Eng. 304(10), 1900257 (2019). https://doi.org/10.1002/mame.201900257
N. Chen, W. Liu, J. Huang, X. Qiu, Preparation of octopus-like lignin-grafted cationic polyacrylamide flocculant and its application for water flocculation. Int. J. Biol. Macromol. 146, 9–17 (2020). https://doi.org/10.1016/j.ijbiomac.2019.12.245
Y. Xue, W. Liang, Y. Li, Y. Wu, X. Peng et al., Fluorescent pH-sensing probe based on biorefinery wood lignosulfonate and its application in human cancer cell bioimaging. J. Agric. Food Chem. 64(51), 9592–9600 (2016). https://doi.org/10.1021/acs.jafc.6b04583
X. Zhao, C. Huang, D. Xiao, P. Wang, X. Luo et al., Melanin-inspired design: preparing sustainable photothermal materials from lignin for energy generation. ACS Appl. Mater. Interfaces 13(6), 7600–7607 (2021). https://doi.org/10.1021/acsami.0c21256
Z. Qi, W. Zhang, X. Han, K. Yang, H. Cai, In-situ lignin regeneration facilitated corn straw-based photothermal evaporator with high cost-effectiveness. Ind. Crops Prod. 213, 118420 (2024). https://doi.org/10.1016/j.indcrop.2024.118420
L. Hao, N. Liu, H. Bai, P. He, R. Niu et al., High-performance solar-driven interfacial evaporation through molecular design of antibacterial, biomass-derived hydrogels. J. Colloid Interface Sci. 608, 840–852 (2022). https://doi.org/10.1016/j.jcis.2021.10.035
S. Jiang, Z. Zhang, T. Zhou, S. Duan, Z. Yang et al., Lignin hydrogel-based solar-driven evaporator for cost-effective and highly efficient water purification. Desalination 531, 115706 (2022). https://doi.org/10.1016/j.desal.2022.115706
Y. Chen, R. Hou, L. Yang, C. Chen, J. Cui et al., Elastic, janus 3d evaporator with arch-shaped design for low-footprint and high-performance solar-driven zero-liquid discharge. Desalination 583, 117644 (2024). https://doi.org/10.1016/j.desal.2024.117644
W. Li, T. Li, B. Deng, T. Xu, G. Wang et al., Fabrication of a facile self-floating lignin-based carbon Janus evaporators for efficient and stable solar desalination. Adv. Compos. Hybrid Mater. 7(2), 52 (2024). https://doi.org/10.1007/s42114-024-00849-y
Y. Zou, P. Yang, L. Yang, N. Li, G. Duan et al., Boosting solar steam generation by photothermal enhanced polydopamine/wood composites. Polymer 217, 123464 (2021). https://doi.org/10.1016/j.polymer.2021.123464
X. Huang, L. Li, X. Zhao, J. Zhang, Highly salt-resistant interfacial solar evaporators based on Melamine@Silicone nanops for stable long-term desalination and water harvesting. J. Colloid Interface Sci. 646, 141–149 (2023). https://doi.org/10.1016/j.jcis.2023.05.035
Y. Ming, S. Shi, W. Cai, J. Liu, D. Chen et al., A scalable wood-based interfacial evaporator assisted with localized joule heating for round-the-clock operations. Chem. Eng. J. 504, 158690 (2025). https://doi.org/10.1016/j.cej.2024.158690
C. Tan, X. Wu, L. Xia, J. Su, J. Wu et al., Jujuncao-stem-based interfacial solar-driven evaporator with natural two-phase composite structures of functional partition and inherent ultralow vaporization enthalpy of water for stable and efficient steam production. ACS Appl. Mater. Interfaces 16(3), 4295–4305 (2024). https://doi.org/10.1021/acsami.3c17962
Z. Wang, Y. Yan, X. Shen, Q. Sun, C. Jin, Candle soot nanop-decorated wood for efficient solar vapor generation. Sustain. Energy Fuels 4(1), 354–361 (2020). https://doi.org/10.1039/c9se00617f
