Vapor Deposition Engineering for Thin-Film Microbatteries: From Nanoscale Ionics to Interface-Integrated Architectures
Corresponding Author: Songbai Han
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 159
Abstract
The rapid proliferation of microelectronics, coupled with the advent of the internet of things (IoT) era, has created an urgent demand for miniaturized, integrable, and reliable on-chip energy storage systems. All-solid-state thin-film microbatteries (TFMBs), distinguished by their intrinsic safety, compact design, and compatibility with microfabrication techniques, have emerged as promising candidates to power next-generation IoT devices. Nevertheless, in contrast to the well-established development of conventional lithium-ion batteries, the advancement of TFMBs remains at an early stage, facing persistent challenges in materials innovation, interface optimization, and scalable manufacturing. This review critically examines the pivotal role of vapor deposition technologies, including magnetron sputtering, pulsed laser deposition, thermal/electron-beam evaporation, chemical vapor deposition, and atomic layer deposition, in the fabrication and performance modulation of TFMBs. We systematically summarize recent progress in thin-film electrodes and solid-state electrolytes, with particular emphasis on how deposition parameters dictate crystallinity, lattice orientation, and ionic transport in functional layers. Furthermore, we highlight strategies for solid–solid interface engineering, three-dimensional structural design, and multifunctional integration to enhance capacity retention, cycling stability, and interfacial compatibility. Looking ahead, TFMBs are expected to evolve toward multifunctional platforms, exhibiting mechanical flexibility, optical transparency, and hybrid energy-harvesting compatibility, thereby meeting the heterogeneous energy requirements of future IoT ecosystems. Overall, this review provides a comprehensive perspective on vapor-phase-enabled TFMB technologies, delivering both theoretical insights and technological guidelines for the scalable realization of high-performance microscale power sources.
Highlights:
1 Tailored crystallinity and defect engineering in ultrathin solid-state electrolytes enable enhanced nanoscale ion transport.
2 Chemically stable and conformal interfaces mitigate interfacial failure and space charge effects in microbattery architectures.
3 Spatial atomic layer deposition and scalable vapor-phase strategies enable 3D integration and monolithic interfacing of thin-film microbatteries with internet of things device platforms.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Fan, C. Liu, N. Li, L. Yang, X.-G. Yang et al., Wireless transmission of internal hazard signals in Li-ion batteries. Nature 641(8063), 639–645 (2025). https://doi.org/10.1038/s41586-025-08785-7
- H. Tang, Y. Yin, Y. Huang, J. Wang, L. Liu et al., Battery-everywhere design based on a cathodeless configuration with high sustainability and energy density. ACS Energy Lett. 6(5), 1859–1868 (2021). https://doi.org/10.1021/acsenergylett.1c00555
- J.H. Pikul, H. Ning, Powering the internet of things. Joule 2(6), 1036–1038 (2018). https://doi.org/10.1016/j.joule.2018.06.005
- H. Hafezi, T.L. Robertson, G.D. Moon, K.-Y. Au-Yeung, M.J. Zdeblick et al., An ingestible sensor for measuring medication adherence. IEEE Trans. Biomed. Eng. 62(1), 99–109 (2015). https://doi.org/10.1109/TBME.2014.2341272
- S. Gong, W. Cheng, Toward soft skin-like wearable and implantable energy devices. Adv. Energy Mater. 7(23), 1700648 (2017). https://doi.org/10.1002/aenm.201700648
- P. Birke, W.F. Chu, W. Weppner, Materials for lithium thin-film batteries for application in silicon technology. Solid State Ion. 93(1–2), 1–15 (1996). https://doi.org/10.1016/S0167-2738(96)00489-4
- W. Liu, M.-S. Song, B. Kong, Y. Cui, Flexible and stretchable energy storage: recent advances and future perspectives. Adv. Mater. 29(1), 1603436 (2017). https://doi.org/10.1002/adma.201603436
- L. Liu, Q. Weng, X. Lu, X. Sun, L. Zhang et al., Advances on microsized on-chip lithium-ion batteries. Small 13(45), 1701847 (2017). https://doi.org/10.1002/smll.201701847
- C. Cao, Y. Zhong, Z. Shao, Electrolyte engineering for safer lithium-ion batteries: a review. Chin. J. Chem. 41(9), 1119–1141 (2023). https://doi.org/10.1002/cjoc.202200588
- Q. Xia, F. Zan, Q. Zhang, W. Liu, Q. Li, Y. He, J. Hua, J. Liu, J. Xu, J. Wang, C. Wu, H. Xia, All‐solid‐state thin film lithium/lithium‐ion microbatteries for powering the internet of things. Adv. Mater. 35(2), 2200538 (2023). https://doi.org/10.1002/adma.202200538
- Q. Shi, B. Dong, T. He, Z. Sun, J. Zhu, Z. Zhang, C. Lee, Progress in wearable electronics/photonics—moving toward the era of artificial intelligence and internet of things. InfoMat 2(6), 1131–1162 (2020). https://doi.org/10.1002/inf2.12122
- X. Fan, B. Liu, J. Ding, Y. Deng, X. Han et al., Flexible and wearable power sources for next-generation wearable electronics. Batteries Supercaps 3(12), 1262–1274 (2020). https://doi.org/10.1002/batt.202000115
- Y. Ozawa, Y. Nishitai, N. Ochirkhuyag, N. Usami, M. Kanto, K. Ueno, H. Ota, Liquid metal electrode ink for printable lithium‐ion batteries. Adv. Eng. Mater. 26(11), 2400529 (2024). https://doi.org/10.1002/adem.202400529
- T. Zhang, L. Fu, Controllable chemical vapor deposition growth of two-dimensional heterostructures. Chem. 4(4), 671–689 (2018). https://doi.org/10.1016/j.chempr.2017.12.006
- J. Cai, X. Han, X. Wang, X. Meng, Atomic layer deposition of two-dimensional layered materials: processes, growth mechanisms, and characteristics. Matter 2(3), 587–630 (2020). https://doi.org/10.1016/j.matt.2019.12.026
- S. Moitzheim, B. Put, P.M. Vereecken, Advances in 3D thin-film Li-ion batteries. Adv. Mater. Interfaces 6(15), 1900805 (2019). https://doi.org/10.1002/admi.201900805
- A. Rakita, N. Nikolić, M. Mildner, J. Matiasek, A. Elbe-Bürger, Re-epithelialization and immune cell behaviour in an ex vivo human skin model. Sci. Rep. 10(1), 1 (2020). https://doi.org/10.1038/s41598-019-56847-4
- S. Zheng, X. Shi, P. Das, Z.-S. Wu, X. Bao, The road towards planar microbatteries and micro-supercapacitors: from 2D to 3D device geometries. Adv. Mater. 31(50), 1900583 (2019). https://doi.org/10.1002/adma.201900583
- X. Pan, X. Hong, L. Xu, Y. Li, M. Yan et al., On-chip micro/nano devices for energy conversion and storage. Nano Today 28, 100764 (2019). https://doi.org/10.1016/j.nantod.2019.100764
- T. Wu, W. Dai, M. Ke, Q. Huang, L. Lu, All-solid-state thin film μ-batteries for microelectronics. Adv. Sci. 8(19), 2100774 (2021). https://doi.org/10.1002/advs.202100774
- N.A. Kyeremateng, T. Brousse, D. Pech, Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat. Nanotechnol. 12(1), 7–15 (2017). https://doi.org/10.1038/nnano.2016.196
- J.G. Koomey, H. Scott Matthews, E. Williams, Smart everything: will intelligent systems reduce resource use? Annu. Rev. Environ. Resour. 38(1), 311–343 (2013). https://doi.org/10.1146/annurev-environ-021512-110549
- Z. Wang, Y. Chen, Y. Zhou, J. Ouyang, S. Xu et al., Miniaturized lithium-ion batteries for on-chip energy storage. Nanoscale Adv. 4(20), 4237–4257 (2022). https://doi.org/10.1039/D2NA00566B
- A. Sumboja, J. Liu, W.G. Zheng, Y. Zong, H. Zhang et al., Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design. Chem. Soc. Rev. 47(15), 5919–5945 (2018). https://doi.org/10.1039/C8CS00237A
- Y. Lu, K. Jiang, D. Chen, G. Shen, Wearable sweat monitoring system with integrated micro-supercapacitors. Nano Energy 58, 624–632 (2019). https://doi.org/10.1016/j.nanoen.2019.01.084
- G. Sun, X. Jin, H. Yang, J. Gao, L. Qu, An aqueous Zn–MnO2 rechargeable microbattery. J. Mater. Chem. A 6(23), 10926–10931 (2018). https://doi.org/10.1039/C8TA02747A
- K. Chen, Y. Sun, X. Zhang, J. Liu, H. Xie, A self-healing and nonflammable cross-linked network polymer electrolyte with the combination of hydrogen bonds and dynamic disulfide bonds for lithium metal batteries. Energy Environ. Mater. 6, e12568 (2023). https://doi.org/10.1002/eem2.12568
- J. Gao, Y. Tian, L. Ni, B. Wang, K. Zou et al., Robust cross-linked Na3V2(PO4)2F3 full sodium-ion batteries. Energy Environ. Mater. 7, e12485 (2024). https://doi.org/10.1002/eem2.12485
- B. Wang, C. Guan, Q. Zhou, Y. Wang, Y. Zhu et al., Screening anionic groups within zwitterionic additives for eliminating hydrogen evolution and dendrites in aqueous Zinc ion batteries. Nano-Micro Lett. 17(1), 314 (2015). https://doi.org/10.1007/s40820-025-01826-w
- C.M. Julien, A. Mauger, Pulsed laser deposited films for microbatteries. Coatings 9(6), 386 (2019). https://doi.org/10.3390/coatings9060386
- L. Indrizzi, N. Ohannessian, D. Pergolesi, T. Lippert, E. Gilardi, Pulsed laser deposition as a tool for the development of all solid‐state microbatteries. Helv. Chim. Acta 104(2), e2000203 (2021). https://doi.org/10.1002/hlca.202000203
- M. Fenech, N. Sharma, Pulsed laser deposition-based thin film microbatteries. Chem. Asian J. 15(12), 1829–1847 (2020). https://doi.org/10.1002/asia.202000384
- X. Liang, F. Tan, F. Wei, J. Du, Research progress of all solid-state thin film lithium battery. IOP Conf. Ser. Earth Environ. Sci. 218, 012138 (2019). https://doi.org/10.1088/1755-1315/218/1/012138
- J. Lin, L. Lin, S. Qu, D. Deng, Y. Wu, X. Yan, Q. Xie, L. Wang, D. Peng, Promising electrode and electrolyte materials for high‐energy‐density thin‐film lithium batteries. Energy Environ. Mater. 5(1), 133–156 (2022). https://doi.org/10.1002/eem2.12202
- S.A. Mahyoub, A. Farid, M.Z. Azeem, D.A.A. Fadhil, F.A. Qaraah, Q.A. Drmosh, Physical vapor deposition techniques for CO2 electroreduction: a review. Small Struct. 6(5), 2400501 (2025). https://doi.org/10.1002/sstr.202400501
- S. Lobe, A. Bauer, S. Uhlenbruck, D. Fattakhova‐Rohlfing, Physical vapor deposition in solid‐state battery development: from materials to devices. Adv. Sci. 8(11), 2002044 (2021). https://doi.org/10.1002/advs.202002044
- E.C. Nwanna, S. Bitire, P.E. Imoisili, T. Jen, An overview of the application of atomic layer deposition process for lithium-ion based batteries. Int. J. Energy Res. 46(8), 10499–10521 (2022). https://doi.org/10.1002/er.7941
- M. Curcio, R. Teghil, A. De Bonis, Thin-film microbattery fabrication by PLD: a comprehensive mini-review. Front. Coat. Dyes Interface Eng. 2, 1401391 (2024). https://doi.org/10.3389/frcdi.2024.1401391
- Y. Yao, X. Jiao, X. Xu, S. Xiong, Z. Song, Y. Liu, Prospective of magnetron sputtering for interface design in rechargeable lithium batteries. Adv. Energy Mater. 14(47), 2403117 (2024). https://doi.org/10.1002/aenm.202403117
- A.S. Westover, R. Sahore, K.L. Browning, S. Kalnaus, Thermal evaporation of thin Li films. J. Vac. Sci. Technol. B 43(2), 022401 (2025). https://doi.org/10.1116/6.0004174
- D. Sun, S. Tian, C. Yin, F. Chen, J. Xie, C. Huang, C. Li, Thin film deposition techniques in surface engineering strategies for advanced lithium-ion batteries. Coatings 13(3), 505 (2023). https://doi.org/10.3390/coatings13030505
- M. Beidaghi, Y. Gogotsi, Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ. Sci. 7(3), 867–884 (2014). https://doi.org/10.1039/c3ee43526a
- R. Karthikeyan, C.T. Cherian, R.P. Fernandes, Review: rf magnetron sputtering, a promising synthesis route for scalable production of thin-film batteries. J. Mater. Sci. 60(21), 8569–8601 (2025). https://doi.org/10.1007/s10853-025-10929-z
- W. Xiong, Q. Xia, H. Xia, Three-dimensional self-supported metal oxides as cathodes for microbatteries. Funct. Mater. Lett. 07(05), 1430003 (2014). https://doi.org/10.1142/s1793604714300035
- A. Mauger, M. Armand, C.M. Julien, K. Zaghib, Challenges and issues facing lithium metal for solid-state rechargeable batteries. J. Power. Sources 353, 333–342 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.018
- V. Patil, V. Patil, D. Wook Shin, J.-W. Choi, D.-S. Paik et al., Issue and challenges facing rechargeable thin film lithium batteries. Mater. Res. Bull. 43(8−9), 1913–1942 (2008). https://doi.org/10.1016/j.materresbull.2007.08.031
- E. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui, Y. Gogotsi, Energy storage: the future enabled by nanomaterials. Science 366(6468), eaan8285 (2019). https://doi.org/10.1126/science.aan8285
- X. Zhang, M. Lok, T. Tong, S.K. Lee, B. Reagen et al., A fully integrated battery-powered system-on-chip in 40-nm CMOS for closed-loop control of insect-scale pico-aerial vehicle. IEEE J. Solid-State Circuits 52(9), 2374–2387 (2017). https://doi.org/10.1109/jssc.2017.2705170
- W.C. West, J.F. Whitacre, V. White, B.V. Ratnakumar, Fabrication and testing of all solid-state microscale lithium batteries for microspacecraft applications. J. Micromech. Microeng. 12(1), 58–62 (2001). https://doi.org/10.1088/0960-1317/12/1/309
- C.C. Liang, P. Bro, A high‐voltage, solid‐state battery system: i. design considerations. J. Electrochem. Soc. 116(9), 1322 (1969). https://doi.org/10.1149/1.2412312
- C.-L. Li, Z.-W. Fu, All-solid-state rechargeable thin film lithium batteries with LixMn2O4 and LixMn2O4–0.5ZrO2 cathodes. Electrochim. Acta 52(20), 6155–6164 (2007). https://doi.org/10.1016/j.electacta.2007.04.012
- G. Vardar, W.J. Bowman, Q. Lu, J. Wang, R.J. Chater et al., Structure, chemistry, and charge transfer resistance of the interface between Li7La3Zr2O12 electrolyte and LiCoO2 cathode. Chem. Mater. 30(18), 6259–6276 (2018). https://doi.org/10.1021/acs.chemmater.8b01713
- S. Tintignac, R. Baddour-Hadjean, J.P. Pereira-Ramos, R. Salot, High rate bias sputtered LiCoO2 thinfilms as positive electrode for all-solid-state lithium microbatteries. Electrochim. Acta 146, 472–476 (2014). https://doi.org/10.1016/j.electacta.2014.09.084
- A. Kumatani, S. Shiraki, Y. Takagi, T. Suzuki, T. Ohsawa, X. Gao, Y. Ikuhara, T. Hitosugi, Epitaxial growth of Li4Ti5O12 thin films using rf magnetron sputtering. Jpn. J. Appl. Phys. 53(5), 058001 (2014). https://doi.org/10.7567/jjap.53.058001
- J. Feng, B. Yan, M.O. Lai, L. Li, Design and fabrication of an all-solid-state thin-film Li-ion microbattery with amorphous TiO2 as the anode. Energy Technol. 2(4), 397–400 (2014). https://doi.org/10.1002/ente.201300173
- G. El Omari, K. El Kindoussy, M. Aqil, M. Dahbi, J. Alami, M. Makha, Advances in physical vapor deposited silicon/carbon based anode materials for Li-ion batteries. Heliyon 10(9), e30431 (2024). https://doi.org/10.1016/j.heliyon.2024.e30431
