Recent Advances in Directed Assembly of Nanowires or Nanotubes
Corresponding Author: Jun Yang
Nano-Micro Letters,
Vol. 4 No. 3 (2012), Article Number: 142-153
Abstract
Nanowires and nanotubes of diverse material compositions, properties and/or functions have been produced or fabricated through various bottom-up or top-down approaches. These nanowires or nanotubes have also been utilized as potential building blocks for functional nanodevices. The key for the integration of those nanowire or nanotube based devices is to assemble these one dimensional nanomaterials to specific locations using techniques that are highly controllable and scalable. Ideally such techniques should enable assembly of highly uniform nanowire/nanotube arrays with precise control of density, location, dimension or even material type of nanowire/nanotube. Numerous assembly techniques are being developed that can quickly align and assemble large quantities of one type or multiple types of nanowires through parallel processes, including flow-assisted alignment, Langmuir-Blodgett assembly, bubble-blown technique, electric/magnetic- field directed assembly, contact/roll printing, knocking-down, etc.. With these assembling techniques, applications of nanowire/nanotube based devices such as flexible electronics and sensors have been demonstrated. This paper delivers an overall review of directed nanowire assembling approaches and analyzes advantages and limitations of each method. The future research directions have also been discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Z. Long, M. Yu and B. Sun, Chem. Soc. Rev. 41, 4560 (2012). http://dx.doi.org/10.1039/c2cs15335a
- X. Liu, Y. Z. Long and L. Liao, ACS Nano 6, 1888 (2012). http://dx.doi.org/10.1021/nn204848r
- M. C. P. Wang and B. D. Gates, Mater. Today 12, 34 (2009). http://dx.doi.org/10.1016/S1369-7021(09)70158-0
- Z. Fan, J. C. Ho and T. Takahashi, Adv. Mater. 21, 3730 (2009). http://dx.doi.org/10.1002/adma.200900860
- L. Huang, Z. Jia and S. O’Brien, J. Mater. Chem. 17, 3863 (2007). http://dx.doi.org/10.1039/b702080e
- B. Erdem Alaca, Inter. Mater. Rev. 54, 245 (2009). http://dx.doi.org/10.1179/174328009X411190
- Z. Liu, L. Jiao and Y. Yao, Adv. Mater. 22, 2285 (2010). http://dx.doi.org/10.1002/adma.200904167
- X. Zhou, F. Boey and H. Zhang, Chem. Soc. Rev. 40, 5221 (2011). http://dx.doi.org/10.1039/c1cs15045f
- Y. Ma, B. Wang and Y. Wu, Carbon 49, 4098 (2011). http://dx.doi.org/10.1016/j.carbon.2011.06.068
- J. Chai, D. Wang and X. Fan, Nature Nanotechnol. 2, 500 (2007). http://dx.doi.org/10.1038/nnano.2007.227
- B. Messer, J. H. Song and P. Yang, J. Am. Chem. Soc. 122, 10232 (2000). http://dx.doi.org/10.1021/ja002553f
- Y. Shan and S. J. Fonash, ACS nano 2, 429 (2008). http://dx.doi.org/10.1021/nn700232q
- Y. Shan, A. K. Kalkan and C. Y. Peng, Nano Lett. 4, 2085 (2004). http://dx.doi.org/10.1021/nl048901j
- C. Cheng, R. K. Gonela and Q. Gu, Nano Lett. 5, 175 (2005). http://dx.doi.org/10.1021/nl048240q
- Y. Zhang, A. Chang and J. Cao, Appl. Phys. Lett. 79, 3155 (2001). http://dx.doi.org/10.1063/1.1415412