M. Gao, L. Zhu, C.K. Peh, G.W. Ho, Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 12(3), 841–864 (2019). https://doi.org/10.1039/C8EE01146J
S. He, C. Chen, Y. Kuang, R. Mi, Y. Liu et al., Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination. Energy Environ. Sci. 12(5), 1558–1567 (2019). https://doi.org/10.1039/C9EE00945K
X. Chen, S. He, M.M. Falinski, Y. Wang, T. Li et al., Sustainable off-grid desalination of hypersaline waters using Janus wood evaporators. Energy Environ. Sci. 14(10), 5347–5357 (2021). https://doi.org/10.1039/d1ee01505b
Y. Pang, X. Chu, L. Song, L. Jin, C. Ma et al., Laser-engraved wood-based evaporators: a sustainable approach for solar interfacial evaporation. Chem. Eng. J. 479, 147891 (2024). https://doi.org/10.1016/j.cej.2023.147891
M. Zhu, Y. Li, G. Chen, F. Jiang, Z. Yang et al., Tree-inspired design for high-efficiency water extraction. Adv. Mater. 29(44), 1704107 (2017). https://doi.org/10.1002/adma.201704107
M.M. Ghafurian, H. Niazmand, E. Ebrahimnia-Bajestan, R.A. Taylor, Wood surface treatment techniques for enhanced solar steam generation. Renew. Energy 146, 2308–2315 (2020). https://doi.org/10.1016/j.renene.2019.08.036
G. Xue, K. Liu, Q. Chen, P. Yang, J. Li et al., Robust and low-cost flame-treated wood for high-performance solar steam generation. ACS Appl. Mater. Interfaces 9(17), 15052–15057 (2017). https://doi.org/10.1021/acsami.7b01992
F. Shen, J. Xu, J. Yan, S. Wu, C. He et al., Facile fabrication of functionalized wood evaporator through deep eutectic solvent delignification for efficient solar-driven water purification. J. Environ. Chem. Eng. 11(6), 111234 (2023). https://doi.org/10.1016/j.jece.2023.111234
Y. Zhang, W. Deng, M. Wu, C. Liu, G. Yu et al., A dual-functional lignin containing pulp foam for solar evaporation and contaminant adsorption. Desalination 573, 117153 (2024). https://doi.org/10.1016/j.desal.2023.117153
Z. Wang, Y. Zou, Y. Li, Y. Cheng, Metal-containing polydopamine nanomaterials: catalysis, energy, and theranostics. Small 16(18), 1907042 (2020). https://doi.org/10.1002/smll.201907042
S.-L. Wu, H. Chen, H.-L. Wang, X. Chen, H.-C. Yang et al., Solar-driven evaporators for water treatment: challenges and opportunities. Environ. Sci. Water Res. Technol. 7(1), 24–39 (2021). https://doi.org/10.1039/d0ew00725k
Y. Li, Q. Gong, L. Han, X. Liu, Y. Yang et al., Carboxymethyl cellulose assisted polyaniline in conductive hydrogels for high-performance self-powered strain sensors. Carbohydr. Polym. 298, 120060 (2022). https://doi.org/10.1016/j.carbpol.2022.120060
S. Chen, D. Zheng, Q. Cen, C.G. Yoo, L. Zhong et al., Multifunctional super-hydrophilic MXene/biomass composite aerogel evaporator for efficient solar-driven desalination and wastewater treatment. Small 20(35), 2400603 (2024). https://doi.org/10.1002/smll.202400603
I. Ibrahim, D.H. Seo, A.M. McDonagh, H.K. Shon, L. Tijing, Semiconductor photothermal materials enabling efficient solar steam generation toward desalination and wastewater treatment. Desalination 500, 114853 (2021). https://doi.org/10.1016/j.desal.2020.114853
J. Hao, L. Zhou, M. Qiu, Nearly total absorption of light and heat generation by plasmonic metamaterials. Phys. Rev. B 83(16), 165107 (2011). https://doi.org/10.1103/physrevb.83.165107