- L. Chai, X. Wang, C. Bi, B. Su, C. Zhang, X. Li, W. Xue, Lifetime optimization of amorphous silicon thin-film anodes for lithium-ion batteries. ACS Appl. Energy Mater. 6(16), 8388–8396 (2023). https://doi.org/10.1021/acsaem.3c01127
- B. Put, P.M. Vereecken, A. Stesmans, On the chemistry and electrochemistry of LiPON breakdown. J. Mater. Chem. A 6(11), 4848–4859 (2018). https://doi.org/10.1039/c7ta07928A
- Z. Warecki, V.C. Ferrari, D.A. Robinson, J.D. Sugar, J. Lee, A.V. Ievlev, N.S. Kim, D.M. Stewart, S.B. Lee, P. Albertus, G. Rubloff, A.A. Talin, Simultaneous solid electrolyte deposition and cathode lithiation for thin film batteries and lithium iontronic devices. ACS Energy Lett. 9(5), 2065–2074 (2024). https://doi.org/10.1021/acsenergylett.4c00674
- B. Ke, S. Cheng, C. Zhang, W. Li, J. Zhang, R. Deng, J. Lin, Q. Xie, B. Qu, Li. Qiao, D.-L. Peng, X. Wang, Low-temperature flexible integration of all-solid-state thin-film lithium batteries enabled by spin-coating electrode architecture. Adv. Energy Mater. 14(12), 2303757 (2024). https://doi.org/10.1002/aenm.202303757
- B. Ke, C. Zhang, S. Cheng, W. Li, R. Deng, H. Zhang, J. Lin, Q. Xie, B. Qu, D.-L. Peng, X. Wang, Tape-casting electrode architecture permits low-temperature manufacturing of all-solid-state thin-film microbatteries. Interdiscip. Mater. 3(4), 621–631 (2024). https://doi.org/10.1002/idm2.12174
- S. Lobe, C. Dellen, M. Finsterbusch, H.-G. Gehrke, D. Sebold et al., Radio frequency magnetron sputtering of Li7La3Zr2O12 thin films for solid-state batteries. J. Power. Sources 307, 684–689 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.054
- J. Feng, B. Yan, J. Liu, M. Lai, L. Li, All solid state lithium ion rechargeable batteries using NASICON structured electrolyte. Mater. Technol. 28(5), 276–279 (2013). https://doi.org/10.1179/1753555713Y.0000000085
- J.B. Bates, N.J. Dudney, G.R. Gruzalski, R.A. Zuhr, A. Choudhury, C.F. Luck, J.D. Robertson, Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. J. Power. Sources 43(1−3), 103–110 (1993). https://doi.org/10.1016/0378-7753(93)80106-Y
- C. Erinmwingbovo, V. Siller, M. Nuñez, R. Trócoli, D. Brogioli, A. Morata, F. La Mantia, Dynamic impedance spectroscopy of LiMn2O4 thin films made by multi-layer pulsed laser deposition. Electrochim. Acta 331, 135385 (2020). https://doi.org/10.1016/j.electacta.2019.135385
- T. Ohnishi, K. Takada, Sputter-deposited amorphous Li3PO4 solid electrolyte films. ACS Omega 7(24), 21199–21206 (2022). https://doi.org/10.1021/acsomega.2c02104
- G. Tan, F. Wu, L. Li, Y. Liu, R. Chen, Magnetron sputtering preparation of nitrogen-incorporated lithium-aluminum-titanium phosphate based thin film electrolytes for all-solid-state lithium ion batteries. J. Phys. Chem. C 116(5), 3817–3826 (2012). https://doi.org/10.1021/jp207120s
- X. Yang, Y. Shen, L. Zhang, Y. Li, Recent advances in the application of magnetron sputtering for lithium metal batteries. J. Mater. Chem. A 13(39), 33104–33135 (2025). https://doi.org/10.1039/d5ta03766b
- Q. Xia, Q. Zhang, S. Sun, F. Hussain, C. Zhang, X. Zhu, F. Meng, K. Liu, H. Geng, J. Xu, F. Zan, P. Wang, L. Gu, H. Xia, Tunnel intergrowth LixMnO2 nanosheet arrays as 3D cathode for high‐performance all‐solid‐state thin film lithium microbatteries. Adv. Mater. 33(5), 2003524 (2021). https://doi.org/10.1002/adma.202003524
- K. Yuan, M. Xie, W. Dong, P. Zhao, J. Pan et al., High-speed and one-step deposition of a LiCoO2 thin-film electrode by a high-repetition 1064 nm ND:YAG fiber laser. ACS Appl. Energy Mater. 5(12), 15483–15490 (2022). https://doi.org/10.1021/acsaem.2c02826
- K. Hikima, K. Shimizu, H. Kiuchi, Y. Hinuma, K. Suzuki et al., Reaction mechanism of Li2MnO3 electrodes in an all-solid-state thin-film battery analyzed by operando hard X-ray photoelectron spectroscopy. J. Am. Chem. Soc. 144(1), 236–247 (2022). https://doi.org/10.1021/jacs.1c09087
- E. Moazzen, J. Mujtaba, B. Buchholz, D. Isheim, N.S. Luu, D. Rowell, X. Hu, T. Ha, M.C. Hersam, S.A. Barnett, Atom probe tomography of the LiFePO4-electrolyte interface enabled by thin film electrodes. J. Electrochem. Soc. 171(7), 070527 (2024). https://doi.org/10.1149/1945-7111/ad5f21
- K. Wei, J. Qiu, Y. Zhao, S. Ma, Y. Wei, H. Li, C. Zeng, Y. Cui, Tunable oxygen vacancies in MoO3 lattice with improved electrochemical performance for Li-ion battery thin film cathode. Ceram. Int. 49(13), 21729–21736 (2023). https://doi.org/10.1016/j.ceramint.2023.03.313
- P. Schichtel, M. Geiß, T. Leichtweiß, J. Sann, D.A. Weber, J. Janek, On the impedance and phase transition of thin film all-solid-state batteries based on the Li4Ti5O12 system. J. Power. Sources 360, 593–604 (2017). https://doi.org/10.1016/j.jpowsour.2017.06.044
- K. Senevirathne, C.S. Day, M.D. Gross, A. Lachgar, N.A.W. Holzwarth, A new crystalline LiPON electrolyte: synthesis, properties, and electronic structure. Solid State Ion. 233, 95–101 (2013). https://doi.org/10.1016/j.ssi.2012.12.013
- W.C. West, Z.D. Hood, S.P. Adhikari, C. Liang, A. Lachgar et al., Reduction of charge-transfer resistance at the solid electrolyte-electrode interface by pulsed laser deposition of films from a crystalline Li2PO2N source. J. Power. Sources 312, 116–122 (2016). https://doi.org/10.1016/j.jpowsour.2016.02.034
- N. Kuwata, N. Iwagami, Y. Matsuda, Y. Tanji, J. Kawamura, Thin film batteries with Li3PO4 solid electrolyte fabricated by pulsed laser deposition. ECS Trans. 16(26), 53–60 (2009). https://doi.org/10.1149/1.3111821
- A.V. Morozov, H. Paik, A.O. Boev, D.A. Aksyonov, S.A. Lipovskikh et al., Thermodynamics as a driving factor of LiCoO2 grain growth on nanocrystalline Ta-LLZO thin films for all-solid-state batteries. ACS Appl. Mater. Interfaces 14(35), 39907–39916 (2022). https://doi.org/10.1021/acsami.2c07176
- P.M. Gonzalez Puente, S. Song, S. Cao, L.Z. Rannalter, Z. Pan et al., Garnet-type solid electrolyte: advances of ionic transport performance and its application in all-solid-state batteries. J. Adv. Ceram. 10(5), 933–972 (2021). https://doi.org/10.1007/s40145-021-0489-7
- I. Garbayo, M. Struzik, W.J. Bowman, R. Pfenninger, E. Stilp, J.L.M. Rupp, Glass‐type polyamorphism in Li‐garnet thin film solid state battery conductors. Adv. Energy Mater. 8(12), 1702265 (2018). https://doi.org/10.1002/aenm.201702265
- M. Saccoccio, J. Yu, Z. Lu, S.C.T. Kwok, J. Wang et al., Low temperature pulsed laser deposition of garnet Li6.4La3Zr1.4Ta0.6O12 films as all solid-state lithium battery electrolytes. J. Power. Sources 365, 43–52 (2017). https://doi.org/10.1016/j.jpowsour.2017.08.020
- V. Siller, A. Morata, M.N. Eroles, R. Arenal, J.C. Gonzalez-Rosillo et al., High performance LATP thin film electrolytes for all-solid-state microbattery applications. J. Mater. Chem. A 9(33), 17760–17769 (2021). https://doi.org/10.1039/D1TA02991F
- J. Wei, D. Ogawa, T. Fukumura, Y. Hirose, T. Hasegawa, Epitaxial strain-controlled ionic conductivity in Li-ion solid electrolyte Li0.33La0.56TiO3 thin films. Cryst. Growth Des. 15(5), 2187–2191 (2015). https://doi.org/10.1021/cg501834s
- M. Curcio, A.D. Bonis, S. Brutti, A. Santagata, R. Teghil, Pulsed laser deposition of thin films of TiO2 for Li-ion batteries. Appl. Surf. Sci. Adv. 4, 100090 (2021). https://doi.org/10.1016/j.apsadv.2021.100090
- P. Albertus, S. Babinec, S. Litzelman, A. Newman, Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3(1), 16–21 (2018). https://doi.org/10.1038/s41560-017-0047-2
- B.J. Neudecker, N.J. Dudney, J.B. Bates, “Lithium-Free” thin-film battery with in situ plated Li anode. J. Electrochem. Soc. 147(2), 517 (2000). https://doi.org/10.1149/1.1393226
- J. Zheng, L. Ye, M. He, D. He, Y. Huang et al., Electrical and optical properties of amorphous silicon carbide thin films prepared by e-beam evaporation at room temperature. J. Non-Cryst. Solids 576, 121233 (2022). https://doi.org/10.1016/j.jnoncrysol.2021.121233
- P. Jayaraman, H. Annal Therese, Flexible interdigitated symmetric solid-state micro-supercapacitors with higher energy density for wearable electronics. J. Power. Sources 581, 233489 (2023). https://doi.org/10.1016/j.jpowsour.2023.233489
- J. Li, L. Li, W. Chen, Q. Yi, G. Zou, Room-temperature processed high-quality SnO2 films by oxygen plasma activated e-beam evaporation. Nanotechnology 32(2), 025606 (2020). https://doi.org/10.1088/1361-6528/abbce9
- Q. Chen, H. Li, M.L. Meyerson, R. Rodriguez, K. Kawashima et al., Li−Zn overlayer to facilitate uniform lithium deposition for lithium metal batteries. ACS Appl. Mater. Interfaces 13(8), 9985–9993 (2021). https://doi.org/10.1021/acsami.0c21195
- C.-L. Li, B. Zhang, Z.-W. Fu, Physical and electrochemical characterization of amorphous lithium lanthanum titanate solid electrolyte thin-film fabricated by e-beam evaporation. Thin Solid Films 515(4), 1886–1892 (2006). https://doi.org/10.1016/j.tsf.2006.07.026
- A. Baptista, F.J.G. Silva, J. Porteiro, J.L. Míguez, G. Pinto et al., On the physical vapour deposition (PVD): evolution of magnetron sputtering processes for industrial applications. Proc. Manuf. 17, 746–757 (2018). https://doi.org/10.1016/j.promfg.2018.10.125
- M. Surendran, S. Singh, H. Chen, C. Wu, A. Avishai et al., A hybrid pulsed laser deposition approach to grow thin films of chalcogenides. Adv. Mater. 36(19), 2312620 (2024). https://doi.org/10.1002/adma.202312620
- S. Karimzadeh, B. Safaei, C. Yuan, T.-C. Jen, Emerging atomic layer deposition for the development of high-performance lithium-ion batteries. Electrochem. Energy Rev. 6(1), 24 (2023). https://doi.org/10.1007/s41918-023-00192-8
- H. Zhang, J.-S. Cherng, Q. Chen, Recent progress on high power impulse magnetron sputtering (HiPIMS): the challenges and applications in fabricating VO2 thin film. AIP Adv. 9(3), 035242 (2019). https://doi.org/10.1063/1.5084031
- B. Lacroix, A.J. Santos, S. Hurand, A. Corvisier, F. Paumier, T. Girardeau, F. Maudet, C. Dupeyrat, R. García, F.M. Morales, Nanostructure and physical properties control of indium tin oxide films prepared at room temperature through ion beam sputtering deposition at oblique angles. J. Phys. Chem. C 123(22), 14036–14046 (2019). https://doi.org/10.1021/acs.jpcc.9b02885
- H. He, L. Wang, M. Al-Abbasi, C. Cao, H. Li et al., Interface engineering on constructing physical and chemical stable solid-state electrolyte toward practical lithium batteries. Energy Environ. Mater. 7(4), e12699 (2024). https://doi.org/10.1002/eem2.12699
- R.B. Tokas, S. Jena, C. Prathap, S. Thakur, K. Divakar Rao et al., Study of reactive electron beam deposited tantalum penta oxide thin films with spectroscopic ellipsometry and atomic force microscopy. Appl. Surf. Sci. Adv. 18, 100480 (2023). https://doi.org/10.1016/j.apsadv.2023.100480
- J.F.M. Oudenhoven, T. van Dongen, Ra.H. Niessen, M.H.J.M. de Croon, P.H.L. Notten, Low-pressure chemical vapor deposition of LiCoO2 thin films: a systematic investigation of the deposition parameters. J. Electrochem. Soc. 156(5), D169 (2009). https://doi.org/10.1149/1.3082374
- L. Meda, E.E. Maxie, LiPON thin films grown by plasma-enhanced metalorganic chemical vapor deposition in a N2-H2-Ar gas mixture. Thin Solid Films 520(6), 1799–1803 (2012). https://doi.org/10.1016/j.tsf.2011.08.091
- J. Xie, J.F.M. Oudenhoven, P.-P.R.M.L. Harks, D. Li, P.H.L. Notten, Chemical vapor deposition of lithium phosphate thin-films for 3D all-solid-state Li-ion batteries. J. Electrochem. Soc. 162(3), A249 (2014). https://doi.org/10.1149/2.0091503jes
- K. Tadanaga, A. Yamaguchi, A. Hayashi, M. Tatsumisago, J. Mosa et al., Preparation of Li4Ti5O12 electrode thin films by a mist CVD process with aqueous precursor solution. J. Asian Ceram. Soc. 3(1), 88–91 (2015). https://doi.org/10.1016/j.jascer.2014.11.003
- J. Xie, P.-P.R.M.L. Harks, D. Li, L.H.J. Raijmakers, P.H.L. Notten, Planar and 3D deposition of Li4Ti5O12 thin film electrodes by MOCVD. Solid State Ionics 287, 83–88 (2016). https://doi.org/10.1016/j.ssi.2016.02.004
- R. Deng, B. Ke, Y. Xie, S. Cheng, C. Zhang, H. Zhang, B. Lu, X. Wang, All-solid-state thin-film lithium-sulfur batteries. Nano-Micro Lett. 15(1), 73 (2023). https://doi.org/10.1007/s40820-023-01064-y
- M. Balaish, K.J. Kim, H. Chu, Y. Zhu, J. Carlos Gonzalez-Rosillo et al., Emerging processing guidelines for solid electrolytes in the era of oxide-based solid-state batteriest. Chem. Soc. Rev. 54(19), 8925–9007 (2025). https://doi.org/10.1039/d5cs00358j
- M. Madadi, M. Heikkinen, A. Philip, M. Karppinen, Conformal high-aspect-ratio solid electrolyte thin films for Li-ion batteries by atomic layer deposition. ACS Appl. Electron. Mater. 6(63), 1574–1580 (2024). https://doi.org/10.1021/acsaelm.3c01565
- Y. Wang, Z. Feng, X. Wang, M. Meng, Y. Sun, M. Jing, H. Liu, F. Lu, W. Wang, Y. Cheng, X. Huang, F. Luo, X. Sun, H. Dong, Inhibitory property of lithium phosphorus oxynitride surface grown by atomic layer deposition. Surfaces and Interfaces 33, 102280 (2022). https://doi.org/10.1016/j.surfin.2022.102280
- J. Speulmanns, S. Bonhardt, W. Weinreich, P. Adelhelm, Interface-engineered atomic layer deposition of 3D Li4Ti5O12 for high-capacity lithium-ion 3D thin-film batteries. Small 20(42), 2403453 (2024). https://doi.org/10.1002/smll.202403453
- X. Han, Y. Gong, K. Fu, X. He, G.T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E.D. Wachsman, L. Hu, Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16(5), 572–579 (2017). https://doi.org/10.1038/nmat4821
- J.B. Bates, N.J. Dudney, G.R. Gruzalski, R.A. Zuhr, A. Choudhury et al., Electrical properties of amorphous lithium electrolyte thin films. Solid State Ion. 53, 647–654 (1992). https://doi.org/10.1016/0167-2738(92)90442-R
- H. Nakazawa, K. Sano, T. Abe, M. Baba, N. Kumagai, Charge-discharge characteristics of all-solid-state thin-filmed lithium-ion batteries using amorphous Nb2O5 negative electrodes. J. Power. Sources 174(2), 838–842 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.226
- M. Haruta, S. Shiraki, T. Ohsawa, T. Suzuki, A. Kumatani et al., Preparation and in-situ characterization of well-defined solid electrolyte/electrode interfaces in thin-film lithium batteries. Solid State Ion. 285, 118–121 (2016). https://doi.org/10.1016/j.ssi.2015.06.007
- J. Trask, A. Anapolsky, B. Cardozo, E. Januar, K. Kumar et al., Optimization of 10-μm, sputtered, LiCoO2 cathodes to enable higher energy density solid state batteries. J. Power. Sources 350, 56–64 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.017