- S. Huang, X. Cai and J. Liu. J. Am. Chem. Soc. 125, 5636 (2003). http://dx.doi.org/10.1021/ja034475c
- X. Wang, Q. Li and G. Zheng, Nanotechnology 21, 395602 (2010). http://dx.doi.org/10.1088/0957-4484/21/39/395602
- G. W. Slawinski and F. P. Zamborini, Langmuir 23, 10357 (2007). http://dx.doi.org/10.1021/la701606p
- L. Ding, A. Tselev and J. Wang. Nano Lett. 9, 800 (2009). http://dx.doi.org/10.1021/nl803496s
- C. Kocabas, S. H. Hur and A. Gaur, Small 1, 1110 (2005). http://dx.doi.org/10.1002/smll.200500120
- A. Rutkowska, D. Walker and S. Gorfman, J. Phys. Chem. C 113, 17087 (2009). http://dx.doi.org/10.1021/jp9048555
- F. Rao, Y. Zhou and T. Li, Carbon 47, 2548 (2009). http://dx.doi.org/10.1016/j.carbon.2009.05.016
- X. Cao, B. Li and Y. Huang, ACS Appl. Mater. Interfaces 1, 1873 (2009). http://dx.doi.org/10.1021/am900478y
- J. Xiao, S. Dunham and P. Liu, Nano Lett. 9, 4311 (2009). http://dx.doi.org/10.1021/nl9025488
- J. Chen, F. Gao and L. Zhang, Mater. Lett. 63, 721 (2009). http://dx.doi.org/10.1016/j.matlet.2008.12.036
- R. Cui, Y. Zhang and J. Wang, J. Phys. Chem. C 114, 15547 (2010). http://dx.doi.org/10.1021/jp100286c
- I. Ibrahim, A. Bachmatiuk and F. Börrnert, Carbon 49, 5029 (2011). http://dx.doi.org/10.1016/j.carbon.2011.07.020
- H. Wu, L. Chen and C. Tsai, Micro Nano Lett. 1, 25 (2006). http://dx.doi.org/10.1049/mnl:20065018
- H. Yan, L. Liu and Z. Zhang, Appl. Phys. Lett. 95, 143114 (2009). http://dx.doi.org/10.1063/1.3242378
- G. H. Kim and W. D. Kim, Appl. Phys. Lett. 88, 233101 (2006). http://dx.doi.org/10.1063/1.2210972
- M. B. Bazbouz and G. K. Stylios, J. Appl. Polym. Sci. 107, 3023 (2008). http://dx.doi.org/10.1002/app.27407
- L. Xiao, Y. Zhang and Y. Wang, Nanotechnology 22, 025502 (2011). http://dx.doi.org/10.1088/0957-4484/22/2/025502
- K. Jiang, J. Wang and Q. Li, Adv. Mater. 23, 1154 (2011). http://dx.doi.org/10.1002/adma.201003989
- J. K. N. Mbindyo, B. D. Reiss and B. R. Martin, Adv. Mater. 13, 249 (2001). http://dx.doi.org/10.1002/1521-4095(200102)13:4<249::AID-ADMA249>3.0.CO;2-9
- N. I. Kovtyukhova and T. E. Mallouk, Chem. Eur. J. 8, 4354 (2002). http://dx.doi.org/10.1002/1521-3765(20021004)8:19<4354::AID-CHEM4354>3.0.CO;2-1
- J. Lee, A. A. Wang and Y. Rheem, Electroanal. 19, 2287 (2007). http://dx.doi.org/10.1002/elan.200704000
- M. Chen, L. Guo and R. Ravi, J. Phys. Chem. B 110, 211 (2006). http://dx.doi.org/10.1021/jp055204m
- S. Myung, M. Lee and G. T. Kim, Adv. Mater. 17, 2361 (2005). http://dx.doi.org/10.1002/adma.200500682
- K. Heo, E. Cho and J. E. Yang, Nano Lett. 8, 4523 (2008). http://dx.doi.org/10.1021/nl802570m
- J. Kang, S. Myung and B. Kim, Nanotechnology 19, 095303 (2008). http://dx.doi.org/10.1088/0957-4484/19/9/095303
- S. Myung, K. Heo and M. Lee, Nanotechnology 18, 205304 (2007). http://dx.doi.org/10.1088/0957-4484/18/20/205304
- S. Myung, J. Im and L. Huang, J. Phys. Chem. B 110, 10217 (2006). http://dx.doi.org/10.1021/jp062108s
- Y. K. Kim and S. J. Park, Nanotechnology 18, 015304 (2007). http://dx.doi.org/10.1088/0957-4484/18/1/015304