M. Habib Ullah, C.-S. Ha, In situ prepared polypyrrole–Ag nanocomposites: optical properties and morphology. J. Mater. Sci. 51(16), 7536–7544 (2016). https://doi.org/10.1007/s10853-016-0033-2
J. He, W. Han, H. Jiang, T. Zhang, X. Wang et al., Enhancing thermal localization efficiency in a wood-based solar steam generator with inverted-pyramid structure. Desalination 574, 117271 (2024). https://doi.org/10.1016/j.desal.2023.117271
Q. Zhang, L. Li, B. Jiang, H. Zhang, N. He et al., Flexible and mildew-resistant wood-derived aerogel for stable and efficient solar desalination. ACS Appl. Mater. Interfaces 12(25), 28179–28187 (2020). https://doi.org/10.1021/acsami.0c05806
W. Chao, Y. Li, X. Sun, G. Cao, C. Wang et al., Enhanced wood-derived photothermal evaporation system by in situ incorporated lignin carbon quantum dots. Chem. Eng. J. 405, 126703 (2021). https://doi.org/10.1016/j.cej.2020.126703
B. Butterfield, The structure of wood: form and function. In: Primary Wood Processing. (Springer Netherlands, 2006), pp.1–22. https://doi.org/10.1007/1-4020-4393-7_1
E.T. Engelund, L.G. Thygesen, S. Svensson, C.A.S. Hill, A critical discussion of the physics of wood–water interactions. Wood Sci. Technol. 47(1), 141–161 (2013). https://doi.org/10.1007/s00226-012-0514-7
E.T. Choong, F.O. Tesoro, Relationship of capillary pressure and water saturation in wood. Wood Sci. Technol. 23(2), 139–150 (1989). https://doi.org/10.1007/BF00350936
Y. Xu, C. Tang, J. Ma, D. Liu, D. Qi et al., Low-tortuosity water microchannels boosting energy utilization for high water flux solar distillation. Environ. Sci. Technol. 54(8), 5150–5158 (2020). https://doi.org/10.1021/acs.est.9b06072
E.E. Thybring, M. Kymäläinen, L. Rautkari, Experimental techniques for characterising water in wood covering the range from dry to fully water-saturated. Wood Sci. Technol. 52(2), 297–329 (2018). https://doi.org/10.1007/s00226-017-0977-7
L. Tian, J. Luan, K.-K. Liu, Q. Jiang, S. Tadepalli et al., Plasmonic biofoam: a versatile optically active material. Nano Lett. 16(1), 609–616 (2016). https://doi.org/10.1021/acs.nanolett.5b04320
Q. Jiang, H. Gholami Derami, D. Ghim, S. Cao, Y.-S. Jun et al., Polydopamine-filled bacterial nanocellulose as a biodegradable interfacial photothermal evaporator for highly efficient solar steam generation. J. Mater. Chem. A 5(35), 18397–18402 (2017). https://doi.org/10.1039/C7TA04834C
Z. Yu, P. Wu, Biomimetic MXene-polyvinyl alcohol composite hydrogel with vertically aligned channels for highly efficient solar steam generation. Adv. Mater. Technol. 5(6), 2000065 (2020). https://doi.org/10.1002/admt.202000065
Z. Zhou, L. Luo, X. Feng, Z. Mao, L. Rong et al., Double-layered cellulosic interfacial evaporator via upcycling of waste cotton fabrics for efficient solar desalination. Sep. Purif. Technol. 349, 127817 (2024). https://doi.org/10.1016/j.seppur.2024.127817
K. Zhou, L. Yin, K. Gong, Q. Wu, 3D vascular-structured flame-retardant cellulose-based photothermal aerogel for solar-driven interfacial evaporation and wastewater purification. Chem. Eng. J. 464, 142616 (2023). https://doi.org/10.1016/j.cej.2023.142616
J. Yuan, X. Lei, C. Yi, H. Jiang, F. Liu et al., 3D-printed hierarchical porous cellulose/alginate/carbon black hydrogel for high-efficiency solar steam generation. Chem. Eng. J. 430, 132765 (2022). https://doi.org/10.1016/j.cej.2021.132765