- H.-S. Kim, Y. Oh, K.H. Kang, J.H. Kim, J. Kim et al., Characterization of sputter-deposited LiCoO2 thin film grown on NASICON-type electrolyte for application in all-solid-state rechargeable lithium battery. ACS Appl. Mater. Interfaces 9(19), 16063–16070 (2017). https://doi.org/10.1021/acsami.6b15305
- S. Sun, Z. Han, W. Liu, Q. Xia, L. Xue et al., Lattice pinning in MoO3 via coherent interface with stabilized Li+ intercalation. Nat. Commun. 14(1), 6662 (2023). https://doi.org/10.1038/s41467-023-42335-x
- M. Fehse, R. Trócoli, E. Ventosa, E. Hernández, A. Sepúlveda et al., Ultrafast dischargeable LiMn2O4 thin-film electrodes with pseudocapacitive properties for microbatteries. ACS Appl. Mater. Interfaces 9(6), 5295–5301 (2017). https://doi.org/10.1021/acsami.6b15258
- Z. Qi, J. Jian, J. Huang, J. Tang, H. Wang et al., LiNi0.5Mn0.3Co0.2O2/Au nanocomposite thin film cathode with enhanced electrochemical properties. Nano Energy 46, 290–296 (2018). https://doi.org/10.1016/j.nanoen.2018.02.011
- J. Deng, L. Xib, L. Wang, Z. Wang, C.Y. Chung et al., Electrochemical performance of LiNi1/3Co1/3Mn1/3O2 thin film electrodes prepared by pulsed laser deposition. J. Power. Sources 217, 491–497 (2012). https://doi.org/10.1016/j.jpowsour.2012.06.006
- C. Jacob, T. Lynch, A. Chen, J. Jian, H. Wang, Highly textured Li(Ni0.5Mn0.3Co0.2)O2 thin films on stainless steel as cathode for lithium-ion battery. J. Power. Sources 241, 410–414 (2013). https://doi.org/10.1016/j.jpowsour.2013.04.140
- A. Bünting, S. Uhlenbruck, D. Sebold, H.P. Buchkremer, R. Vaßen, Three-dimensional, fibrous lithium iron phosphate structures deposited by magnetron sputtering. ACS Appl. Mater. Interfaces 7(40), 22594–22600 (2015). https://doi.org/10.1021/acsami.5b07090
- V.A. Sugiawati, F. Vacandio, C. Perrin-Pellegrino, A. Galeyeva, A.P. Kurbatov et al., <-title update="added">Sputtered porous Li-Fe-P-O film cathodes prepared by radio frequency sputtering for Li-ion microbatteries. Sci. Rep. 9(1), 11172 (2019). https://doi.org/10.1038/s41598-019-47464-2
- R.M. Ugalde-Vázquez, F. Ambriz-Vargas, F. Morales-Morales, N. Hernández-Sebastián, A. Benítez-Lara et al., Effect of argon sputtering pressure on the electrochemical performance of LiFePO4 cathode. J. Eur. Ceram. Soc. 43(2), 407–418 (2023). https://doi.org/10.1016/j.jeurceramsoc.2022.10.030
- L. Wang, J. Qiu, X. Wang, L. Chen, G. Cao et al., Insights for understanding multiscale degradation of LiFePO4 cathodes. eScience 2(2), 125–137 (2022). https://doi.org/10.1016/j.esci.2022.03.006
- D. Kang, K. Ito, K. Shimizu, K. Watanabe, N. Matsui et al., Fabrication and high-temperature electrochemical stability of LiFePO4 cathode/Li3PO4 electrolyte interface. Electrochemistry 92(3), 037008 (2024). https://doi.org/10.5796/electrochemistry.24-00017
- H. Lee, S. Kim, N.S. Parmar, J.-H. Song, K. Chung et al., Carbon-free Mn-doped LiFePO4 cathode for highly transparent thin-film batteries. J. Power. Sources 434, 226713 (2019). https://doi.org/10.1016/j.jpowsour.2019.226713
- J.B. Bates, N.J. Dudney, B.J. Neudecker, F.X. Hart, H.P. Jun et al., Preferred orientation of polycrystalline LiCoO2 films. J. Electrochem. Soc. 147(1), 59–70 (2000). https://doi.org/10.1149/1.1393157
- Y. Yoon, C. Park, J. Kim, D. Shin, Lattice orientation control of lithium cobalt oxide. J. Power. Sources 226, 186–190 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.094
- H. Xia, L. Lu, Texture effect on the electrochemical properties of LiCoO2 thin films prepared by PLD. Electrochim. Acta 52(24), 7014–7021 (2007). https://doi.org/10.1016/j.electacta.2007.05.019
- J.F. Whitacre, W.C. West, E. Brandon, B.V. Ratnakumar, Crystallographically oriented thin-film nanocrystalline cathode layers prepared without exceeding 300 °C. J. Electrochem. Soc. 148(10), A1078 (2001). https://doi.org/10.1149/1.1400119
- Q. Xia, S. Sun, J. Xu, F. Zan, J. Yue, Q. Zhang, L. Gu, H. Xia, Self‐standing 3D cathodes for all‐solid‐state thin film lithium batteries with improved interface kinetics. Small 14(52), 1804149 (2018). https://doi.org/10.1002/smll.201804149
- W. Wu, J. Duan, J. Wen, Y. Chen, X. Liu et al., A writable lithium metal ink. Sci. China Chem. 63(10), 1483–1489 (2020). https://doi.org/10.1007/s11426-020-9810-1
- P.R. Abel, A.M. Chockla, Y.-M. Lin, V.C. Holmberg, J.T. Harris, B.A. Korgel, A. Heller, C.B. Mullins, Nanostructured Si(1−x)Gex for tunable thin film lithium-ion battery anodes. ACS Nano 7(3), 2249–2257 (2013). https://doi.org/10.1021/nn3053632
- B.D. Polat, O.L. Eryilmaz, O. Keleş, A. Erdemir, K. Amine, Compositionally graded SiCu thin film anode by magnetron sputtering for lithium ion battery. Thin Solid Films 596, 190–197 (2015). https://doi.org/10.1016/j.tsf.2015.09.085
- M. Kotobuki, K. Hoshina, K. Kanamura, Electrochemical properties of thin TiO2 electrode on Li1+xAlxGe2−x(PO4)3 solid electrolyte. Solid State Ionics 198(1), 22–25 (2011). https://doi.org/10.1016/j.ssi.2011.07.003
- J. Haetge, P. Hartmann, K. Brezesinski, J. Janek, T. Brezesinski, Ordered large-pore mesoporous Li4Ti5O12 spinel thin film electrodes with nanocrystalline framework for high rate rechargeable lithium batteries: relationships among charge storage, electrical conductivity, and nanoscale structure. Chem. Mater. 23(19), 4384–4393 (2011). https://doi.org/10.1021/cm202185y
- J. Deng, Z. Lu, C.Y. Chung, X. Han, Z. Wang et al., Electrochemical performance and kinetic behavior of lithium ion in Li4Ti5O12 thin film electrodes. Appl. Surf. Sci. 314, 936–941 (2014). https://doi.org/10.1016/j.apsusc.2014.06.162
- F. Wunde, F. Berkemeier, G. Schmitz, Lithium diffusion in sputter-deposited Li4Ti5O12 thin films. J. Power. Sources 215, 109–115 (2012). https://doi.org/10.1016/j.jpowsour.2012.04.102
- H. Wu, Y. Cui, Designing nanostructured si anodes for high energy lithium ion batteries. Nano Today 7(5), 414–429 (2012). https://doi.org/10.1016/j.nantod.2012.08.004
- J.P. Maranchi, A.F. Hepp, P.N. Kumta, High capacity, reversible silicon thin-film anodes for lithium-ion batteries. Electrochem. Solid-State Lett. 6(9), A198–A201 (2003). https://doi.org/10.1149/1.1596918
- D. Cheng, T.A. Wynn, X. Wang, S. Wang, M. Zhang et al., Unveiling the stable nature of the solid electrolyte interphase between lithium metal and LiPON via cryogenic electron microscopy. Joule 4(11), 2484–2500 (2020). https://doi.org/10.1016/j.joule.2020.08.013
- J. Lin, J. Guo, C. Liu, H. Guo, Ultrahigh-performance Cu2ZnSnS4 thin film and its application in microscale thin-film lithium-ion battery: comparison with SnO2. ACS Appl. Mater. Interfaces 8(50), 34372–34378 (2016). https://doi.org/10.1021/acsami.6b10730
- D.M. Stewart, A.J. Pearse, N.S. Kim, E.J. Fuller, A.A. Talin et al., Tin oxynitride anodes by atomic layer deposition for solid-state batteries. Chem. Mater. 30(8), 2526–2534 (2018). https://doi.org/10.1021/acs.chemmater.7b04666
- L. Tong, P. Wang, A. Chen, F. Qiu, W. Fang et al., Improved electrochemical performance of binder-free multi-layered silicon/carbon thin film electrode for lithium-ion batteries. Carbon 153, 592–601 (2019). https://doi.org/10.1016/j.carbon.2019.07.067
- R. Pfenninger, S. Afyon, I. Garbayo, M. Struzik, J.L.M. Rupp, Lithium titanate anode thin films for Li-ion solid state battery based on garnets. Adv. Funct. Mater. 28(21), 1800879 (2018). https://doi.org/10.1002/adfm.201800879
- X. Song, W. Yu, S. Zhou, L. Zhao, A. Li et al., Enhancement of Mn-doped LiPON electrolyte for higher performance of all-solid-state thin film lithium battery. Mater. Today Phys. 33, 101037 (2023). https://doi.org/10.1016/j.mtphys.2023.101037
- X. He, Y. Ma, J. Liu, J. Wang, X. Hu, H. Dong, X. Huang, Improved electrochemical performance and chemical stability of thin-film lithium phosphorus oxynitride electrolyte by appropriate fluorine plasma treatment. Electrochim. Acta 454, 142411 (2023). https://doi.org/10.1016/j.electacta.2023.142411
- X. Lü, J.W. Howard, A. Chen, J. Zhu, S. Li et al., Antiperovskite Li3OCl superionic conductor films for solid-state Li-ion batteries. Adv. Sci. 3(3), 1500359 (2016). https://doi.org/10.1002/advs.201500359
- Q. Ling, Z. Yu, H. Xu, G. Zhu, X. Zhang et al., Preparation and electrical properties of amorphous Li-Al-Ti-P-O thin film electrolyte. Mater. Lett. 169, 42–45 (2016). https://doi.org/10.1016/j.matlet.2016.01.089
- S.-P. Song, C. Yang, C.-Z. Jiang, Y.-M. Wu, R. Guo et al., Increasing ionic conductivity in Li0.33La0.56TiO3 thin-films via optimization of processing atmosphere and temperature. Rare Met. 41(1), 179–188 (2022). https://doi.org/10.1007/s12598-021-01782-5
- R. Pfenninger, M. Struzik, I. Garbayo, E. Stilp, J.L.M. Rupp, A low ride on processing temperature for fast lithium conduction in garnet solid-state battery films. Nat. Energy 4(6), 475–483 (2019). https://doi.org/10.1038/s41560-019-0384-4
- J. Li, C. Ma, M. Chi, C. Liang, N.J. Dudney, Solid electrolyte: the key for high‐voltage lithium batteries. Adv. Energy Mater. 5(4), 1401408 (2015). https://doi.org/10.1002/aenm.201401408
- J. Chen, Q. Xia, W. Liu, H. Xia, Enhancing the lithium storage capability of TiO2 thin film for all-solid-state microbatteries via amorphous-crystalline heterostructure design. Appl. Phys. Lett. 121(13), 131901 (2022). https://doi.org/10.1063/5.0117083
- Q. Li, W. Liu, J. Wang, Q. Xia, H. Xia, Long-cycle-life Li2MnO3 thin-film cathode enabled by all-solid-state battery configuration. J. Power. Sources 602, 234371 (2024). https://doi.org/10.1016/j.jpowsour.2024.234371
- J. Casella, J. Morzy, E. Gilshtein, M. Yarema, M.H. Futscher et al., Electrochemical activation of Fe–LiF conversion cathodes in thin-film solid-state batteries. ACS Nano 18(5), 4352–4359 (2024). https://doi.org/10.1021/acsnano.3c10146
- J. Qiu, H. Li, Y. Zhao, R. Xu, K. Wei et al., In-situ reconstructed surface/inner-structure synergistic design enabling 4.6 V LiCoO2 cathode for all-solid-state thin-film battery. Mater. Today 80, 342–352 (2024). https://doi.org/10.1016/j.mattod.2024.09.011
- X. Liu, L. Zhang, Y. Zheng, Z. Guo, Y. Zhu et al., Uncovering the effect of lattice strain and oxygen deficiency on electrocatalytic activity of perovskite cobaltite thin films. Adv. Sci. 6(6), 1801898 (2019). https://doi.org/10.1002/advs.201801898
- J. Qiu, H. Li, T. Wu, Y. He, R. Xu et al., Construction of longitudinal (003) textured low-strain diffusion channel in 4.6 V LiCoO2-based all-solid-state thin film battery for microelectronic systems. ACS Energy Lett. 10, 3249–3258 (2025). https://doi.org/10.1021/acsenergylett.5c01012
- M.H. Futscher, T. Amelal, J. Sastre, A. Müller, J. Patidar, A. Aribia, K. Thorwarth, S. Siol, Y.E. Romanyuk, Influence of amorphous carbon interlayers on nucleation and early growth of lithium metal at the current collector-solid electrolyte interface. J. Mater. Chem. A 10(29), 15535–15542 (2022). https://doi.org/10.1039/d2ta02843c
- X. Pu, W. Hu, Z.L. Wang, Toward wearable self‐charging power systems: the integration of energy‐harvesting and storage devices. Small 14(1), 1702817 (2018). https://doi.org/10.1002/smll.201702817
- J. Liu, J. Xu, Y. Lin, J. Li, Y. Lai et al., All-solid-state lithium ion battery: research and industrial prospects. Acta Chim. Sinica 71(06), 869–878 (2013). https://doi.org/10.6023/a13020170
- F. Sandbaumhüter, S.N. Agbo, C.-L. Tsai, O. Astakhov, S. Uhlenbruck, U. Rau, T. Merdzhanova, Compatibility study towards monolithic self-charging power unit based on all-solid thin-film solar module and battery. J. Power. Sources 365, 303–307 (2017). https://doi.org/10.1016/j.jpowsour.2017.08.103
- D. Lau, N. Song, C. Hall, Y. Jiang, S. Lim et al., Hybrid solar energy harvesting and storage devices: the promises and challenges. Mater. Today Energy 13, 22–44 (2019). https://doi.org/10.1016/j.mtener.2019.04.003
- B. Hu, X.-L. Shi, T. Cao, M. Li, W. Chen, W.-D. Liu, W. Lyu, T. Tesfamichael, Z.-G. Chen, Advances in flexible thermoelectric materials and devices fabricated by magnetron sputtering. Small Science 5(3), 2300061 (2025). https://doi.org/10.1002/smsc.202300061
- M.H. Futscher, L. Brinkman, A. Müller, J. Casella, A. Aribia, Y.E. Romanyuk, Monolithically-stacked thin-film solid-state batteries. Commun. Chem. 6(1), 110 (2023). https://doi.org/10.1038/s42004-023-00901-w
- F.L. Cras, B. Pecquenard, V. Dubois, V. Phan, D. Guy‐Bouyssou, All‐solid‐state lithium‐ion microbatteries using silicon nanofilm anodes: high performance and memory effect. Adv. Energy Mater. 5(19), 1501061 (2015). https://doi.org/10.1002/aenm.201501061
- X. Wu, L. Wang, W. Gu, J. Wang, Y. Zhuang et al., High-performance 3D stacked micro all-solid-state thin-film lithium-ion batteries based on the stress-compensation effect. Small 20(25), 2307250 (2024). https://doi.org/10.1002/smll.202307250
- B. Ke, X. Wang, Integratable all-solid-state thin-film microbatteries. Proc. Natl. Acad. Sci. 122(16), e2415693122 (2025). https://doi.org/10.1073/pnas.2415693122
- M. Koo, K.-I. Park, S.H. Lee, M. Suh, D.Y. Jeon, J.W. Choi, K. Kang, K.J. Lee, Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett. 12(9), 4810–4816 (2012). https://doi.org/10.1021/nl302254v
- A.T. Kutbee, M.T. Ghoneim, S.M. Ahmad, M.M. Hussain, Free-form flexible lithium-ion microbattery. IEEE Trans. Nanotechnol. 15(3), 402–408 (2016). https://doi.org/10.1109/tnano.2016.2537338
- R. Shimizu, D. Cheng, J.L. Weaver, M. Zhang, B. Lu, T.A. Wynn, R. Burger, M.-C. Kim, G. Zhu, Y.S. Meng, Unraveling the stable cathode electrolyte interface in all solid-state thin-film battery operating at 5 V. Adv. Energy Mater. 12(31), 2201119 (2022). https://doi.org/10.1002/aenm.202201119
- Z. Wang, D. Santhanagopalan, W. Zhang, F. Wang, H.L. Xin et al., In situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries. Nano Lett. 16, 3760–3767 (2016). https://doi.org/10.1021/acs.nanolett.6b01119
- S. Lou, F. Zhang, C. Fu, M. Chen, Y. Ma, G. Yin, J. Wang, Interface issues and challenges in all-solid-state batteries: lithium, sodium, and beyond. Adv. Mater. 33(6), 2000721 (2021). https://doi.org/10.1002/adma.202000721
- A. Uhart, J.B. Ledeuil, B. Pecquenard, F. Le Cras, M. Proust et al., Nanoscale chemical characterization of solid-state microbattery stacks by means of auger spectroscopy and ion-milling cross section preparation. ACS Appl. Mater. Interfaces 9(38), 33238–33249 (2017). https://doi.org/10.1021/acsami.7b07270