- J. Im and J. Kang, J. Phys. Chem. B 110, 12839 (2006). http://dx.doi.org/10.1021/jp062146b
- R. S. Mclean, X. Huang and C. Khripin, Nano Lett. 6, 55 (2006). http://dx.doi.org/10.1021/nl051952b
- J. Im, L. Huang and J. Kang, J. Chem. Phys. 124, 224707 (2006). http://dx.doi.org/10.1063/1.2206590
- M. Lee, J. Im and B. Lee, Nature Nanotechnol. 1, 66 (2006). http://dx.doi.org/10.1038/nnano.2006.46
- C. Hangarter, Y. Rheem and B. Yoo, Nanotechnology 18, 205305 (2007). http://dx.doi.org/10.1088/0957-4484/18/20/205305
- C. M. Hangarter and N. V. Myung, Chem. Mater. 17, 1320 (2005). http://dx.doi.org/10.1021/cm047955r
- M. Liu, J. Lagdani and H. Imrane, Appl. Phys. Lett. 90, 103105 (2007). http://dx.doi.org/10.1063/1.2711522
- Y. Rheem, C. M. Hangarter and E. H. Yang, et al., IEEE Trans. Nanotechnol. 7, 251 (2008). http://dx.doi.org10.1109/TNANO.2008.917852
- C. Ooi and B. B. Yellen, Langmuir 24, 8514 (2008). http://dx.doi.org/10.1021/la801006g
- B. Yoo, Y. Rheem and W. P. Beyermann, et al., Nanotechnology 17, 2512 (2006). http://dx.doi.org/10.1088/0957-4484/17/10/012
- M. G. Bellino, E. J. Calvo and G. J. Gordillo, Phys. Status Solidi RRL 3, 1 (2009). http://dx.doi.org/10.1002/pssr.200802207
- J. Wang, L. Y. Zhang, P. Liu, T. M. Lan, J. Zhang, L. M. Wei, Eric Siu-Wai Kong, C.H. Jiang and Y. F. Zhang, Nano-Micro Lett. 2, 134 (2010). doi:10.5101/nml.v2i2.p134-138
- J. Boote and S. Evans, Nanotechnology 16, 1500 (2005). http://dx.doi.org/10.1088/0957-4484/16/9/015
- S. Evoy, N. DiLello and V. Deshpande, et al., Microelectron. Eng. 75, 31 (2004). http://dx.doi.org/10.1016/j.mee.2003.09.010
- Y. Liu, J. H. Chung and W. K. Liu, et al., J. Phys. Chem. B 110, 14098 (2006). http://dx.doi.org/10.1021/jp061367e
- P. A. Smith, C. D. Nordquist and T. N. Jackson, et al., Appl. Phys. Lett. 77, 1399 (2000). http://dx.doi.org/10.1063/1.1290272
- D. Wang, R. Zhu and Z. Zhou, et al., Appl. Phys. Lett. 90, 103110 (2007). http://dx.doi.org/10.1063/1.2711756
- X. Duan, Y. Huang and Y. Cui, et al., Nature 409, 66 (2001). http://dx.doi.org/10.1038/35051047
- O. Harnack, C. Pacholski and H. Weller, et al., Nano Lett. 3, 1097 (2003). http://dx.doi.org/10.1021/nl034240z
- S. Lu, J. Chung and R. S. Ruoff, Nanotechnology 16, 1765 (2005). http://dx.doi.org/10.1088/0957-4484/16/9/059
- A. Subramanian, B. Vikramadity and B. J. Nelson, et al., Proceedings of 12th International Conference on Advanced Robotics 208 (2005). http://dx.doi.org/10.1109/ICAR.2005.1507414
- K. Oh, J. H. Chung and J. J. Riley, et al., Langmuir 23, 11932 (2007). http://dx.doi.org/10.1021/la701755s
- J. Lee, K. Moon and M. Ham, et al., Solid State Commun. 148, 194 (2008). http://dx.doi.org/10.1016/j.ssc.2008.08.022
- A. Motayed, M. He and A. V. Davydov, et al., J. Appl. Phys. 100, 114310 (2006). http://dx.doi.org/10.1063/1.2397383
- V. La Ferrara, B. Alfano and E. Massera, et al., IEEE Trans. Nanotechnol. 7, 776 (2008). http://dx.doi.org/10.1109/TNANO.2008.926333
- A. O’Riordan, D. Iacopino and P. Lovera, et al., Nanotechnology 22, 105602 (2011). http://dx.doi.org/10.1088/0957-4484/22/10/105602