P. Qiu, F. Liu, C. Xu, H. Chen, F. Jiang et al., Porous three-dimensional carbon foams with interconnected microchannels for high-efficiency solar-to-vapor conversion and desalination. J. Mater. Chem. A 7(21), 13036–13042 (2019). https://doi.org/10.1039/C9TA00041K
X.-P. Li, X. Li, H. Li, Y. Zhao, W. Li et al., 2D ferrous ion-crosslinked Ti3C2Tx MXene aerogel evaporators for efficient solar steam generation. Adv. Sustain. Syst. 5(12), 2100263 (2021). https://doi.org/10.1002/adsu.202100263
Y. Guo, F. Zhao, X. Zhou, Z. Chen, G. Yu, Tailoring nanoscale surface topography of hydrogel for efficient solar vapor generation. Nano Lett. 19(4), 2530–2536 (2019). https://doi.org/10.1021/acs.nanolett.9b00252
F. Jiang, H. Liu, Y. Li, Y. Kuang, X. Xu et al., Lightweight, mesoporous, and highly absorptive all-nanofiber aerogel for efficient solar steam generation. ACS Appl. Mater. Interfaces 10(1), 1104–1112 (2018). https://doi.org/10.1021/acsami.7b15125
X. Wu, G.Y. Chen, W. Zhang, X. Liu, H. Xu, A plant-transpiration-process-inspired strategy for highly efficient solar evaporation. Adv. Sustain. Syst. 1(6), 1700046 (2017). https://doi.org/10.1002/adsu.201700046
D. Fan, Y. Lu, X. Xu, Y. Tang, H. Zhang et al., Multifunctional wood-based hydrogels for wastewater treatment and interfacial solar steam generation. Chem. Eng. J. 471, 144421 (2023). https://doi.org/10.1016/j.cej.2023.144421
M. Cao, B.-W. Liu, L. Zhang, Z.-C. Peng, Y.-Y. Zhang et al., Fully biomass-based aerogels with ultrahigh mechanical modulus, enhanced flame retardancy, and great thermal insulation applications. Compos. Part B Eng. 225, 109309 (2021). https://doi.org/10.1016/j.compositesb.2021.109309
W. Li, X. Tian, X. Li, J. Liu, C. Li et al., An environmental energy-enhanced solar steam evaporator derived from MXene-decorated cellulose acetate cigarette filter with ultrahigh solar steam generation efficiency. J. Colloid Interface Sci. 606, 748–757 (2022). https://doi.org/10.1016/j.jcis.2021.08.043
X. Wu, Y. Wang, P. Wu, J. Zhao, Y. Lu et al., Dual-zone photothermal evaporator for antisalt accumulation and highly efficient solar steam generation. Adv. Funct. Mater. 31(34), 2102618 (2021). https://doi.org/10.1002/adfm.202102618
Y. Yue, Y. Wang, Y. Bai, J. Han, W. Cheng et al., A loofah-based all-day-round solar evaporator with phenolic lignin as the light-absorbing material for a highly efficient photothermal conversion. Chem. Eng. J. 477, 147298 (2023). https://doi.org/10.1016/j.cej.2023.147298
B. Ma, F. Xiong, H. Wang, M. Wen, J. Yang et al., A gravity-inspired design for robust and photothermal superhydrophobic coating with dual–size lignin micro–nanospheres. J. Clean. Prod. 435, 140506 (2024). https://doi.org/10.1016/j.jclepro.2023.140506
M.H. Tran, D.-P. Phan, E.Y. Lee, Review on lignin modifications toward natural UV protection ingredient for lignin-based sunscreens. Green Chem. 23(13), 4633–4646 (2021). https://doi.org/10.1039/D1GC01139A
J. Wang, Y. Qian, L. Li, X. Qiu, Atomic force microscopy and molecular dynamics simulations for study of lignin solution self-assembly mechanisms in organic–aqueous solvent mixtures. Chemsuschem 13(17), 4420–4427 (2020). https://doi.org/10.1002/cssc.201903132