- K.L. Browning, A.S. Westover, J.F. Browning, M. Doucet, R.L. Sacci et al., In situ measurement of buried electrolyte-electrode interfaces for solid state batteries with nanometer level precision. ACS Energy Lett. 8(4), 1985–1991 (2023). https://doi.org/10.1021/acsenergylett.3c00488
- C. Chen, J.F.M. Oudenhoven, D.L. Danilov, E. Vezhlev, L. Gao, Na. Li, F.M. Mulder, R.-A. Eichel, P.H.L. Notten, Origin of degradation in Si‐based all‐solid‐state Li‐ion microbatteries. Adv. Energy Mater. 8(30), 1801430 (2018). https://doi.org/10.1002/aenm.201801430
- J. Miao, C.V. Thompson, Kinetic study of the initial lithiation of amorphous silicon thin film anodes. J. Electrochem. Soc. 165(3), A650–A656 (2018). https://doi.org/10.1149/2.1011803jes
- Z. Zou, Z. Xiao, Z. Lin, B. Zhang, C. Zhang, F. Wei, Lithium phosphorous oxynitride as an advanced solid‐state electrolyte to boost high‐energy lithium metal battery. Adv. Funct. Mater. 34(49), 2409330 (2024). https://doi.org/10.1002/adfm.202409330
- Z. Wang, J.Z. Lee, H.L. Xin, L. Han, N. Grillon et al., Effects of cathode electrolyte interfacial (CEI) layer on long term cycling of all-solid-state thin-film batteries. J. Power. Sources 324, 342–348 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.098
- L. Yang, X. Li, K. Pei, W. You, X. Liu, H. Xia, Y. Wang, R. Che, Direct view on the origin of high Li+ transfer impedance in all-solid-state battery. Adv. Funct. Mater. 31(35), 2103971 (2021). https://doi.org/10.1002/adfm.202103971
- D. Cheng, T. Wynn, B. Lu, M. Marple, B. Han et al., A free-standing lithium phosphorus oxynitride thin film electrolyte promotes uniformly dense lithium metal deposition with no external pressure. Nat. Nanotechnol. 18(12), 1448–1455 (2023). https://doi.org/10.1038/s41565-023-01478-0
- V.C. Ferrari, S.B. Lee, G.W. Rubloff, D.M. Stewart, Interface diagnostics platform for thin-film solid-state batteries. Energy Environ. Sci. 18, 1783–1800 (2025). https://doi.org/10.1039/d4ee03915g
- J. Sastre, X. Chen, A. Aribia, A.N. Tiwari, Y.E. Romanyuk, Fast charge transfer across the Li7La3Zr2O12 solid electrolyte/LiCoO2 cathode interface enabled by an interphase-engineered all-thin-film architecture. ACS Appl. Mater. Interfaces 12(32), 36196–36207 (2020). https://doi.org/10.1021/acsami.0c09777
- H.Y. Park, S.R. Lee, Y.J. Lee, B.W. Cho, W.I. Cho, Bias sputtering and characterization of LiCoO2 thin film cathodes for thin film microbattery. Mater. Chem. Phys. 93(1), 70–78 (2005). https://doi.org/10.1016/j.matchemphys.2005.02.024
- Y. He, Q. Xia, W. Liu, C. Wu, J. Wang, Yu. Cai, Y. Guo, F. Zan, J. Xu, H. Xia, Toward high‐performance all‐solid‐state thin film FeOxSy/LiPON/Li microbatteries via dual‐interface modification. Adv. Funct. Mater. 34(19), 2310876 (2024). https://doi.org/10.1002/adfm.202310876
- C.-F. Xiao, J.H. Kim, S.-H. Cho, Y.C. Park, M.J. Kim et al., Ensemble design of electrode-electrolyte interfaces: toward high-performance thin-film all-solid-state Li-metal batteries. ACS Nano 15(3), 4561–4575 (2021). https://doi.org/10.1021/acsnano.0c08691
- C. Yada, A. Ohmori, K. Ide, H. Yamasaki, T. Kato, T. Saito, F. Sagane, Y. Iriyama, Dielectric modification of 5 V-class cathodes for high-voltage all-solid-state lithium batteries. Adv. Energy Mater. 4(9), 1301416 (2014). https://doi.org/10.1002/aenm.201301416
- F.S. Gittleson, F. El Gabaly, Non-faradaic Li+ migration and chemical coordination across solid-state battery interfaces. Nano Lett. 17(11), 6974–6982 (2017). https://doi.org/10.1021/acs.nanolett.7b03498
- Y. Iriyama, K. Nishimoto, C. Yada, T. Abe, Z. Ogumi et al., Charge-transfer reaction at the lithium phosphorus oxynitride glass electrolyte/lithium manganese oxide thin-film interface and its stability on cycling. J. Electrochem. Soc. 153(5), A821 (2006). https://doi.org/10.1149/1.2178647
- Y. Iriyama, T. Kako, C. Yada, T. Abe, Z. Ogumi, Reduction of charge transfer resistance at the lithium phosphorus oxynitride/lithium cobalt oxide interface by thermal y treatment. J. Power. Sources 146(1−2), 745–748 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.073
- Y. Yang, S. Jeong, L. Hu, H. Wu, S.W. Lee et al., Transparent lithium-ion batteries. Proc. Natl. Acad. Sci. 108(32), 13013–13018 (2011). https://doi.org/10.1073/pnas.1102873108
- J.F.M. Oudenhoven, Loïc.. Baggetto, P.H.L. Notten, All-solid-state lithium-ion microbatteries: a review of various three-dimensional concepts. Adv. Energy Mater. 1(1), 10–33 (2011). https://doi.org/10.1002/aenm.201000002
- T.S. Arthur, D.J. Bates, N. Cirigliano, D.C. Johnson, P. Malati, J.M. Mosby, E. Perre, M.T. Rawls, A.L. Prieto, B. Dunn, Three-dimensional electrodes and battery architectures. MRS Bull. 36(7), 523–531 (2011). https://doi.org/10.1557/mrs.2011.156
- A. Pearse, T. Schmitt, E. Sahadeo, D.M. Stewart, A. Kozen, K. Gerasopoulos, A.A. Talin, S.B. Lee, G.W. Rubloff, K.E. Gregorczyk, Three-dimensional solid-state lithium-ion batteries fabricated by conformal vapor-phase chemistry. ACS Nano 12(5), 4286–4294 (2018). https://doi.org/10.1021/acsnano.7b08751
- M. Létiche, E. Eustache, J. Freixas, A. Demortière, V. De Andrade, L. Morgenroth, P. Tilmant, F. Vaurette, D. Troadec, P. Roussel, T. Brousse, C. Lethien, Atomic layer deposition of functional layers for on chip 3D Li-ion all solid state microbattery. Adv. Energy Mater. 7(2), 1601402 (2017). https://doi.org/10.1002/aenm.201601402
- M. Hallot, V. Nikitin, O.I. Lebedev, R. Retoux, D. Troadec, V. De Andrade, P. Roussel, C. Lethien, 3D LiMn2O4 thin film deposited by ALD: a road toward high‐capacity electrode for 3D Li‐ion microbatteries. Small 18(14), 2107054 (2022). https://doi.org/10.1002/smll.202107054
- A.A. Talin, D. Ruzmetov, A. Kolmakov, K. McKelvey, N. Ware et al., Fabrication, testing, and simulation of all-solid-state three-dimensional Li-ion batteries. ACS Appl. Mater. Interfaces 8(47), 32385–32391 (2016). https://doi.org/10.1021/acsami.6b12244
- D. Ruzmetov, V.P. Oleshko, P.M. Haney, H.J. Lezec, K. Karki et al., Electrolyte stability determines scaling limits for solid-state 3D Li ion batteries. Nano Lett. 12(1), 505–511 (2012). https://doi.org/10.1021/nl204047z
- J. Zhang, W. Li, Z. Liu, Z. Huang, H. Wang, B. Ke, Lu. Xue, H. Jia, X. Wang, All‐solid‐state thin‐film lithium‐selenium batteries. Adv. Funct. Mater. 35(38), 2503732 (2025). https://doi.org/10.1002/adfm.202503732
- Q. Xia, N. Jabeen, S.V. Savilov, S.M. Aldoshin, H. Xia, Black mesoporous Li4Ti5O12−δ nanowall arrays with improved rate performance as advanced 3D anodes for microbatteries. J. Mater. Chem. A 4(44), 17543–17551 (2016). https://doi.org/10.1039/c6ta06699b
- J. Xie, J.F.M. Oudenhoven, D. Li, C. Chen, R.-A. Eichel et al., High power and high capacity 3D-structured TiO2 electrodes for lithium-ion microbatteries. J. Electrochem. Soc. 163(10), A2385 (2016). https://doi.org/10.1149/2.1141610jes
- Y. Wang, T. Wang, P. Da, M. Xu, H. Wu et al., Silicon nanowires for biosensing, energy storage, and conversion. Adv. Mater. 25(37), 5177–5195 (2013). https://doi.org/10.1002/adma.201301943
- S. Sun, Q. Xia, J. Liu, J. Xu, F. Zan et al., Self-standing oxygen-deficient α-MoO3−x nanoflake arrays as 3D cathode for advanced all-solid-state thin film lithium batteries. J. Materiomics 5(2), 229–236 (2019). https://doi.org/10.1016/j.jmat.2019.01.001
- Z. Qi, J. Tang, J. Huang, D. Zemlyanov, V.G. Pol et al., Li2MnO3 thin films with tilted domain structure as cathode for Li-ion batteries. ACS Appl. Energy Mater. 2(5), 3461–3468 (2019). https://doi.org/10.1021/acsaem.9b00259
- Z. Qi, J. Tang, S. Misra, C. Fan, P. Lu et al., Enhancing electrochemical performance of thin film lithium ion battery via introducing tilted metal nanopillars as effective current collectors. Nano Energy 69, 104381 (2020). https://doi.org/10.1016/j.nanoen.2019.104381
- B. Xiao, Q. Tang, X. Dai, F. Wu, H. Chen et al., Enhanced interfacial kinetics and high rate performance of LiCoO2 thin-film electrodes by Al doping and in situ Al2O3 coating. ACS Omega 7(35), 31597–31606 (2022). https://doi.org/10.1021/acsomega.2c04665
- M. Rawlence, A.N. Filippin, A. Wäckerlin, T.-Y. Lin, E. Cuervo-Reyes et al., Effect of gallium substitution on lithium-ion conductivity and phase evolution in sputtered Li7−3xGaxLa3Zr2O12 thin films. ACS Appl. Mater. Interfaces 10(16), 13720–13728 (2018). https://doi.org/10.1021/acsami.8b03163
- J. Sastre, T.-Y. Lin, A.N. Filippin, A. Priebe, E. Avancini et al., Aluminum-assisted densification of cosputtered lithium garnet electrolyte films for solid-state batteries. ACS Appl. Energy Mater. 2(12), 8511–8524 (2019). https://doi.org/10.1021/acsaem.9b01387
- J. Sastre, A. Priebe, M. Döbeli, J. Michler, A.N. Tiwari, Y.E. Romanyuk, Lithium garnet Li7La3Zr2O12 electrolyte for all‐solid‐state batteries: closing the gap between bulk and thin film Li‐ion conductivities. Adv. Mater. Interfaces 7(17), 2000425 (2020). https://doi.org/10.1002/admi.202000425
- J. Sastre, M.H. Futscher, L. Pompizi, A. Aribia, A. Priebe et al., Blocking lithium dendrite growth in solid-state batteries with an ultrathin amorphous Li–La–Zr–O solid electrolyte. Commun. Mater. 2(1), 76 (2021). https://doi.org/10.1038/s43246-021-00177-4
- H. Liu, H. Sun, W. Hua, X. Liu, W. Liu et al., Roll-to-roll coating to processing large-area Zinc anodes toward fast and dendrite-free deposition. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202509206
- M. Zhu, O.G. Schmidt, Tiny robots and sensors need tiny batteries—here’s how to do it. Nature 589(7841), 195–197 (2021). https://doi.org/10.1038/d41586-021-00021-2
- D. Cheng, K. Tran, S. Rao, Z. Wang, R. Van Der Linde et al., Manufacturing scale-up of anodeless solid-state lithium thin-film batteries for high volumetric energy density applications. ACS Energy Lett. 8(11), 4768–4774 (2023). https://doi.org/10.1021/acsenergylett.3c01839
- M.-S. Jung, M.-W. Moon, J.-H. Seo, Y.-C. Joo, I.-S. Choi, Robust Si anode design for Li-ion battery on polyimide substrate: villus-like polymer/Si core/shell hybrid nano-structure. ECS Meet. Abstr. 14, 935 (2013). https://doi.org/10.1149/MA2013-02/14/953
- J. Glenneberg, F. Andre, I. Bardenhagen, F. Langer, J. Schwenzel, R. Kun, A concept for direct deposition of thin film batteries on flexible polymer substrate. J. Power. Sources 324, 722–728 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.007
- J. Glenneberg, G. Kasiri, I. Bardenhagen, F. La Mantia, M. Busse et al., Investigations on morphological and electrochemical changes of all-solid-state thin film battery cells under dynamic mechanical stress conditions. Nano Energy 57, 549–557 (2019). https://doi.org/10.1016/j.nanoen.2018.12.070
- X. Dai, Z. Wang, J. Li, F. Wu, Y. Mai, X. Dong, Controllable preparation and electrochemical properties of in-situ annealed LiCoO2 films with a specific crystalline orientation on stainless steel substrates. Solid State Ionics 365, 115658 (2021). https://doi.org/10.1016/j.ssi.2021.115658
- K.A. Striebel, C.Z. Deng, S.J. Wen, E.J. Cairns, Electrochemical behavior of LiMn2O4 and LiCoO2 thin films produced with pulsed laser deposition. J. Electrochem. Soc. 143(6), 1821–1827 (1996). https://doi.org/10.1149/1.1836910
- S.B. Tang, M.O. Lai, L. Lu, Properties of nano-crystalline LiMn2O4 thin films deposited by pulsed laser deposition. Electrochim. Acta 52(3), 1161–1168 (2006). https://doi.org/10.1016/j.electacta.2006.07.014
- R. Chen, W. Liang, H. Zhang, F. Wu, L. Li, Preparation and performance of novel LLTO thin film electrolytes for thin film lithium batteries. Chin. Sci. Bull. 57(32), 4199–4204 (2012). https://doi.org/10.1007/s11434-012-5292-y
- A. Sepúlveda, J. Speulmanns, P.M. Vereecken, Bending impact on the performance of a flexible Li4Ti5O12-based all-solid-state thin-film battery. Sci. Technol. Adv. Mater. 19(1), 454–464 (2018). https://doi.org/10.1080/14686996.2018.1468199
- S.-W. Song, S.-J. Hong, H.Y. Park, Y.C. Lim, K.C. Lee, Cycling-driven structural changes in a thin-film lithium battery on flexible substrate. Electrochem. Solid-State Lett. 12(8), A159 (2009). https://doi.org/10.1149/1.3139530
- S.-W. Song, K.-C. Lee, H.-Y. Park, High-performance flexible all-solid-state microbatteries based on solid electrolyte of lithium boron oxynitride. J. Power. Sources 328, 311–317 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.114
- H. Ge, H. Tian, H. Song, D. Liu, S. Wu, X. Shi, X. Gao, Li. Lv, X.-M. Song, Study on the energy band structure and photoelectrochemical performances of spinel Li4Ti5O12. Mater. Res. Bull. 61, 459–462 (2015). https://doi.org/10.1016/j.materresbull.2014.10.064
- H. Lee, K.-B. Kim, J.-W. Choi, Transparent SiN thin-film anode for thin-film batteries by reactive sputtering at room temperature. Chem. Eng. J. 401, 126086 (2020). https://doi.org/10.1016/j.cej.2020.126086
- M. Roeder, A.B. Beleke, U. Guntow, J. Buensow, A. Guerfi, U. Posset, H. Lorrmann, K. Zaghib, G. Sextl, Li4Ti5O12 and LiMn2O4 thin-film electrodes on transparent conducting oxides for all-solid-state and electrochromic applications. J. Power. Sources 301, 35–40 (2016). https://doi.org/10.1016/j.jpowsour.2015.09.063
- S. Pat, H. HakanYudar, Ş Korkmaz, S. Özen, R. Mohammadigharehbagh, Z. Pat, The microstructural, surface, optical and electrochemical impedance spectroscopic study of the semitransparent all-solid-state thin film battery. Mater. Res. Express 6(1), 015503 (2018). https://doi.org/10.1088/2053-1591/aae4aa
- S. Pat, S. Özen, H.H. Yudar, Ş Korkmaz, Z. Pat, The transparent all-solid-state rechargeable micro-battery manufacturing by rf magnetron sputtering. J. Alloys Compd. 713, 64–68 (2017). https://doi.org/10.1016/j.jallcom.2017.04.169
- S. Oukassi, L. Baggetto, C. Dubarry, L.L. Van-Jodin, S. Poncet, L. Le Van-Jodin, R. Salot, Transparent thin film solid-state lithium ion batteries. ACS Appl. Mater. Interfaces 11(1), 683–690 (2019). https://doi.org/10.1021/acsami.8b16364
- H. Lee, S. Kim, K.-B. Kim, J.-W. Choi, Scalable fabrication of flexible thin-film batteries for smart lens applications. Nano Energy 53, 225–231 (2018). https://doi.org/10.1016/j.nanoen.2018.08.054
- G.A. Landis, Conf. Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conf. (Cat. No.02CH37361), IEEE. 1539−1540 (2002). https://doi.org/10.1109/pvsc.2002.1190441
- G. Chen, M. Fojtik, D. Kim, D. Fick, J. Park et al., Millimeter-scale nearly perpetual sensor system with stacked battery and solar cells. In: 2010 IEEE International Solid-State Circuits Conference. (ISSCC), IEEE. 288−289 (2010). https://doi.org/10.1109/isscc.2010.5433921