- X. Li, E. Chin and H. Sun, et al., Sens. Actuators B 148, 404 (2010). http://dx.doi.org/10.1016/j.snb.2010.05.062
- C. Chen and Y. Zhang, J. Phys. D: Appl. Phys. 39, 172 (2006). http://dx.doi.org/10.1088/0022-3727/39/1/025
- H. W. Seo, C. S. Han and S. O. Hwang, et al., Nanotechnology 17, 3388 (2006). http://dx.doi.org/10.1088/0957-4484/17/14/008
- A. I. Baca, J. J. Brown and K. A. Bertness, et al., Nanotechnology 23, 245301 (2012). http://dx.doi.org/10.1088/0957-4484/23/24/245301
- A. Vijayaraghavan, S. Blatt and D. Weissenberger, et al., Nano Lett. 7, 1556–1560 (2007). http://dx.doi.org/10.1021/nl0703727
- Z. Chen, Z. Wu and L. Tong, et al., Anal. Chem. 78, 8069–8075 (2006). http://dx.doi.org/10.1021/ac0614487
- L. An and C. R. Friedrich, J. Appl. Phys., 105, 074314 (2009). http://dx.doi.org/10.1063/1.3093975
- C. Chen, W. Zhang and Y. Zhang, Appl. Phys. Lett. 95, 192110 (2009). http://dx.doi.org/10.1063/1.3263723
- L. Liu, X. Ye and K. Wu, et al., Sensors 9, 1714 (2009). http://dx.doi.org/10.3390/s90301714
- E. M. Freer, O. Grachev and D. P. Stumbo, Nat. Nanotechnol. 5, 525 (2010). http://dx.doi.org/10.1038/nnano.2010.106
- S. Raychaudhuri, S. A. Dayeh and D. Wang, et al., Nano Lett. 9, 2260 (2009). http://dx.doi.org/10.1021/nl900423g
- M. Li, R. B. Bhiladvala and T. J. Morrow, et al., Nat. Nanotechnol. 3, 88 (2008). http://dx.doi.org/10.1038/nnano.2008.26
- N. Mohseni Kiasari and P. Servati, IEEE Electr. Device L. 32, 982 (2011). http://dx.doi.org/10.1109/LED.2011.2149492
- Z. Wang, M. Kroener and P. Woias, Sensor Actuat. A-Phys. (2012).
- D. A. Brown, J. H. Kim and H. B. Lee, et al., Sensors 12, 5725 (2012). http://dx.doi.org/10.3390/s120505725
- L. Liao, J. Bai and R. Cheng, et al., Nano Lett. 12, 2653 (2011). http://dx.doi.org/10.1021/nl201922c
- S. J. Papadakis, J. A. Hoffmann and D. Deglau, et al., Nanoscale 3, 1059 (2011). http://dx.doi.org/10.1039/c0nr00536c
- S. Y. Lee, A. Umar and D. I. Suh, et al., Physica E 40, 866 (2008). http://dx.doi.org/10.1016/j.physe.2007.10.094
- Z. Xiao and F. Camino, Nanotechnology 20, 135205 (2009). http://dx.doi.org/10.1088/0957-4484/20/13/135205
- P. Li and W. Xue, Nanoscale Res. Lett. 5, 1072 (2010). http://dx.doi.org/10.1007/s11671-010-9604-3
- Y. Huang, X. Duan and Q. Wei, et al., Science 291, 630 (2001). http://dx.doi.org/10.1126/science.291.5504.630
- X. Duan, C. Niu and V. Sahi, et al., Nature 425, 274 (2003). http://dx.doi.org/10.1038/nature01996
- M. C. McAlpine, R. S. Friedman and S. Jin, et al., Nano Lett. 3, 1531 (2003). http://dx.doi.org/10.1021/nl0346427
- M. C. McAlpine, R. S. Friedman and C. M. Lieber, Nano Lett. 3, 443 (2003). http://dx.doi.org/10.1021/nl034031e
- Y. Cui, Q. Wei and H. Park, et al., Science 293, 1289 (2001). http://dx.doi.org/10.1126/science.1062711
- D. Wang, R. Tu and L. Zhang, et al., Angew. Chem. Int. Ed. 44, 2925 (2005). http://dx.doi.org/10.1002/anie.200500291
- S. Li, N. Liu and M. B. Chan-Park, et al., Nanotechnology 18, 455302 (2007). http://dx.doi.org/10.1088/0957-4484/18/45/455302
- D. Wang and H. Dai, Appl. Phys. A: Mater. 85, 217 (2006).