S. Li, L. Shi, C. Wang, F. Yue, F. Lu, Naphthalene structures derived from lignins during phenolation. Chemsuschem 13(20), 5549–5555 (2020). https://doi.org/10.1002/cssc.202001693
X. Yu, S. Chen, W. Wang, T. Deng, H. Wang, Empowering alkali lignin with high performance in Pickering emulsion by selective phenolation for the protection and controlled-release of agrochemical. J. Clean. Prod. 339, 130769 (2022). https://doi.org/10.1016/j.jclepro.2022.130769
J. Lei, L. Chen, J. Lin, W. Liu, Q. Xiong et al., Mechanism study of the photothermal function of lignin: the effect of electron-withdrawing groups. Green Chem. 26(4), 2143–2156 (2024). https://doi.org/10.1039/D3GC04125E
Y. Zou, T. Wang, X. Lin, L. Yang, Y. Li, Regulation of the light absorption and photothermal performance of melanin-like polymers. Acc. Chem. Res. 58(18), 2815–2829 (2025). https://doi.org/10.1021/acs.accounts.5c00346
Z. Lou, Q. Wang, U.I. Kara, R.S. Mamtani, X. Zhou et al., Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagnetic wave absorbers. Nano Lett. 14(1), 11 (2021). https://doi.org/10.1007/s40820-021-00750-z
T. Yang, H. Zhang, C. Huang, C. Cai, C. Gerhard et al., Sustainable porous scaffolds with retained lignin as an effective light-absorbing material for efficient photothermal energy conversion. Small Methods 7(11), 2300913 (2023). https://doi.org/10.1002/smtd.202300913
X. Zhao, L. Shi, B. Tian, S. Li, S. Liu et al., Harnessing solar energy for electrocatalytic biorefinery using lignin-derived photothermal materials. J. Mater. Chem. A 11(23), 12308–12314 (2023). https://doi.org/10.1039/D3TA01023F
C. Liu, B. Luo, Z. Zou, X. Li, X. Zhang et al., Robust sustainable interfacial evaporators from lignin for wastewater treatment. Adv. Mater. (2025). https://doi.org/10.1002/adma.202513323
Y. Zou, X. Wang, Y. Li, Y. Cheng, Design of metal ion-catecholate complexes towards advanced materials. Mater. Today 79, 112–133 (2024). https://doi.org/10.1016/j.mattod.2024.07.010
Q. Shao, Y. Li, Z. Liang, Z. Chen, A. Xu et al., Lignin: a multifunctional and sustainable photothermal material for solar-driven thermoelectric generation and desalination. Compos. Part B Eng. 284, 111694 (2024). https://doi.org/10.1016/j.compositesb.2024.111694
W. Li, Z. Li, K. Bertelsmann, D.E. Fan, Portable low-pressure solar steaming-collection unisystem with polypyrrole origamis. Adv. Mater. 31(29), e1900720 (2019). https://doi.org/10.1002/adma.201900720
X. Hu, Y. Song, Y. Lv, B. Wang, J. Bai et al., 3D aerogel membrane-based evaporator with sandwich structure for superior solar-driven evaporation. Desalination 573, 117141 (2024). https://doi.org/10.1016/j.desal.2023.117141
J. Li, Y. Li, W. Song, X. Li, L. Yang et al., Boosting interfacial solar steam generation by three-dimensional bilayer cellulose aerogels. J. Colloid Interface Sci. 650, 339–349 (2023). https://doi.org/10.1016/j.jcis.2023.06.205
S. Zhang, Y. Deng, A. Libanori, Y. Zhou, J. Yang et al., In situ grown silver-polymer framework with coordination complexes for functional artificial tissues. Adv. Mater. 35(24), e2207916 (2023). https://doi.org/10.1002/adma.202207916
C. Li, L. Fan, R. Zhu, X. Li, P. Wen et al., Adjusting channel size within PVA-based hydrogels via ice templating for enhanced solar steam generation. ACS Appl. Energy Mater. 3(9), 9216–9225 (2020). https://doi.org/10.1021/acsaem.0c01584