- M. Fojtik, D. Kim, G. Chen, Y.-S. Lin, D. Fick, J. Park, M. Seok, M.-T. Chen, Z. Foo, D. Blaauw, D. Sylvester, A millimeter-scale energy-autonomous sensor system with stacked battery and solar cells. IEEE J. Solid-State Circuits 48(3), 801–813 (2013). https://doi.org/10.1109/jssc.2012.2233352
- T. Kuriyama, A. Suzuki, Y. Okamoto, I. Kimura, Y. Morikawa et al., A micromachined all-solid on-chip thin-film battery towards uninterruptible photovoltaic cells. In 2018 Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP), IEEE. 1−4 (2018). https://doi.org/10.1109/DTIP.2018.8394215
- S.R. Anton, A. Erturk, D.J. Inman, Multifunctional self-charging structures using piezoceramics and thin-film batteries. Smart Mater. Struct. 19(11), 115021 (2010). https://doi.org/10.1088/0964-1726/19/11/115021
- H. Lhermet, C. Condemine, M. Plissonnier, R. Salot, P. Audebert, M. Rosset, Efficient power management circuit: from thermal energy harvesting to above-IC microbattery energy storage. IEEE J. Solid-State Circuits 43(1), 246–255 (2008). https://doi.org/10.1109/jssc.2007.914725
- W.-Y. Liu, Z.-W. Fu, C.-L. Li, Q.-Z. Qin, Lithium phosphorus oxynitride thin film fabricated by a nitrogen plasma-assisted deposition of E-beam reaction evaporation. Electrochem. Solid-State Lett. 7(9), J36 (2004). https://doi.org/10.1149/1.1778934
- B. Wang, J.B. Bates, F.X. Hart, B.C. Sales, R.A. Zuhr et al., Characterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes. J. Electrochem. Soc. 143(10), 3203 (1996). https://doi.org/10.1149/1.1837188
References
J. Fan, C. Liu, N. Li, L. Yang, X.-G. Yang et al., Wireless transmission of internal hazard signals in Li-ion batteries. Nature 641(8063), 639–645 (2025). https://doi.org/10.1038/s41586-025-08785-7
H. Tang, Y. Yin, Y. Huang, J. Wang, L. Liu et al., Battery-everywhere design based on a cathodeless configuration with high sustainability and energy density. ACS Energy Lett. 6(5), 1859–1868 (2021). https://doi.org/10.1021/acsenergylett.1c00555
J.H. Pikul, H. Ning, Powering the internet of things. Joule 2(6), 1036–1038 (2018). https://doi.org/10.1016/j.joule.2018.06.005
H. Hafezi, T.L. Robertson, G.D. Moon, K.-Y. Au-Yeung, M.J. Zdeblick et al., An ingestible sensor for measuring medication adherence. IEEE Trans. Biomed. Eng. 62(1), 99–109 (2015). https://doi.org/10.1109/TBME.2014.2341272
S. Gong, W. Cheng, Toward soft skin-like wearable and implantable energy devices. Adv. Energy Mater. 7(23), 1700648 (2017). https://doi.org/10.1002/aenm.201700648
P. Birke, W.F. Chu, W. Weppner, Materials for lithium thin-film batteries for application in silicon technology. Solid State Ion. 93(1–2), 1–15 (1996). https://doi.org/10.1016/S0167-2738(96)00489-4
W. Liu, M.-S. Song, B. Kong, Y. Cui, Flexible and stretchable energy storage: recent advances and future perspectives. Adv. Mater. 29(1), 1603436 (2017). https://doi.org/10.1002/adma.201603436
L. Liu, Q. Weng, X. Lu, X. Sun, L. Zhang et al., Advances on microsized on-chip lithium-ion batteries. Small 13(45), 1701847 (2017). https://doi.org/10.1002/smll.201701847
C. Cao, Y. Zhong, Z. Shao, Electrolyte engineering for safer lithium-ion batteries: a review. Chin. J. Chem. 41(9), 1119–1141 (2023). https://doi.org/10.1002/cjoc.202200588
Q. Xia, F. Zan, Q. Zhang, W. Liu, Q. Li, Y. He, J. Hua, J. Liu, J. Xu, J. Wang, C. Wu, H. Xia, All‐solid‐state thin film lithium/lithium‐ion microbatteries for powering the internet of things. Adv. Mater. 35(2), 2200538 (2023). https://doi.org/10.1002/adma.202200538
Q. Shi, B. Dong, T. He, Z. Sun, J. Zhu, Z. Zhang, C. Lee, Progress in wearable electronics/photonics—moving toward the era of artificial intelligence and internet of things. InfoMat 2(6), 1131–1162 (2020). https://doi.org/10.1002/inf2.12122
X. Fan, B. Liu, J. Ding, Y. Deng, X. Han et al., Flexible and wearable power sources for next-generation wearable electronics. Batteries Supercaps 3(12), 1262–1274 (2020). https://doi.org/10.1002/batt.202000115
Y. Ozawa, Y. Nishitai, N. Ochirkhuyag, N. Usami, M. Kanto, K. Ueno, H. Ota, Liquid metal electrode ink for printable lithium‐ion batteries. Adv. Eng. Mater. 26(11), 2400529 (2024). https://doi.org/10.1002/adem.202400529
T. Zhang, L. Fu, Controllable chemical vapor deposition growth of two-dimensional heterostructures. Chem. 4(4), 671–689 (2018). https://doi.org/10.1016/j.chempr.2017.12.006
J. Cai, X. Han, X. Wang, X. Meng, Atomic layer deposition of two-dimensional layered materials: processes, growth mechanisms, and characteristics. Matter 2(3), 587–630 (2020). https://doi.org/10.1016/j.matt.2019.12.026
S. Moitzheim, B. Put, P.M. Vereecken, Advances in 3D thin-film Li-ion batteries. Adv. Mater. Interfaces 6(15), 1900805 (2019). https://doi.org/10.1002/admi.201900805
A. Rakita, N. Nikolić, M. Mildner, J. Matiasek, A. Elbe-Bürger, Re-epithelialization and immune cell behaviour in an ex vivo human skin model. Sci. Rep. 10(1), 1 (2020). https://doi.org/10.1038/s41598-019-56847-4
S. Zheng, X. Shi, P. Das, Z.-S. Wu, X. Bao, The road towards planar microbatteries and micro-supercapacitors: from 2D to 3D device geometries. Adv. Mater. 31(50), 1900583 (2019). https://doi.org/10.1002/adma.201900583
X. Pan, X. Hong, L. Xu, Y. Li, M. Yan et al., On-chip micro/nano devices for energy conversion and storage. Nano Today 28, 100764 (2019). https://doi.org/10.1016/j.nantod.2019.100764
T. Wu, W. Dai, M. Ke, Q. Huang, L. Lu, All-solid-state thin film μ-batteries for microelectronics. Adv. Sci. 8(19), 2100774 (2021). https://doi.org/10.1002/advs.202100774
N.A. Kyeremateng, T. Brousse, D. Pech, Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat. Nanotechnol. 12(1), 7–15 (2017). https://doi.org/10.1038/nnano.2016.196
J.G. Koomey, H. Scott Matthews, E. Williams, Smart everything: will intelligent systems reduce resource use? Annu. Rev. Environ. Resour. 38(1), 311–343 (2013). https://doi.org/10.1146/annurev-environ-021512-110549
Z. Wang, Y. Chen, Y. Zhou, J. Ouyang, S. Xu et al., Miniaturized lithium-ion batteries for on-chip energy storage. Nanoscale Adv. 4(20), 4237–4257 (2022). https://doi.org/10.1039/D2NA00566B
A. Sumboja, J. Liu, W.G. Zheng, Y. Zong, H. Zhang et al., Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design. Chem. Soc. Rev. 47(15), 5919–5945 (2018). https://doi.org/10.1039/C8CS00237A
Y. Lu, K. Jiang, D. Chen, G. Shen, Wearable sweat monitoring system with integrated micro-supercapacitors. Nano Energy 58, 624–632 (2019). https://doi.org/10.1016/j.nanoen.2019.01.084
G. Sun, X. Jin, H. Yang, J. Gao, L. Qu, An aqueous Zn–MnO2 rechargeable microbattery. J. Mater. Chem. A 6(23), 10926–10931 (2018). https://doi.org/10.1039/C8TA02747A
K. Chen, Y. Sun, X. Zhang, J. Liu, H. Xie, A self-healing and nonflammable cross-linked network polymer electrolyte with the combination of hydrogen bonds and dynamic disulfide bonds for lithium metal batteries. Energy Environ. Mater. 6, e12568 (2023). https://doi.org/10.1002/eem2.12568
J. Gao, Y. Tian, L. Ni, B. Wang, K. Zou et al., Robust cross-linked Na3V2(PO4)2F3 full sodium-ion batteries. Energy Environ. Mater. 7, e12485 (2024). https://doi.org/10.1002/eem2.12485
B. Wang, C. Guan, Q. Zhou, Y. Wang, Y. Zhu et al., Screening anionic groups within zwitterionic additives for eliminating hydrogen evolution and dendrites in aqueous Zinc ion batteries. Nano-Micro Lett. 17(1), 314 (2015). https://doi.org/10.1007/s40820-025-01826-w
C.M. Julien, A. Mauger, Pulsed laser deposited films for microbatteries. Coatings 9(6), 386 (2019). https://doi.org/10.3390/coatings9060386
L. Indrizzi, N. Ohannessian, D. Pergolesi, T. Lippert, E. Gilardi, Pulsed laser deposition as a tool for the development of all solid‐state microbatteries. Helv. Chim. Acta 104(2), e2000203 (2021). https://doi.org/10.1002/hlca.202000203
M. Fenech, N. Sharma, Pulsed laser deposition-based thin film microbatteries. Chem. Asian J. 15(12), 1829–1847 (2020). https://doi.org/10.1002/asia.202000384
X. Liang, F. Tan, F. Wei, J. Du, Research progress of all solid-state thin film lithium battery. IOP Conf. Ser. Earth Environ. Sci. 218, 012138 (2019). https://doi.org/10.1088/1755-1315/218/1/012138
J. Lin, L. Lin, S. Qu, D. Deng, Y. Wu, X. Yan, Q. Xie, L. Wang, D. Peng, Promising electrode and electrolyte materials for high‐energy‐density thin‐film lithium batteries. Energy Environ. Mater. 5(1), 133–156 (2022). https://doi.org/10.1002/eem2.12202
S.A. Mahyoub, A. Farid, M.Z. Azeem, D.A.A. Fadhil, F.A. Qaraah, Q.A. Drmosh, Physical vapor deposition techniques for CO2 electroreduction: a review. Small Struct. 6(5), 2400501 (2025). https://doi.org/10.1002/sstr.202400501
S. Lobe, A. Bauer, S. Uhlenbruck, D. Fattakhova‐Rohlfing, Physical vapor deposition in solid‐state battery development: from materials to devices. Adv. Sci. 8(11), 2002044 (2021). https://doi.org/10.1002/advs.202002044
E.C. Nwanna, S. Bitire, P.E. Imoisili, T. Jen, An overview of the application of atomic layer deposition process for lithium-ion based batteries. Int. J. Energy Res. 46(8), 10499–10521 (2022). https://doi.org/10.1002/er.7941
M. Curcio, R. Teghil, A. De Bonis, Thin-film microbattery fabrication by PLD: a comprehensive mini-review. Front. Coat. Dyes Interface Eng. 2, 1401391 (2024). https://doi.org/10.3389/frcdi.2024.1401391
Y. Yao, X. Jiao, X. Xu, S. Xiong, Z. Song, Y. Liu, Prospective of magnetron sputtering for interface design in rechargeable lithium batteries. Adv. Energy Mater. 14(47), 2403117 (2024). https://doi.org/10.1002/aenm.202403117
A.S. Westover, R. Sahore, K.L. Browning, S. Kalnaus, Thermal evaporation of thin Li films. J. Vac. Sci. Technol. B 43(2), 022401 (2025). https://doi.org/10.1116/6.0004174
D. Sun, S. Tian, C. Yin, F. Chen, J. Xie, C. Huang, C. Li, Thin film deposition techniques in surface engineering strategies for advanced lithium-ion batteries. Coatings 13(3), 505 (2023). https://doi.org/10.3390/coatings13030505
M. Beidaghi, Y. Gogotsi, Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ. Sci. 7(3), 867–884 (2014). https://doi.org/10.1039/c3ee43526a
R. Karthikeyan, C.T. Cherian, R.P. Fernandes, Review: rf magnetron sputtering, a promising synthesis route for scalable production of thin-film batteries. J. Mater. Sci. 60(21), 8569–8601 (2025). https://doi.org/10.1007/s10853-025-10929-z
W. Xiong, Q. Xia, H. Xia, Three-dimensional self-supported metal oxides as cathodes for microbatteries. Funct. Mater. Lett. 07(05), 1430003 (2014). https://doi.org/10.1142/s1793604714300035
A. Mauger, M. Armand, C.M. Julien, K. Zaghib, Challenges and issues facing lithium metal for solid-state rechargeable batteries. J. Power. Sources 353, 333–342 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.018
V. Patil, V. Patil, D. Wook Shin, J.-W. Choi, D.-S. Paik et al., Issue and challenges facing rechargeable thin film lithium batteries. Mater. Res. Bull. 43(8−9), 1913–1942 (2008). https://doi.org/10.1016/j.materresbull.2007.08.031
E. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui, Y. Gogotsi, Energy storage: the future enabled by nanomaterials. Science 366(6468), eaan8285 (2019). https://doi.org/10.1126/science.aan8285
X. Zhang, M. Lok, T. Tong, S.K. Lee, B. Reagen et al., A fully integrated battery-powered system-on-chip in 40-nm CMOS for closed-loop control of insect-scale pico-aerial vehicle. IEEE J. Solid-State Circuits 52(9), 2374–2387 (2017). https://doi.org/10.1109/jssc.2017.2705170
W.C. West, J.F. Whitacre, V. White, B.V. Ratnakumar, Fabrication and testing of all solid-state microscale lithium batteries for microspacecraft applications. J. Micromech. Microeng. 12(1), 58–62 (2001). https://doi.org/10.1088/0960-1317/12/1/309
C.C. Liang, P. Bro, A high‐voltage, solid‐state battery system: i. design considerations. J. Electrochem. Soc. 116(9), 1322 (1969). https://doi.org/10.1149/1.2412312
C.-L. Li, Z.-W. Fu, All-solid-state rechargeable thin film lithium batteries with LixMn2O4 and LixMn2O4–0.5ZrO2 cathodes. Electrochim. Acta 52(20), 6155–6164 (2007). https://doi.org/10.1016/j.electacta.2007.04.012
G. Vardar, W.J. Bowman, Q. Lu, J. Wang, R.J. Chater et al., Structure, chemistry, and charge transfer resistance of the interface between Li7La3Zr2O12 electrolyte and LiCoO2 cathode. Chem. Mater. 30(18), 6259–6276 (2018). https://doi.org/10.1021/acs.chemmater.8b01713
S. Tintignac, R. Baddour-Hadjean, J.P. Pereira-Ramos, R. Salot, High rate bias sputtered LiCoO2 thinfilms as positive electrode for all-solid-state lithium microbatteries. Electrochim. Acta 146, 472–476 (2014). https://doi.org/10.1016/j.electacta.2014.09.084
A. Kumatani, S. Shiraki, Y. Takagi, T. Suzuki, T. Ohsawa, X. Gao, Y. Ikuhara, T. Hitosugi, Epitaxial growth of Li4Ti5O12 thin films using rf magnetron sputtering. Jpn. J. Appl. Phys. 53(5), 058001 (2014). https://doi.org/10.7567/jjap.53.058001
J. Feng, B. Yan, M.O. Lai, L. Li, Design and fabrication of an all-solid-state thin-film Li-ion microbattery with amorphous TiO2 as the anode. Energy Technol. 2(4), 397–400 (2014). https://doi.org/10.1002/ente.201300173
G. El Omari, K. El Kindoussy, M. Aqil, M. Dahbi, J. Alami, M. Makha, Advances in physical vapor deposited silicon/carbon based anode materials for Li-ion batteries. Heliyon 10(9), e30431 (2024). https://doi.org/10.1016/j.heliyon.2024.e30431
L. Chai, X. Wang, C. Bi, B. Su, C. Zhang, X. Li, W. Xue, Lifetime optimization of amorphous silicon thin-film anodes for lithium-ion batteries. ACS Appl. Energy Mater. 6(16), 8388–8396 (2023). https://doi.org/10.1021/acsaem.3c01127
B. Put, P.M. Vereecken, A. Stesmans, On the chemistry and electrochemistry of LiPON breakdown. J. Mater. Chem. A 6(11), 4848–4859 (2018). https://doi.org/10.1039/c7ta07928A
Z. Warecki, V.C. Ferrari, D.A. Robinson, J.D. Sugar, J. Lee, A.V. Ievlev, N.S. Kim, D.M. Stewart, S.B. Lee, P. Albertus, G. Rubloff, A.A. Talin, Simultaneous solid electrolyte deposition and cathode lithiation for thin film batteries and lithium iontronic devices. ACS Energy Lett. 9(5), 2065–2074 (2024). https://doi.org/10.1021/acsenergylett.4c00674
B. Ke, S. Cheng, C. Zhang, W. Li, J. Zhang, R. Deng, J. Lin, Q. Xie, B. Qu, Li. Qiao, D.-L. Peng, X. Wang, Low-temperature flexible integration of all-solid-state thin-film lithium batteries enabled by spin-coating electrode architecture. Adv. Energy Mater. 14(12), 2303757 (2024). https://doi.org/10.1002/aenm.202303757