- Y. T. Liu, X. M. Xie and Y. F. Gao, et al., Mater. Lett. 61, 334 (2007). http://dx.doi.org/10.1016/j.matlet.2006.04.058
- M. Liu, Y. Chen and Q. Guo, et al., Nanotechnology 22, 125302 (2011). http://dx.doi.org/10.1088/0957-4484/22/12/125302
- M. Liu, Y. Chen and Q. Guo, et al., J. Nanoelectron. Optoelectron. 6, 144 (2011). http://dx.doi.org/10.1166/jno.2011.1153
- G. Yu, A. Cao and C. M. Lieber, Nat. Nanotechnol. 2, 372 (2007). http://dx.doi.org/10.1038/nnano.2007.150
- G. Yu, X. Li and C. M. Lieber, et al., J. Mater. Chem. 18, 728 (2008). http://dx.doi.org/10.1039/b713697h
- J. Park, G. Shin and J. S. Ha, Nanotechnology 19, 395303 (2008). http://dx.doi.org/10.1088/0957-4484/19/39/395303
- A. Tao, F. Kim, C. Hess, et al., Nano Lett. 3, 1229 (2003). http://dx.doi.org/10.1021/nl0344209
- D. Whang, S. Jin and Y. Wu, et al., Nano Lett. 3, 1255 (2003). http://dx.doi.org/10.1021/nl0345062
- S. Acharya, A. B. Panda and N. Belman, et al., Adv. Mater. 18, 210 (2006). http://dx.doi.org/10.1002/adma.200501234
- L. Jia, Y. Zhang and J. Li, et al., J. Appl. Phys. 104, 074318 (2008). http://dx.doi.org/10.1063/1.2996033
- D. Wang, Y. L. Chang and Z. Liu, et al., J. Am. Chem. Soc. 127, 11871 (2005). http://dx.doi.org/10.1021/ja053836g
- S. Jin, D. Whang and M. C. McAlpine, et al., Nano Lett. 4, 915 (2004). http://dx.doi.org/10.1021/nl049659j
- J. Li and Y. Zhang, Carbon 45, 493 (2007). http://dx.doi.org/10.1016/j.carbon.2006.10.027
- Z. Fan, J. C. Ho and Z. A. Jacobson, et al., Nano Lett. 8, 20 (2008). http://dx.doi.org/10.1021/nl071626r
- A. Javey, S. W. Nam and R. S. Friedman, et al., Nano Lett. 7, 773 (2007). http://dx.doi.org/10.1021/nl063056l
- R. Yerushalmi, Z. A. Jacobson and J. C. Ho, et al., Appl. Phys. Lett. 91, 203104 (2007). http://dx.doi.org/10.1063/1.2813618
- L. Jiao, B. Fan and X. Xian, et al., J. Am. Chem. Soc. 130, 12612 (2008). http://dx.doi.org/10.1021/ja805070b
- Y. K. Chang and F. C. N. Hong, Nanotechnology 20, 195302 (2009). http://dx.doi.org/10.1088/0957-4484/20/19/195302
- L. Wen, K. M. Wong and Y. Fang, et al., J. Mater. Chem. 21, 7090 (2011). http://dx.doi.org/10.1039/c1jm10496a
- J. Yang, M. S. Lee and H. J. Lee, et al., Appl. Phys. Lett. 98, 253106 (2011). http://dx.doi.org/10.1063/1.3601466
- G. W. Hsieh, J. J. Wang and K. Ogata, et al., J. Phys. Chem. C, 116, 7118 (2012). http://dx.doi.org/10.1021/jp210341g
- F. Xu, J. W. Durham and B. J. Wiley, et al., ACS nano 5, 1556 (2011). http://dx.doi.org/10.1021/nn103183d
- A. Pevzner, Y. Engel and R. Elnathan, et al., Nano Lett. 10, 1202 (2010). http://dx.doi.org/10.1021/nl903560u