S. Mao, C. Onggowarsito, A. Feng, S. Zhang, Q. Fu et al., A cryogel solar vapor generator with rapid water replenishment and high intermediate water content for seawater desalination. J. Mater. Chem. A 11(2), 858–867 (2023). https://doi.org/10.1039/D2TA08317E
L. Zang, L. Sun, S. Zhang, C. Finnerty, A. Kim et al., Nanofibrous hydrogel-reduced graphene oxide membranes for effective solar-driven interfacial evaporation and desalination. Chem. Eng. J. 422, 129998 (2021). https://doi.org/10.1016/j.cej.2021.129998
C. Li, B. Zhu, Z. Liu, J. Zhao, R. Meng et al., Polyelectrolyte-based photothermal hydrogel with low evaporation enthalpy for solar-driven salt-tolerant desalination. Chem. Eng. J. 431, 134224 (2022). https://doi.org/10.1016/j.cej.2021.134224
J. Sun, R. Teng, J. Tan, M. Xu, C. Ma et al., An integrated cellulose aerogel evaporator with improved thermal management and reduced enthalpy of evaporation using a hierarchical coordinated control strategy. J. Mater. Chem. A 11(12), 6248–6257 (2023). https://doi.org/10.1039/D2TA07122C
C. Lei, W. Guan, Y. Guo, W. Shi, Y. Wang et al., Polyzwitterionic hydrogels for highly efficient high salinity solar desalination. Angew. Chem. Int. Ed. 61(36), e202208487 (2022). https://doi.org/10.1002/anie.202208487
Q. Shao, S. Jiang, Molecular understanding and design of zwitterionic materials. Adv. Mater. 27(1), 15–26 (2015). https://doi.org/10.1002/adma.201404059
S. Xiao, Y. Zhang, M. Shen, F. Chen, P. Fan et al., Structural dependence of salt-responsive polyzwitterionic brushes with an anti-polyelectrolyte effect. Langmuir 34(1), 97–105 (2018). https://doi.org/10.1021/acs.langmuir.7b03667
C. Finnerty, L. Zhang, D.L. Sedlak, K.L. Nelson, B. Mi, Synthetic graphene oxide leaf for solar desalination with zero liquid discharge. Environ. Sci. Technol. 51(20), 11701–11709 (2017). https://doi.org/10.1021/acs.est.7b03040
G. Ni, S.H. Zandavi, S.M. Javid, S.V. Boriskina, T.A. Cooper et al., A salt-rejecting floating solar still for low-cost desalination. Energy Environ. Sci. 11(6), 1510–1519 (2018). https://doi.org/10.1039/c8ee00220g
Z. Wang, J. Gao, J. Zhou, J. Gong, L. Shang et al., Engineering metal-phenolic networks for solar desalination with directional salt crystallization. Adv. Mater. 35(1), e2209015 (2023). https://doi.org/10.1002/adma.202209015
Q. Huang, C. Du, C. Guo, C. Huang, X. Wang, A high-efficiency salt-rejecting solar evaporator with optimized porous structure for continuous solar desalination. Appl. Therm. Eng. 187, 116515 (2021). https://doi.org/10.1016/j.applthermaleng.2020.116515
Y.-Z. Chen, H.-C. Yang, H.-N. Li, J.-H. Xin, C. Zhang et al., Self-flipping solar seesaw evaporators leverage scaling to de-scale. Small 20(29), e2310952 (2024). https://doi.org/10.1002/smll.202310952
H. Peng, D. Wang, S. Fu, Unidirectionally driving nanofluidic transportation via an asymmetric textile pump for simultaneous salt-resistant solar desalination and drenching-induced power generation. ACS Appl. Mater. Interfaces 13(32), 38405–38415 (2021). https://doi.org/10.1021/acsami.1c10877
V.-D. Dao, N.H. Vu, H.-L. Thi Dang, S. Yun, Recent advances and challenges for water evaporation-induced electricity toward applications. Nano Energy 85, 105979 (2021). https://doi.org/10.1016/j.nanoen.2021.105979