B. Ke, C. Zhang, S. Cheng, W. Li, R. Deng, H. Zhang, J. Lin, Q. Xie, B. Qu, D.-L. Peng, X. Wang, Tape-casting electrode architecture permits low-temperature manufacturing of all-solid-state thin-film microbatteries. Interdiscip. Mater. 3(4), 621–631 (2024). https://doi.org/10.1002/idm2.12174
S. Lobe, C. Dellen, M. Finsterbusch, H.-G. Gehrke, D. Sebold et al., Radio frequency magnetron sputtering of Li7La3Zr2O12 thin films for solid-state batteries. J. Power. Sources 307, 684–689 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.054
J. Feng, B. Yan, J. Liu, M. Lai, L. Li, All solid state lithium ion rechargeable batteries using NASICON structured electrolyte. Mater. Technol. 28(5), 276–279 (2013). https://doi.org/10.1179/1753555713Y.0000000085
J.B. Bates, N.J. Dudney, G.R. Gruzalski, R.A. Zuhr, A. Choudhury, C.F. Luck, J.D. Robertson, Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. J. Power. Sources 43(1−3), 103–110 (1993). https://doi.org/10.1016/0378-7753(93)80106-Y
C. Erinmwingbovo, V. Siller, M. Nuñez, R. Trócoli, D. Brogioli, A. Morata, F. La Mantia, Dynamic impedance spectroscopy of LiMn2O4 thin films made by multi-layer pulsed laser deposition. Electrochim. Acta 331, 135385 (2020). https://doi.org/10.1016/j.electacta.2019.135385
T. Ohnishi, K. Takada, Sputter-deposited amorphous Li3PO4 solid electrolyte films. ACS Omega 7(24), 21199–21206 (2022). https://doi.org/10.1021/acsomega.2c02104
G. Tan, F. Wu, L. Li, Y. Liu, R. Chen, Magnetron sputtering preparation of nitrogen-incorporated lithium-aluminum-titanium phosphate based thin film electrolytes for all-solid-state lithium ion batteries. J. Phys. Chem. C 116(5), 3817–3826 (2012). https://doi.org/10.1021/jp207120s
X. Yang, Y. Shen, L. Zhang, Y. Li, Recent advances in the application of magnetron sputtering for lithium metal batteries. J. Mater. Chem. A 13(39), 33104–33135 (2025). https://doi.org/10.1039/d5ta03766b
Q. Xia, Q. Zhang, S. Sun, F. Hussain, C. Zhang, X. Zhu, F. Meng, K. Liu, H. Geng, J. Xu, F. Zan, P. Wang, L. Gu, H. Xia, Tunnel intergrowth LixMnO2 nanosheet arrays as 3D cathode for high‐performance all‐solid‐state thin film lithium microbatteries. Adv. Mater. 33(5), 2003524 (2021). https://doi.org/10.1002/adma.202003524
K. Yuan, M. Xie, W. Dong, P. Zhao, J. Pan et al., High-speed and one-step deposition of a LiCoO2 thin-film electrode by a high-repetition 1064 nm ND:YAG fiber laser. ACS Appl. Energy Mater. 5(12), 15483–15490 (2022). https://doi.org/10.1021/acsaem.2c02826
K. Hikima, K. Shimizu, H. Kiuchi, Y. Hinuma, K. Suzuki et al., Reaction mechanism of Li2MnO3 electrodes in an all-solid-state thin-film battery analyzed by operando hard X-ray photoelectron spectroscopy. J. Am. Chem. Soc. 144(1), 236–247 (2022). https://doi.org/10.1021/jacs.1c09087
E. Moazzen, J. Mujtaba, B. Buchholz, D. Isheim, N.S. Luu, D. Rowell, X. Hu, T. Ha, M.C. Hersam, S.A. Barnett, Atom probe tomography of the LiFePO4-electrolyte interface enabled by thin film electrodes. J. Electrochem. Soc. 171(7), 070527 (2024). https://doi.org/10.1149/1945-7111/ad5f21
K. Wei, J. Qiu, Y. Zhao, S. Ma, Y. Wei, H. Li, C. Zeng, Y. Cui, Tunable oxygen vacancies in MoO3 lattice with improved electrochemical performance for Li-ion battery thin film cathode. Ceram. Int. 49(13), 21729–21736 (2023). https://doi.org/10.1016/j.ceramint.2023.03.313
P. Schichtel, M. Geiß, T. Leichtweiß, J. Sann, D.A. Weber, J. Janek, On the impedance and phase transition of thin film all-solid-state batteries based on the Li4Ti5O12 system. J. Power. Sources 360, 593–604 (2017). https://doi.org/10.1016/j.jpowsour.2017.06.044
K. Senevirathne, C.S. Day, M.D. Gross, A. Lachgar, N.A.W. Holzwarth, A new crystalline LiPON electrolyte: synthesis, properties, and electronic structure. Solid State Ion. 233, 95–101 (2013). https://doi.org/10.1016/j.ssi.2012.12.013
W.C. West, Z.D. Hood, S.P. Adhikari, C. Liang, A. Lachgar et al., Reduction of charge-transfer resistance at the solid electrolyte-electrode interface by pulsed laser deposition of films from a crystalline Li2PO2N source. J. Power. Sources 312, 116–122 (2016). https://doi.org/10.1016/j.jpowsour.2016.02.034
N. Kuwata, N. Iwagami, Y. Matsuda, Y. Tanji, J. Kawamura, Thin film batteries with Li3PO4 solid electrolyte fabricated by pulsed laser deposition. ECS Trans. 16(26), 53–60 (2009). https://doi.org/10.1149/1.3111821
A.V. Morozov, H. Paik, A.O. Boev, D.A. Aksyonov, S.A. Lipovskikh et al., Thermodynamics as a driving factor of LiCoO2 grain growth on nanocrystalline Ta-LLZO thin films for all-solid-state batteries. ACS Appl. Mater. Interfaces 14(35), 39907–39916 (2022). https://doi.org/10.1021/acsami.2c07176
P.M. Gonzalez Puente, S. Song, S. Cao, L.Z. Rannalter, Z. Pan et al., Garnet-type solid electrolyte: advances of ionic transport performance and its application in all-solid-state batteries. J. Adv. Ceram. 10(5), 933–972 (2021). https://doi.org/10.1007/s40145-021-0489-7
I. Garbayo, M. Struzik, W.J. Bowman, R. Pfenninger, E. Stilp, J.L.M. Rupp, Glass‐type polyamorphism in Li‐garnet thin film solid state battery conductors. Adv. Energy Mater. 8(12), 1702265 (2018). https://doi.org/10.1002/aenm.201702265
M. Saccoccio, J. Yu, Z. Lu, S.C.T. Kwok, J. Wang et al., Low temperature pulsed laser deposition of garnet Li6.4La3Zr1.4Ta0.6O12 films as all solid-state lithium battery electrolytes. J. Power. Sources 365, 43–52 (2017). https://doi.org/10.1016/j.jpowsour.2017.08.020
V. Siller, A. Morata, M.N. Eroles, R. Arenal, J.C. Gonzalez-Rosillo et al., High performance LATP thin film electrolytes for all-solid-state microbattery applications. J. Mater. Chem. A 9(33), 17760–17769 (2021). https://doi.org/10.1039/D1TA02991F
J. Wei, D. Ogawa, T. Fukumura, Y. Hirose, T. Hasegawa, Epitaxial strain-controlled ionic conductivity in Li-ion solid electrolyte Li0.33La0.56TiO3 thin films. Cryst. Growth Des. 15(5), 2187–2191 (2015). https://doi.org/10.1021/cg501834s
M. Curcio, A.D. Bonis, S. Brutti, A. Santagata, R. Teghil, Pulsed laser deposition of thin films of TiO2 for Li-ion batteries. Appl. Surf. Sci. Adv. 4, 100090 (2021). https://doi.org/10.1016/j.apsadv.2021.100090
P. Albertus, S. Babinec, S. Litzelman, A. Newman, Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3(1), 16–21 (2018). https://doi.org/10.1038/s41560-017-0047-2
B.J. Neudecker, N.J. Dudney, J.B. Bates, “Lithium-Free” thin-film battery with in situ plated Li anode. J. Electrochem. Soc. 147(2), 517 (2000). https://doi.org/10.1149/1.1393226
J. Zheng, L. Ye, M. He, D. He, Y. Huang et al., Electrical and optical properties of amorphous silicon carbide thin films prepared by e-beam evaporation at room temperature. J. Non-Cryst. Solids 576, 121233 (2022). https://doi.org/10.1016/j.jnoncrysol.2021.121233
P. Jayaraman, H. Annal Therese, Flexible interdigitated symmetric solid-state micro-supercapacitors with higher energy density for wearable electronics. J. Power. Sources 581, 233489 (2023). https://doi.org/10.1016/j.jpowsour.2023.233489
J. Li, L. Li, W. Chen, Q. Yi, G. Zou, Room-temperature processed high-quality SnO2 films by oxygen plasma activated e-beam evaporation. Nanotechnology 32(2), 025606 (2020). https://doi.org/10.1088/1361-6528/abbce9
Q. Chen, H. Li, M.L. Meyerson, R. Rodriguez, K. Kawashima et al., Li−Zn overlayer to facilitate uniform lithium deposition for lithium metal batteries. ACS Appl. Mater. Interfaces 13(8), 9985–9993 (2021). https://doi.org/10.1021/acsami.0c21195
C.-L. Li, B. Zhang, Z.-W. Fu, Physical and electrochemical characterization of amorphous lithium lanthanum titanate solid electrolyte thin-film fabricated by e-beam evaporation. Thin Solid Films 515(4), 1886–1892 (2006). https://doi.org/10.1016/j.tsf.2006.07.026
A. Baptista, F.J.G. Silva, J. Porteiro, J.L. Míguez, G. Pinto et al., On the physical vapour deposition (PVD): evolution of magnetron sputtering processes for industrial applications. Proc. Manuf. 17, 746–757 (2018). https://doi.org/10.1016/j.promfg.2018.10.125
M. Surendran, S. Singh, H. Chen, C. Wu, A. Avishai et al., A hybrid pulsed laser deposition approach to grow thin films of chalcogenides. Adv. Mater. 36(19), 2312620 (2024). https://doi.org/10.1002/adma.202312620
S. Karimzadeh, B. Safaei, C. Yuan, T.-C. Jen, Emerging atomic layer deposition for the development of high-performance lithium-ion batteries. Electrochem. Energy Rev. 6(1), 24 (2023). https://doi.org/10.1007/s41918-023-00192-8
H. Zhang, J.-S. Cherng, Q. Chen, Recent progress on high power impulse magnetron sputtering (HiPIMS): the challenges and applications in fabricating VO2 thin film. AIP Adv. 9(3), 035242 (2019). https://doi.org/10.1063/1.5084031
B. Lacroix, A.J. Santos, S. Hurand, A. Corvisier, F. Paumier, T. Girardeau, F. Maudet, C. Dupeyrat, R. García, F.M. Morales, Nanostructure and physical properties control of indium tin oxide films prepared at room temperature through ion beam sputtering deposition at oblique angles. J. Phys. Chem. C 123(22), 14036–14046 (2019). https://doi.org/10.1021/acs.jpcc.9b02885
H. He, L. Wang, M. Al-Abbasi, C. Cao, H. Li et al., Interface engineering on constructing physical and chemical stable solid-state electrolyte toward practical lithium batteries. Energy Environ. Mater. 7(4), e12699 (2024). https://doi.org/10.1002/eem2.12699
R.B. Tokas, S. Jena, C. Prathap, S. Thakur, K. Divakar Rao et al., Study of reactive electron beam deposited tantalum penta oxide thin films with spectroscopic ellipsometry and atomic force microscopy. Appl. Surf. Sci. Adv. 18, 100480 (2023). https://doi.org/10.1016/j.apsadv.2023.100480
J.F.M. Oudenhoven, T. van Dongen, Ra.H. Niessen, M.H.J.M. de Croon, P.H.L. Notten, Low-pressure chemical vapor deposition of LiCoO2 thin films: a systematic investigation of the deposition parameters. J. Electrochem. Soc. 156(5), D169 (2009). https://doi.org/10.1149/1.3082374
L. Meda, E.E. Maxie, LiPON thin films grown by plasma-enhanced metalorganic chemical vapor deposition in a N2-H2-Ar gas mixture. Thin Solid Films 520(6), 1799–1803 (2012). https://doi.org/10.1016/j.tsf.2011.08.091
J. Xie, J.F.M. Oudenhoven, P.-P.R.M.L. Harks, D. Li, P.H.L. Notten, Chemical vapor deposition of lithium phosphate thin-films for 3D all-solid-state Li-ion batteries. J. Electrochem. Soc. 162(3), A249 (2014). https://doi.org/10.1149/2.0091503jes
K. Tadanaga, A. Yamaguchi, A. Hayashi, M. Tatsumisago, J. Mosa et al., Preparation of Li4Ti5O12 electrode thin films by a mist CVD process with aqueous precursor solution. J. Asian Ceram. Soc. 3(1), 88–91 (2015). https://doi.org/10.1016/j.jascer.2014.11.003
J. Xie, P.-P.R.M.L. Harks, D. Li, L.H.J. Raijmakers, P.H.L. Notten, Planar and 3D deposition of Li4Ti5O12 thin film electrodes by MOCVD. Solid State Ionics 287, 83–88 (2016). https://doi.org/10.1016/j.ssi.2016.02.004
R. Deng, B. Ke, Y. Xie, S. Cheng, C. Zhang, H. Zhang, B. Lu, X. Wang, All-solid-state thin-film lithium-sulfur batteries. Nano-Micro Lett. 15(1), 73 (2023). https://doi.org/10.1007/s40820-023-01064-y
M. Balaish, K.J. Kim, H. Chu, Y. Zhu, J. Carlos Gonzalez-Rosillo et al., Emerging processing guidelines for solid electrolytes in the era of oxide-based solid-state batteriest. Chem. Soc. Rev. 54(19), 8925–9007 (2025). https://doi.org/10.1039/d5cs00358j
M. Madadi, M. Heikkinen, A. Philip, M. Karppinen, Conformal high-aspect-ratio solid electrolyte thin films for Li-ion batteries by atomic layer deposition. ACS Appl. Electron. Mater. 6(63), 1574–1580 (2024). https://doi.org/10.1021/acsaelm.3c01565
Y. Wang, Z. Feng, X. Wang, M. Meng, Y. Sun, M. Jing, H. Liu, F. Lu, W. Wang, Y. Cheng, X. Huang, F. Luo, X. Sun, H. Dong, Inhibitory property of lithium phosphorus oxynitride surface grown by atomic layer deposition. Surfaces and Interfaces 33, 102280 (2022). https://doi.org/10.1016/j.surfin.2022.102280
J. Speulmanns, S. Bonhardt, W. Weinreich, P. Adelhelm, Interface-engineered atomic layer deposition of 3D Li4Ti5O12 for high-capacity lithium-ion 3D thin-film batteries. Small 20(42), 2403453 (2024). https://doi.org/10.1002/smll.202403453
X. Han, Y. Gong, K. Fu, X. He, G.T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E.D. Wachsman, L. Hu, Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16(5), 572–579 (2017). https://doi.org/10.1038/nmat4821
J.B. Bates, N.J. Dudney, G.R. Gruzalski, R.A. Zuhr, A. Choudhury et al., Electrical properties of amorphous lithium electrolyte thin films. Solid State Ion. 53, 647–654 (1992). https://doi.org/10.1016/0167-2738(92)90442-R
H. Nakazawa, K. Sano, T. Abe, M. Baba, N. Kumagai, Charge-discharge characteristics of all-solid-state thin-filmed lithium-ion batteries using amorphous Nb2O5 negative electrodes. J. Power. Sources 174(2), 838–842 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.226
M. Haruta, S. Shiraki, T. Ohsawa, T. Suzuki, A. Kumatani et al., Preparation and in-situ characterization of well-defined solid electrolyte/electrode interfaces in thin-film lithium batteries. Solid State Ion. 285, 118–121 (2016). https://doi.org/10.1016/j.ssi.2015.06.007
J. Trask, A. Anapolsky, B. Cardozo, E. Januar, K. Kumar et al., Optimization of 10-μm, sputtered, LiCoO2 cathodes to enable higher energy density solid state batteries. J. Power. Sources 350, 56–64 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.017
H.-S. Kim, Y. Oh, K.H. Kang, J.H. Kim, J. Kim et al., Characterization of sputter-deposited LiCoO2 thin film grown on NASICON-type electrolyte for application in all-solid-state rechargeable lithium battery. ACS Appl. Mater. Interfaces 9(19), 16063–16070 (2017). https://doi.org/10.1021/acsami.6b15305
S. Sun, Z. Han, W. Liu, Q. Xia, L. Xue et al., Lattice pinning in MoO3 via coherent interface with stabilized Li+ intercalation. Nat. Commun. 14(1), 6662 (2023). https://doi.org/10.1038/s41467-023-42335-x
M. Fehse, R. Trócoli, E. Ventosa, E. Hernández, A. Sepúlveda et al., Ultrafast dischargeable LiMn2O4 thin-film electrodes with pseudocapacitive properties for microbatteries. ACS Appl. Mater. Interfaces 9(6), 5295–5301 (2017). https://doi.org/10.1021/acsami.6b15258
Z. Qi, J. Jian, J. Huang, J. Tang, H. Wang et al., LiNi0.5Mn0.3Co0.2O2/Au nanocomposite thin film cathode with enhanced electrochemical properties. Nano Energy 46, 290–296 (2018). https://doi.org/10.1016/j.nanoen.2018.02.011
J. Deng, L. Xib, L. Wang, Z. Wang, C.Y. Chung et al., Electrochemical performance of LiNi1/3Co1/3Mn1/3O2 thin film electrodes prepared by pulsed laser deposition. J. Power. Sources 217, 491–497 (2012). https://doi.org/10.1016/j.jpowsour.2012.06.006