G. Liu, T. Chen, J. Xu, G. Li, K. Wang, Solar evaporation for simultaneous steam and power generation. J. Mater. Chem. A 8(2), 513–531 (2020). https://doi.org/10.1039/C9TA12211G
M.S. Irshad, X. Wang, N. Arshad, M.Q. Javed, T. Shamim et al., Bifunctional in situ polymerized nanocomposites for convective solar desalination and enhanced photo-thermoelectric power generation. Environ. Sci. Nano 9(5), 1685–1698 (2022). https://doi.org/10.1039/D1EN01018B
V.-D. Dao, N.H. Vu, H.-S. Choi, All day Limnobium laevigatum inspired nanogenerator self-driven via water evaporation. J. Power. Sources 448, 227388 (2020). https://doi.org/10.1016/j.jpowsour.2019.227388
P. Yang, K. Liu, Q. Chen, J. Li, J. Duan et al., Solar-driven simultaneous steam production and electricity generation from salinity. Energy Environ. Sci. 10(9), 1923–1927 (2017). https://doi.org/10.1039/c7ee01804e
Y. Zou, J. Zhao, J. Zhu, X. Guo, P. Chen et al., A mussel-inspired polydopamine-filled cellulose aerogel for solar-enabled water remediation. ACS Appl. Mater. Interfaces 13(6), 7617–7624 (2021). https://doi.org/10.1021/acsami.0c22584
Z. Wang, R. Jin, S. Zhang, X. Han, P. Guo et al., Bioinspired, sustainable, high-efficiency solar evaporators for sewage purification. Adv. Funct. Mater. 33(47), 2306806 (2023). https://doi.org/10.1002/adfm.202306806
M. Zeng, I. Echols, P. Wang, S. Lei, J. Luo et al., Highly biocompatible, underwater superhydrophilic and multifunctional biopolymer membrane for efficient oil–water separation and aqueous pollutant removal. ACS Sustainable Chem. Eng. 6(3), 3879–3887 (2018). https://doi.org/10.1021/acssuschemeng.7b04219
L. Gan, S. Shang, E. Hu, C.W.M. Yuen, S.-X. Jiang, Konjac glucomannan/graphene oxide hydrogel with enhanced dyes adsorption capability for methyl blue and methyl orange. Appl. Surf. Sci. 357, 866–872 (2015). https://doi.org/10.1016/j.apsusc.2015.09.106
H.-Y. Zhao, J. Huang, J. Zhou, L.-F. Chen, C. Wang et al., Biomimetic design of macroporous 3D truss materials for efficient interfacial solar steam generation. ACS Nano 16(3), 3554–3562 (2022). https://doi.org/10.1021/acsnano.1c10184
R. Li, Y. Shi, L. Shi, M. Alsaedi, P. Wang, Harvesting water from air: using anhydrous salt with sunlight. Environ. Sci. Technol. 52(9), 5398–5406 (2018). https://doi.org/10.1021/acs.est.7b06373
H. Lu, W. Shi, Y. Guo, W. Guan, C. Lei et al., Materials engineering for atmospheric water harvesting: progress and perspectives. Adv. Mater. 34(12), e2110079 (2022). https://doi.org/10.1002/adma.202110079
X. Wang, X. Li, G. Liu, J. Li, X. Hu et al., An interfacial solar heating assisted liquid sorbent atmospheric water generator. Angew. Chem. Int. Ed. 58(35), 12054–12058 (2019). https://doi.org/10.1002/anie.201905229
H. Park, I. Haechler, G. Schnoering, M.D. Ponte, T.M. Schutzius et al., Enhanced atmospheric water harvesting with sunlight-activated sorption ratcheting. ACS Appl. Mater. Interfaces 14(1), 2237–2245 (2022). https://doi.org/10.1021/acsami.1c18852
R. Deng, F. Lu, Y.-T. Li, H.-C. Yang, J. Huang, Wood-based capillary enhancers for accelerated moisture capture and solar-powered release. J. Colloid Interface Sci. 653, 454–462 (2024). https://doi.org/10.1016/j.jcis.2023.09.087
B. Gido, E. Friedler, D.M. Broday, Liquid-desiccant vapor separation reduces the energy requirements of atmospheric moisture harvesting. Environ. Sci. Technol. 50(15), 8362–8367 (2016). https://doi.org/10.1021/acs.est.6b01280
H. Zhou, L. Yan, D. Tang, T. Xu, L. Dai et al., Solar-driven drum-type atmospheric water harvester based on bio-based gels with fast adsorption/desorption kinetics. Adv. Mater. 36(32), e2403876 (2024). https://doi.org/10.1002/adma.202403876
S. Guo, X. Li, J. Li, B. Wei, Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems. Nat. Commun. 12(1), 1343 (2021). https://doi.org/10.1038/s41467-021-21526-4
S. Fang, X. Lyu, T. Tong, A.I. Lim, T. Li et al., Turning dead leaves into an active multifunctional material as evaporator, photocatalyst, and bioplastic. Nat. Commun. 14, 1203 (2023). https://doi.org/10.1038/s41467-023-36783-8
W. Zhou, H. Huang, Y. Wu, J. Wang, Y. Yamauchi et al., Construction of a 2D lamellar membrane for a combination of photocatalytic hydrogen evolution and photothermal water evaporation. Chem. Eng. J. 471, 144395 (2023). https://doi.org/10.1016/j.cej.2023.144395
D.-C. Wang, J.-Z. Lv, S. Zhong, Y. Wu, Y. Liu et al., One-step conversion of biomass to reduced graphene oxide at room temperature. Nat. Sustain. 7(12), 1699–1708 (2024). https://doi.org/10.1038/s41893-024-01480-x
Y. Su, R. Gu, Y. Li, W. Wu, Z. Yu et al., Seawater interfacial evaporation in composite gel enables photovoltaic cooling, simultaneous seawater desalination, and enhanced uranium extraction. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202420651
L. Li, Z. Yu, B. Jin, X. Yu, Y. Su et al., Hierarchical photothermal network spontaneously facilitates co-extraction of clean water and boron. Adv. Funct. Mater. 35(42), 2505776 (2025). https://doi.org/10.1002/adfm.202505776
L. Zhu, L. Zhu, T. Shi, K. Zhao, W. He et al., Solar-powered hierarchical microenvironments with authigenic multi-field synergies for simultaneous extraction of freshwater and cesium. Adv. Sci. 12(28), 2505997 (2025). https://doi.org/10.1002/advs.202505997
F. Lin, H. Mao, C. Luan, C. Zhong, W. Zhou et al., Isolating the salt and oil discharging area enables the continuous and effective purification of saline oily wastewater. Environ. Sci. Technol. 59(27), 13754–13764 (2025). https://doi.org/10.1021/acs.est.5c05630
J. Ren, J. Xu, S. Tian, K. Shi, T. Gu et al., Hydrodynamic solar-driven interfacial evaporation-gone with the flow. Water Res. 266, 122432 (2024). https://doi.org/10.1016/j.watres.2024.122432
M. Palimi, T. Kumar, S. Stark, K. Kassim, H. Wu et al., Enhanced interfacial evaporation with wind-driven rotating sailboat-style evaporators. Chem. Eng. J. 507, 160348 (2025). https://doi.org/10.1016/j.cej.2025.160348
F. Wang, N. Xu, W. Zhao, L. Zhou, P. Zhu et al., A high-performing single-stage invert-structured solar water purifier through enhanced absorption and condensation. Joule 5(6), 1602–1612 (2021). https://doi.org/10.1016/j.joule.2021.04.009
F. Yu, Z. Chen, Z. Guo, M.S. Irshad, L. Yu et al., Molybdenum carbide/carbon-based chitosan hydrogel as an effective solar water evaporation accelerator. ACS Sustain. Chem. Eng. 8(18), 7139–7149 (2020). https://doi.org/10.1021/acssuschemeng.0c01499
W. Wang, Y. Shi, C. Zhang, S. Hong, L. Shi et al., Simultaneous production of fresh water and electricity via multistage solar photovoltaic membrane distillation. Nat. Commun. 10(1), 3012 (2019). https://doi.org/10.1038/s41467-019-10817-6