C. Jacob, T. Lynch, A. Chen, J. Jian, H. Wang, Highly textured Li(Ni0.5Mn0.3Co0.2)O2 thin films on stainless steel as cathode for lithium-ion battery. J. Power. Sources 241, 410–414 (2013). https://doi.org/10.1016/j.jpowsour.2013.04.140
A. Bünting, S. Uhlenbruck, D. Sebold, H.P. Buchkremer, R. Vaßen, Three-dimensional, fibrous lithium iron phosphate structures deposited by magnetron sputtering. ACS Appl. Mater. Interfaces 7(40), 22594–22600 (2015). https://doi.org/10.1021/acsami.5b07090
V.A. Sugiawati, F. Vacandio, C. Perrin-Pellegrino, A. Galeyeva, A.P. Kurbatov et al., <-title update="added">Sputtered porous Li-Fe-P-O film cathodes prepared by radio frequency sputtering for Li-ion microbatteries. Sci. Rep. 9(1), 11172 (2019). https://doi.org/10.1038/s41598-019-47464-2
R.M. Ugalde-Vázquez, F. Ambriz-Vargas, F. Morales-Morales, N. Hernández-Sebastián, A. Benítez-Lara et al., Effect of argon sputtering pressure on the electrochemical performance of LiFePO4 cathode. J. Eur. Ceram. Soc. 43(2), 407–418 (2023). https://doi.org/10.1016/j.jeurceramsoc.2022.10.030
L. Wang, J. Qiu, X. Wang, L. Chen, G. Cao et al., Insights for understanding multiscale degradation of LiFePO4 cathodes. eScience 2(2), 125–137 (2022). https://doi.org/10.1016/j.esci.2022.03.006
D. Kang, K. Ito, K. Shimizu, K. Watanabe, N. Matsui et al., Fabrication and high-temperature electrochemical stability of LiFePO4 cathode/Li3PO4 electrolyte interface. Electrochemistry 92(3), 037008 (2024). https://doi.org/10.5796/electrochemistry.24-00017
H. Lee, S. Kim, N.S. Parmar, J.-H. Song, K. Chung et al., Carbon-free Mn-doped LiFePO4 cathode for highly transparent thin-film batteries. J. Power. Sources 434, 226713 (2019). https://doi.org/10.1016/j.jpowsour.2019.226713
J.B. Bates, N.J. Dudney, B.J. Neudecker, F.X. Hart, H.P. Jun et al., Preferred orientation of polycrystalline LiCoO2 films. J. Electrochem. Soc. 147(1), 59–70 (2000). https://doi.org/10.1149/1.1393157
Y. Yoon, C. Park, J. Kim, D. Shin, Lattice orientation control of lithium cobalt oxide. J. Power. Sources 226, 186–190 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.094
H. Xia, L. Lu, Texture effect on the electrochemical properties of LiCoO2 thin films prepared by PLD. Electrochim. Acta 52(24), 7014–7021 (2007). https://doi.org/10.1016/j.electacta.2007.05.019
J.F. Whitacre, W.C. West, E. Brandon, B.V. Ratnakumar, Crystallographically oriented thin-film nanocrystalline cathode layers prepared without exceeding 300 °C. J. Electrochem. Soc. 148(10), A1078 (2001). https://doi.org/10.1149/1.1400119
Q. Xia, S. Sun, J. Xu, F. Zan, J. Yue, Q. Zhang, L. Gu, H. Xia, Self‐standing 3D cathodes for all‐solid‐state thin film lithium batteries with improved interface kinetics. Small 14(52), 1804149 (2018). https://doi.org/10.1002/smll.201804149
W. Wu, J. Duan, J. Wen, Y. Chen, X. Liu et al., A writable lithium metal ink. Sci. China Chem. 63(10), 1483–1489 (2020). https://doi.org/10.1007/s11426-020-9810-1
P.R. Abel, A.M. Chockla, Y.-M. Lin, V.C. Holmberg, J.T. Harris, B.A. Korgel, A. Heller, C.B. Mullins, Nanostructured Si(1−x)Gex for tunable thin film lithium-ion battery anodes. ACS Nano 7(3), 2249–2257 (2013). https://doi.org/10.1021/nn3053632
B.D. Polat, O.L. Eryilmaz, O. Keleş, A. Erdemir, K. Amine, Compositionally graded SiCu thin film anode by magnetron sputtering for lithium ion battery. Thin Solid Films 596, 190–197 (2015). https://doi.org/10.1016/j.tsf.2015.09.085
M. Kotobuki, K. Hoshina, K. Kanamura, Electrochemical properties of thin TiO2 electrode on Li1+xAlxGe2−x(PO4)3 solid electrolyte. Solid State Ionics 198(1), 22–25 (2011). https://doi.org/10.1016/j.ssi.2011.07.003
J. Haetge, P. Hartmann, K. Brezesinski, J. Janek, T. Brezesinski, Ordered large-pore mesoporous Li4Ti5O12 spinel thin film electrodes with nanocrystalline framework for high rate rechargeable lithium batteries: relationships among charge storage, electrical conductivity, and nanoscale structure. Chem. Mater. 23(19), 4384–4393 (2011). https://doi.org/10.1021/cm202185y
J. Deng, Z. Lu, C.Y. Chung, X. Han, Z. Wang et al., Electrochemical performance and kinetic behavior of lithium ion in Li4Ti5O12 thin film electrodes. Appl. Surf. Sci. 314, 936–941 (2014). https://doi.org/10.1016/j.apsusc.2014.06.162
F. Wunde, F. Berkemeier, G. Schmitz, Lithium diffusion in sputter-deposited Li4Ti5O12 thin films. J. Power. Sources 215, 109–115 (2012). https://doi.org/10.1016/j.jpowsour.2012.04.102
H. Wu, Y. Cui, Designing nanostructured si anodes for high energy lithium ion batteries. Nano Today 7(5), 414–429 (2012). https://doi.org/10.1016/j.nantod.2012.08.004
J.P. Maranchi, A.F. Hepp, P.N. Kumta, High capacity, reversible silicon thin-film anodes for lithium-ion batteries. Electrochem. Solid-State Lett. 6(9), A198–A201 (2003). https://doi.org/10.1149/1.1596918
D. Cheng, T.A. Wynn, X. Wang, S. Wang, M. Zhang et al., Unveiling the stable nature of the solid electrolyte interphase between lithium metal and LiPON via cryogenic electron microscopy. Joule 4(11), 2484–2500 (2020). https://doi.org/10.1016/j.joule.2020.08.013
J. Lin, J. Guo, C. Liu, H. Guo, Ultrahigh-performance Cu2ZnSnS4 thin film and its application in microscale thin-film lithium-ion battery: comparison with SnO2. ACS Appl. Mater. Interfaces 8(50), 34372–34378 (2016). https://doi.org/10.1021/acsami.6b10730
D.M. Stewart, A.J. Pearse, N.S. Kim, E.J. Fuller, A.A. Talin et al., Tin oxynitride anodes by atomic layer deposition for solid-state batteries. Chem. Mater. 30(8), 2526–2534 (2018). https://doi.org/10.1021/acs.chemmater.7b04666
L. Tong, P. Wang, A. Chen, F. Qiu, W. Fang et al., Improved electrochemical performance of binder-free multi-layered silicon/carbon thin film electrode for lithium-ion batteries. Carbon 153, 592–601 (2019). https://doi.org/10.1016/j.carbon.2019.07.067
R. Pfenninger, S. Afyon, I. Garbayo, M. Struzik, J.L.M. Rupp, Lithium titanate anode thin films for Li-ion solid state battery based on garnets. Adv. Funct. Mater. 28(21), 1800879 (2018). https://doi.org/10.1002/adfm.201800879
X. Song, W. Yu, S. Zhou, L. Zhao, A. Li et al., Enhancement of Mn-doped LiPON electrolyte for higher performance of all-solid-state thin film lithium battery. Mater. Today Phys. 33, 101037 (2023). https://doi.org/10.1016/j.mtphys.2023.101037
X. He, Y. Ma, J. Liu, J. Wang, X. Hu, H. Dong, X. Huang, Improved electrochemical performance and chemical stability of thin-film lithium phosphorus oxynitride electrolyte by appropriate fluorine plasma treatment. Electrochim. Acta 454, 142411 (2023). https://doi.org/10.1016/j.electacta.2023.142411
X. Lü, J.W. Howard, A. Chen, J. Zhu, S. Li et al., Antiperovskite Li3OCl superionic conductor films for solid-state Li-ion batteries. Adv. Sci. 3(3), 1500359 (2016). https://doi.org/10.1002/advs.201500359
Q. Ling, Z. Yu, H. Xu, G. Zhu, X. Zhang et al., Preparation and electrical properties of amorphous Li-Al-Ti-P-O thin film electrolyte. Mater. Lett. 169, 42–45 (2016). https://doi.org/10.1016/j.matlet.2016.01.089
S.-P. Song, C. Yang, C.-Z. Jiang, Y.-M. Wu, R. Guo et al., Increasing ionic conductivity in Li0.33La0.56TiO3 thin-films via optimization of processing atmosphere and temperature. Rare Met. 41(1), 179–188 (2022). https://doi.org/10.1007/s12598-021-01782-5
R. Pfenninger, M. Struzik, I. Garbayo, E. Stilp, J.L.M. Rupp, A low ride on processing temperature for fast lithium conduction in garnet solid-state battery films. Nat. Energy 4(6), 475–483 (2019). https://doi.org/10.1038/s41560-019-0384-4
J. Li, C. Ma, M. Chi, C. Liang, N.J. Dudney, Solid electrolyte: the key for high‐voltage lithium batteries. Adv. Energy Mater. 5(4), 1401408 (2015). https://doi.org/10.1002/aenm.201401408
J. Chen, Q. Xia, W. Liu, H. Xia, Enhancing the lithium storage capability of TiO2 thin film for all-solid-state microbatteries via amorphous-crystalline heterostructure design. Appl. Phys. Lett. 121(13), 131901 (2022). https://doi.org/10.1063/5.0117083
Q. Li, W. Liu, J. Wang, Q. Xia, H. Xia, Long-cycle-life Li2MnO3 thin-film cathode enabled by all-solid-state battery configuration. J. Power. Sources 602, 234371 (2024). https://doi.org/10.1016/j.jpowsour.2024.234371
J. Casella, J. Morzy, E. Gilshtein, M. Yarema, M.H. Futscher et al., Electrochemical activation of Fe–LiF conversion cathodes in thin-film solid-state batteries. ACS Nano 18(5), 4352–4359 (2024). https://doi.org/10.1021/acsnano.3c10146
J. Qiu, H. Li, Y. Zhao, R. Xu, K. Wei et al., In-situ reconstructed surface/inner-structure synergistic design enabling 4.6 V LiCoO2 cathode for all-solid-state thin-film battery. Mater. Today 80, 342–352 (2024). https://doi.org/10.1016/j.mattod.2024.09.011
X. Liu, L. Zhang, Y. Zheng, Z. Guo, Y. Zhu et al., Uncovering the effect of lattice strain and oxygen deficiency on electrocatalytic activity of perovskite cobaltite thin films. Adv. Sci. 6(6), 1801898 (2019). https://doi.org/10.1002/advs.201801898
J. Qiu, H. Li, T. Wu, Y. He, R. Xu et al., Construction of longitudinal (003) textured low-strain diffusion channel in 4.6 V LiCoO2-based all-solid-state thin film battery for microelectronic systems. ACS Energy Lett. 10, 3249–3258 (2025). https://doi.org/10.1021/acsenergylett.5c01012
M.H. Futscher, T. Amelal, J. Sastre, A. Müller, J. Patidar, A. Aribia, K. Thorwarth, S. Siol, Y.E. Romanyuk, Influence of amorphous carbon interlayers on nucleation and early growth of lithium metal at the current collector-solid electrolyte interface. J. Mater. Chem. A 10(29), 15535–15542 (2022). https://doi.org/10.1039/d2ta02843c
X. Pu, W. Hu, Z.L. Wang, Toward wearable self‐charging power systems: the integration of energy‐harvesting and storage devices. Small 14(1), 1702817 (2018). https://doi.org/10.1002/smll.201702817
J. Liu, J. Xu, Y. Lin, J. Li, Y. Lai et al., All-solid-state lithium ion battery: research and industrial prospects. Acta Chim. Sinica 71(06), 869–878 (2013). https://doi.org/10.6023/a13020170
F. Sandbaumhüter, S.N. Agbo, C.-L. Tsai, O. Astakhov, S. Uhlenbruck, U. Rau, T. Merdzhanova, Compatibility study towards monolithic self-charging power unit based on all-solid thin-film solar module and battery. J. Power. Sources 365, 303–307 (2017). https://doi.org/10.1016/j.jpowsour.2017.08.103
D. Lau, N. Song, C. Hall, Y. Jiang, S. Lim et al., Hybrid solar energy harvesting and storage devices: the promises and challenges. Mater. Today Energy 13, 22–44 (2019). https://doi.org/10.1016/j.mtener.2019.04.003
B. Hu, X.-L. Shi, T. Cao, M. Li, W. Chen, W.-D. Liu, W. Lyu, T. Tesfamichael, Z.-G. Chen, Advances in flexible thermoelectric materials and devices fabricated by magnetron sputtering. Small Science 5(3), 2300061 (2025). https://doi.org/10.1002/smsc.202300061
M.H. Futscher, L. Brinkman, A. Müller, J. Casella, A. Aribia, Y.E. Romanyuk, Monolithically-stacked thin-film solid-state batteries. Commun. Chem. 6(1), 110 (2023). https://doi.org/10.1038/s42004-023-00901-w
F.L. Cras, B. Pecquenard, V. Dubois, V. Phan, D. Guy‐Bouyssou, All‐solid‐state lithium‐ion microbatteries using silicon nanofilm anodes: high performance and memory effect. Adv. Energy Mater. 5(19), 1501061 (2015). https://doi.org/10.1002/aenm.201501061
X. Wu, L. Wang, W. Gu, J. Wang, Y. Zhuang et al., High-performance 3D stacked micro all-solid-state thin-film lithium-ion batteries based on the stress-compensation effect. Small 20(25), 2307250 (2024). https://doi.org/10.1002/smll.202307250
B. Ke, X. Wang, Integratable all-solid-state thin-film microbatteries. Proc. Natl. Acad. Sci. 122(16), e2415693122 (2025). https://doi.org/10.1073/pnas.2415693122
M. Koo, K.-I. Park, S.H. Lee, M. Suh, D.Y. Jeon, J.W. Choi, K. Kang, K.J. Lee, Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett. 12(9), 4810–4816 (2012). https://doi.org/10.1021/nl302254v
A.T. Kutbee, M.T. Ghoneim, S.M. Ahmad, M.M. Hussain, Free-form flexible lithium-ion microbattery. IEEE Trans. Nanotechnol. 15(3), 402–408 (2016). https://doi.org/10.1109/tnano.2016.2537338
R. Shimizu, D. Cheng, J.L. Weaver, M. Zhang, B. Lu, T.A. Wynn, R. Burger, M.-C. Kim, G. Zhu, Y.S. Meng, Unraveling the stable cathode electrolyte interface in all solid-state thin-film battery operating at 5 V. Adv. Energy Mater. 12(31), 2201119 (2022). https://doi.org/10.1002/aenm.202201119
Z. Wang, D. Santhanagopalan, W. Zhang, F. Wang, H.L. Xin et al., In situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries. Nano Lett. 16, 3760–3767 (2016). https://doi.org/10.1021/acs.nanolett.6b01119
S. Lou, F. Zhang, C. Fu, M. Chen, Y. Ma, G. Yin, J. Wang, Interface issues and challenges in all-solid-state batteries: lithium, sodium, and beyond. Adv. Mater. 33(6), 2000721 (2021). https://doi.org/10.1002/adma.202000721
A. Uhart, J.B. Ledeuil, B. Pecquenard, F. Le Cras, M. Proust et al., Nanoscale chemical characterization of solid-state microbattery stacks by means of auger spectroscopy and ion-milling cross section preparation. ACS Appl. Mater. Interfaces 9(38), 33238–33249 (2017). https://doi.org/10.1021/acsami.7b07270
K.L. Browning, A.S. Westover, J.F. Browning, M. Doucet, R.L. Sacci et al., In situ measurement of buried electrolyte-electrode interfaces for solid state batteries with nanometer level precision. ACS Energy Lett. 8(4), 1985–1991 (2023). https://doi.org/10.1021/acsenergylett.3c00488
C. Chen, J.F.M. Oudenhoven, D.L. Danilov, E. Vezhlev, L. Gao, Na. Li, F.M. Mulder, R.-A. Eichel, P.H.L. Notten, Origin of degradation in Si‐based all‐solid‐state Li‐ion microbatteries. Adv. Energy Mater. 8(30), 1801430 (2018). https://doi.org/10.1002/aenm.201801430
J. Miao, C.V. Thompson, Kinetic study of the initial lithiation of amorphous silicon thin film anodes. J. Electrochem. Soc. 165(3), A650–A656 (2018). https://doi.org/10.1149/2.1011803jes
Z. Zou, Z. Xiao, Z. Lin, B. Zhang, C. Zhang, F. Wei, Lithium phosphorous oxynitride as an advanced solid‐state electrolyte to boost high‐energy lithium metal battery. Adv. Funct. Mater. 34(49), 2409330 (2024). https://doi.org/10.1002/adfm.202409330
Z. Wang, J.Z. Lee, H.L. Xin, L. Han, N. Grillon et al., Effects of cathode electrolyte interfacial (CEI) layer on long term cycling of all-solid-state thin-film batteries. J. Power. Sources 324, 342–348 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.098
L. Yang, X. Li, K. Pei, W. You, X. Liu, H. Xia, Y. Wang, R. Che, Direct view on the origin of high Li+ transfer impedance in all-solid-state battery. Adv. Funct. Mater. 31(35), 2103971 (2021). https://doi.org/10.1002/adfm.202103971
D. Cheng, T. Wynn, B. Lu, M. Marple, B. Han et al., A free-standing lithium phosphorus oxynitride thin film electrolyte promotes uniformly dense lithium metal deposition with no external pressure. Nat. Nanotechnol. 18(12), 1448–1455 (2023). https://doi.org/10.1038/s41565-023-01478-0
V.C. Ferrari, S.B. Lee, G.W. Rubloff, D.M. Stewart, Interface diagnostics platform for thin-film solid-state batteries. Energy Environ. Sci. 18, 1783–1800 (2025). https://doi.org/10.1039/d4ee03915g
J. Sastre, X. Chen, A. Aribia, A.N. Tiwari, Y.E. Romanyuk, Fast charge transfer across the Li7La3Zr2O12 solid electrolyte/LiCoO2 cathode interface enabled by an interphase-engineered all-thin-film architecture. ACS Appl. Mater. Interfaces 12(32), 36196–36207 (2020). https://doi.org/10.1021/acsami.0c09777
H.Y. Park, S.R. Lee, Y.J. Lee, B.W. Cho, W.I. Cho, Bias sputtering and characterization of LiCoO2 thin film cathodes for thin film microbattery. Mater. Chem. Phys. 93(1), 70–78 (2005). https://doi.org/10.1016/j.matchemphys.2005.02.024
Y. He, Q. Xia, W. Liu, C. Wu, J. Wang, Yu. Cai, Y. Guo, F. Zan, J. Xu, H. Xia, Toward high‐performance all‐solid‐state thin film FeOxSy/LiPON/Li microbatteries via dual‐interface modification. Adv. Funct. Mater. 34(19), 2310876 (2024). https://doi.org/10.1002/adfm.202310876
C.-F. Xiao, J.H. Kim, S.-H. Cho, Y.C. Park, M.J. Kim et al., Ensemble design of electrode-electrolyte interfaces: toward high-performance thin-film all-solid-state Li-metal batteries. ACS Nano 15(3), 4561–4575 (2021). https://doi.org/10.1021/acsnano.0c08691
C. Yada, A. Ohmori, K. Ide, H. Yamasaki, T. Kato, T. Saito, F. Sagane, Y. Iriyama, Dielectric modification of 5 V-class cathodes for high-voltage all-solid-state lithium batteries. Adv. Energy Mater. 4(9), 1301416 (2014). https://doi.org/10.1002/aenm.201301416
F.S. Gittleson, F. El Gabaly, Non-faradaic Li+ migration and chemical coordination across solid-state battery interfaces. Nano Lett. 17(11), 6974–6982 (2017). https://doi.org/10.1021/acs.nanolett.7b03498
Y. Iriyama, K. Nishimoto, C. Yada, T. Abe, Z. Ogumi et al., Charge-transfer reaction at the lithium phosphorus oxynitride glass electrolyte/lithium manganese oxide thin-film interface and its stability on cycling. J. Electrochem. Soc. 153(5), A821 (2006). https://doi.org/10.1149/1.2178647
Y. Iriyama, T. Kako, C. Yada, T. Abe, Z. Ogumi, Reduction of charge transfer resistance at the lithium phosphorus oxynitride/lithium cobalt oxide interface by thermal y treatment. J. Power. Sources 146(1−2), 745–748 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.073
Y. Yang, S. Jeong, L. Hu, H. Wu, S.W. Lee et al., Transparent lithium-ion batteries. Proc. Natl. Acad. Sci. 108(32), 13013–13018 (2011). https://doi.org/10.1073/pnas.1102873108
J.F.M. Oudenhoven, Loïc.. Baggetto, P.H.L. Notten, All-solid-state lithium-ion microbatteries: a review of various three-dimensional concepts. Adv. Energy Mater. 1(1), 10–33 (2011). https://doi.org/10.1002/aenm.201000002
T.S. Arthur, D.J. Bates, N. Cirigliano, D.C. Johnson, P. Malati, J.M. Mosby, E. Perre, M.T. Rawls, A.L. Prieto, B. Dunn, Three-dimensional electrodes and battery architectures. MRS Bull. 36(7), 523–531 (2011). https://doi.org/10.1557/mrs.2011.156
A. Pearse, T. Schmitt, E. Sahadeo, D.M. Stewart, A. Kozen, K. Gerasopoulos, A.A. Talin, S.B. Lee, G.W. Rubloff, K.E. Gregorczyk, Three-dimensional solid-state lithium-ion batteries fabricated by conformal vapor-phase chemistry. ACS Nano 12(5), 4286–4294 (2018). https://doi.org/10.1021/acsnano.7b08751
M. Létiche, E. Eustache, J. Freixas, A. Demortière, V. De Andrade, L. Morgenroth, P. Tilmant, F. Vaurette, D. Troadec, P. Roussel, T. Brousse, C. Lethien, Atomic layer deposition of functional layers for on chip 3D Li-ion all solid state microbattery. Adv. Energy Mater. 7(2), 1601402 (2017). https://doi.org/10.1002/aenm.201601402
M. Hallot, V. Nikitin, O.I. Lebedev, R. Retoux, D. Troadec, V. De Andrade, P. Roussel, C. Lethien, 3D LiMn2O4 thin film deposited by ALD: a road toward high‐capacity electrode for 3D Li‐ion microbatteries. Small 18(14), 2107054 (2022). https://doi.org/10.1002/smll.202107054
A.A. Talin, D. Ruzmetov, A. Kolmakov, K. McKelvey, N. Ware et al., Fabrication, testing, and simulation of all-solid-state three-dimensional Li-ion batteries. ACS Appl. Mater. Interfaces 8(47), 32385–32391 (2016). https://doi.org/10.1021/acsami.6b12244
D. Ruzmetov, V.P. Oleshko, P.M. Haney, H.J. Lezec, K. Karki et al., Electrolyte stability determines scaling limits for solid-state 3D Li ion batteries. Nano Lett. 12(1), 505–511 (2012). https://doi.org/10.1021/nl204047z
J. Zhang, W. Li, Z. Liu, Z. Huang, H. Wang, B. Ke, Lu. Xue, H. Jia, X. Wang, All‐solid‐state thin‐film lithium‐selenium batteries. Adv. Funct. Mater. 35(38), 2503732 (2025). https://doi.org/10.1002/adfm.202503732
Q. Xia, N. Jabeen, S.V. Savilov, S.M. Aldoshin, H. Xia, Black mesoporous Li4Ti5O12−δ nanowall arrays with improved rate performance as advanced 3D anodes for microbatteries. J. Mater. Chem. A 4(44), 17543–17551 (2016). https://doi.org/10.1039/c6ta06699b
J. Xie, J.F.M. Oudenhoven, D. Li, C. Chen, R.-A. Eichel et al., High power and high capacity 3D-structured TiO2 electrodes for lithium-ion microbatteries. J. Electrochem. Soc. 163(10), A2385 (2016). https://doi.org/10.1149/2.1141610jes
Y. Wang, T. Wang, P. Da, M. Xu, H. Wu et al., Silicon nanowires for biosensing, energy storage, and conversion. Adv. Mater. 25(37), 5177–5195 (2013). https://doi.org/10.1002/adma.201301943
S. Sun, Q. Xia, J. Liu, J. Xu, F. Zan et al., Self-standing oxygen-deficient α-MoO3−x nanoflake arrays as 3D cathode for advanced all-solid-state thin film lithium batteries. J. Materiomics 5(2), 229–236 (2019). https://doi.org/10.1016/j.jmat.2019.01.001
Z. Qi, J. Tang, J. Huang, D. Zemlyanov, V.G. Pol et al., Li2MnO3 thin films with tilted domain structure as cathode for Li-ion batteries. ACS Appl. Energy Mater. 2(5), 3461–3468 (2019). https://doi.org/10.1021/acsaem.9b00259
Z. Qi, J. Tang, S. Misra, C. Fan, P. Lu et al., Enhancing electrochemical performance of thin film lithium ion battery via introducing tilted metal nanopillars as effective current collectors. Nano Energy 69, 104381 (2020). https://doi.org/10.1016/j.nanoen.2019.104381
B. Xiao, Q. Tang, X. Dai, F. Wu, H. Chen et al., Enhanced interfacial kinetics and high rate performance of LiCoO2 thin-film electrodes by Al doping and in situ Al2O3 coating. ACS Omega 7(35), 31597–31606 (2022). https://doi.org/10.1021/acsomega.2c04665
M. Rawlence, A.N. Filippin, A. Wäckerlin, T.-Y. Lin, E. Cuervo-Reyes et al., Effect of gallium substitution on lithium-ion conductivity and phase evolution in sputtered Li7−3xGaxLa3Zr2O12 thin films. ACS Appl. Mater. Interfaces 10(16), 13720–13728 (2018). https://doi.org/10.1021/acsami.8b03163
J. Sastre, T.-Y. Lin, A.N. Filippin, A. Priebe, E. Avancini et al., Aluminum-assisted densification of cosputtered lithium garnet electrolyte films for solid-state batteries. ACS Appl. Energy Mater. 2(12), 8511–8524 (2019). https://doi.org/10.1021/acsaem.9b01387
J. Sastre, A. Priebe, M. Döbeli, J. Michler, A.N. Tiwari, Y.E. Romanyuk, Lithium garnet Li7La3Zr2O12 electrolyte for all‐solid‐state batteries: closing the gap between bulk and thin film Li‐ion conductivities. Adv. Mater. Interfaces 7(17), 2000425 (2020). https://doi.org/10.1002/admi.202000425
J. Sastre, M.H. Futscher, L. Pompizi, A. Aribia, A. Priebe et al., Blocking lithium dendrite growth in solid-state batteries with an ultrathin amorphous Li–La–Zr–O solid electrolyte. Commun. Mater. 2(1), 76 (2021). https://doi.org/10.1038/s43246-021-00177-4
H. Liu, H. Sun, W. Hua, X. Liu, W. Liu et al., Roll-to-roll coating to processing large-area Zinc anodes toward fast and dendrite-free deposition. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202509206
M. Zhu, O.G. Schmidt, Tiny robots and sensors need tiny batteries—here’s how to do it. Nature 589(7841), 195–197 (2021). https://doi.org/10.1038/d41586-021-00021-2
D. Cheng, K. Tran, S. Rao, Z. Wang, R. Van Der Linde et al., Manufacturing scale-up of anodeless solid-state lithium thin-film batteries for high volumetric energy density applications. ACS Energy Lett. 8(11), 4768–4774 (2023). https://doi.org/10.1021/acsenergylett.3c01839
M.-S. Jung, M.-W. Moon, J.-H. Seo, Y.-C. Joo, I.-S. Choi, Robust Si anode design for Li-ion battery on polyimide substrate: villus-like polymer/Si core/shell hybrid nano-structure. ECS Meet. Abstr. 14, 935 (2013). https://doi.org/10.1149/MA2013-02/14/953
J. Glenneberg, F. Andre, I. Bardenhagen, F. Langer, J. Schwenzel, R. Kun, A concept for direct deposition of thin film batteries on flexible polymer substrate. J. Power. Sources 324, 722–728 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.007
J. Glenneberg, G. Kasiri, I. Bardenhagen, F. La Mantia, M. Busse et al., Investigations on morphological and electrochemical changes of all-solid-state thin film battery cells under dynamic mechanical stress conditions. Nano Energy 57, 549–557 (2019). https://doi.org/10.1016/j.nanoen.2018.12.070
X. Dai, Z. Wang, J. Li, F. Wu, Y. Mai, X. Dong, Controllable preparation and electrochemical properties of in-situ annealed LiCoO2 films with a specific crystalline orientation on stainless steel substrates. Solid State Ionics 365, 115658 (2021). https://doi.org/10.1016/j.ssi.2021.115658
K.A. Striebel, C.Z. Deng, S.J. Wen, E.J. Cairns, Electrochemical behavior of LiMn2O4 and LiCoO2 thin films produced with pulsed laser deposition. J. Electrochem. Soc. 143(6), 1821–1827 (1996). https://doi.org/10.1149/1.1836910
S.B. Tang, M.O. Lai, L. Lu, Properties of nano-crystalline LiMn2O4 thin films deposited by pulsed laser deposition. Electrochim. Acta 52(3), 1161–1168 (2006). https://doi.org/10.1016/j.electacta.2006.07.014
R. Chen, W. Liang, H. Zhang, F. Wu, L. Li, Preparation and performance of novel LLTO thin film electrolytes for thin film lithium batteries. Chin. Sci. Bull. 57(32), 4199–4204 (2012). https://doi.org/10.1007/s11434-012-5292-y
A. Sepúlveda, J. Speulmanns, P.M. Vereecken, Bending impact on the performance of a flexible Li4Ti5O12-based all-solid-state thin-film battery. Sci. Technol. Adv. Mater. 19(1), 454–464 (2018). https://doi.org/10.1080/14686996.2018.1468199
S.-W. Song, S.-J. Hong, H.Y. Park, Y.C. Lim, K.C. Lee, Cycling-driven structural changes in a thin-film lithium battery on flexible substrate. Electrochem. Solid-State Lett. 12(8), A159 (2009). https://doi.org/10.1149/1.3139530
S.-W. Song, K.-C. Lee, H.-Y. Park, High-performance flexible all-solid-state microbatteries based on solid electrolyte of lithium boron oxynitride. J. Power. Sources 328, 311–317 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.114
H. Ge, H. Tian, H. Song, D. Liu, S. Wu, X. Shi, X. Gao, Li. Lv, X.-M. Song, Study on the energy band structure and photoelectrochemical performances of spinel Li4Ti5O12. Mater. Res. Bull. 61, 459–462 (2015). https://doi.org/10.1016/j.materresbull.2014.10.064
H. Lee, K.-B. Kim, J.-W. Choi, Transparent SiN thin-film anode for thin-film batteries by reactive sputtering at room temperature. Chem. Eng. J. 401, 126086 (2020). https://doi.org/10.1016/j.cej.2020.126086
M. Roeder, A.B. Beleke, U. Guntow, J. Buensow, A. Guerfi, U. Posset, H. Lorrmann, K. Zaghib, G. Sextl, Li4Ti5O12 and LiMn2O4 thin-film electrodes on transparent conducting oxides for all-solid-state and electrochromic applications. J. Power. Sources 301, 35–40 (2016). https://doi.org/10.1016/j.jpowsour.2015.09.063
S. Pat, H. HakanYudar, Ş Korkmaz, S. Özen, R. Mohammadigharehbagh, Z. Pat, The microstructural, surface, optical and electrochemical impedance spectroscopic study of the semitransparent all-solid-state thin film battery. Mater. Res. Express 6(1), 015503 (2018). https://doi.org/10.1088/2053-1591/aae4aa
S. Pat, S. Özen, H.H. Yudar, Ş Korkmaz, Z. Pat, The transparent all-solid-state rechargeable micro-battery manufacturing by rf magnetron sputtering. J. Alloys Compd. 713, 64–68 (2017). https://doi.org/10.1016/j.jallcom.2017.04.169
S. Oukassi, L. Baggetto, C. Dubarry, L.L. Van-Jodin, S. Poncet, L. Le Van-Jodin, R. Salot, Transparent thin film solid-state lithium ion batteries. ACS Appl. Mater. Interfaces 11(1), 683–690 (2019). https://doi.org/10.1021/acsami.8b16364
H. Lee, S. Kim, K.-B. Kim, J.-W. Choi, Scalable fabrication of flexible thin-film batteries for smart lens applications. Nano Energy 53, 225–231 (2018). https://doi.org/10.1016/j.nanoen.2018.08.054
G.A. Landis, Conf. Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conf. (Cat. No.02CH37361), IEEE. 1539−1540 (2002). https://doi.org/10.1109/pvsc.2002.1190441
G. Chen, M. Fojtik, D. Kim, D. Fick, J. Park et al., Millimeter-scale nearly perpetual sensor system with stacked battery and solar cells. In: 2010 IEEE International Solid-State Circuits Conference. (ISSCC), IEEE. 288−289 (2010). https://doi.org/10.1109/isscc.2010.5433921
M. Fojtik, D. Kim, G. Chen, Y.-S. Lin, D. Fick, J. Park, M. Seok, M.-T. Chen, Z. Foo, D. Blaauw, D. Sylvester, A millimeter-scale energy-autonomous sensor system with stacked battery and solar cells. IEEE J. Solid-State Circuits 48(3), 801–813 (2013). https://doi.org/10.1109/jssc.2012.2233352
T. Kuriyama, A. Suzuki, Y. Okamoto, I. Kimura, Y. Morikawa et al., A micromachined all-solid on-chip thin-film battery towards uninterruptible photovoltaic cells. In 2018 Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP), IEEE. 1−4 (2018). https://doi.org/10.1109/DTIP.2018.8394215
S.R. Anton, A. Erturk, D.J. Inman, Multifunctional self-charging structures using piezoceramics and thin-film batteries. Smart Mater. Struct. 19(11), 115021 (2010). https://doi.org/10.1088/0964-1726/19/11/115021
H. Lhermet, C. Condemine, M. Plissonnier, R. Salot, P. Audebert, M. Rosset, Efficient power management circuit: from thermal energy harvesting to above-IC microbattery energy storage. IEEE J. Solid-State Circuits 43(1), 246–255 (2008). https://doi.org/10.1109/jssc.2007.914725
W.-Y. Liu, Z.-W. Fu, C.-L. Li, Q.-Z. Qin, Lithium phosphorus oxynitride thin film fabricated by a nitrogen plasma-assisted deposition of E-beam reaction evaporation. Electrochem. Solid-State Lett. 7(9), J36 (2004). https://doi.org/10.1149/1.1778934
B. Wang, J.B. Bates, F.X. Hart, B.C. Sales, R.A. Zuhr et al., Characterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes. J. Electrochem. Soc. 143(10), 3203 (1996). https://doi.org/10.1149/1.1837188