- Y. Xiang, A. Keilbach and L. Moreno Codinachs, et al., Nano Lett. 10, 1341 (2010). http://dx.doi.org/10.1021/nl904207n
References
Y. Z. Long, M. Yu and B. Sun, Chem. Soc. Rev. 41, 4560 (2012). http://dx.doi.org/10.1039/c2cs15335a
X. Liu, Y. Z. Long and L. Liao, ACS Nano 6, 1888 (2012). http://dx.doi.org/10.1021/nn204848r
M. C. P. Wang and B. D. Gates, Mater. Today 12, 34 (2009). http://dx.doi.org/10.1016/S1369-7021(09)70158-0
Z. Fan, J. C. Ho and T. Takahashi, Adv. Mater. 21, 3730 (2009). http://dx.doi.org/10.1002/adma.200900860
L. Huang, Z. Jia and S. O’Brien, J. Mater. Chem. 17, 3863 (2007). http://dx.doi.org/10.1039/b702080e
B. Erdem Alaca, Inter. Mater. Rev. 54, 245 (2009). http://dx.doi.org/10.1179/174328009X411190
Z. Liu, L. Jiao and Y. Yao, Adv. Mater. 22, 2285 (2010). http://dx.doi.org/10.1002/adma.200904167
X. Zhou, F. Boey and H. Zhang, Chem. Soc. Rev. 40, 5221 (2011). http://dx.doi.org/10.1039/c1cs15045f
Y. Ma, B. Wang and Y. Wu, Carbon 49, 4098 (2011). http://dx.doi.org/10.1016/j.carbon.2011.06.068
J. Chai, D. Wang and X. Fan, Nature Nanotechnol. 2, 500 (2007). http://dx.doi.org/10.1038/nnano.2007.227
B. Messer, J. H. Song and P. Yang, J. Am. Chem. Soc. 122, 10232 (2000). http://dx.doi.org/10.1021/ja002553f
Y. Shan and S. J. Fonash, ACS nano 2, 429 (2008). http://dx.doi.org/10.1021/nn700232q
Y. Shan, A. K. Kalkan and C. Y. Peng, Nano Lett. 4, 2085 (2004). http://dx.doi.org/10.1021/nl048901j
C. Cheng, R. K. Gonela and Q. Gu, Nano Lett. 5, 175 (2005). http://dx.doi.org/10.1021/nl048240q
Y. Zhang, A. Chang and J. Cao, Appl. Phys. Lett. 79, 3155 (2001). http://dx.doi.org/10.1063/1.1415412
S. Huang, X. Cai and J. Liu. J. Am. Chem. Soc. 125, 5636 (2003). http://dx.doi.org/10.1021/ja034475c
X. Wang, Q. Li and G. Zheng, Nanotechnology 21, 395602 (2010). http://dx.doi.org/10.1088/0957-4484/21/39/395602
G. W. Slawinski and F. P. Zamborini, Langmuir 23, 10357 (2007). http://dx.doi.org/10.1021/la701606p
L. Ding, A. Tselev and J. Wang. Nano Lett. 9, 800 (2009). http://dx.doi.org/10.1021/nl803496s
C. Kocabas, S. H. Hur and A. Gaur, Small 1, 1110 (2005). http://dx.doi.org/10.1002/smll.200500120
A. Rutkowska, D. Walker and S. Gorfman, J. Phys. Chem. C 113, 17087 (2009). http://dx.doi.org/10.1021/jp9048555
F. Rao, Y. Zhou and T. Li, Carbon 47, 2548 (2009). http://dx.doi.org/10.1016/j.carbon.2009.05.016
X. Cao, B. Li and Y. Huang, ACS Appl. Mater. Interfaces 1, 1873 (2009). http://dx.doi.org/10.1021/am900478y
J. Xiao, S. Dunham and P. Liu, Nano Lett. 9, 4311 (2009). http://dx.doi.org/10.1021/nl9025488
J. Chen, F. Gao and L. Zhang, Mater. Lett. 63, 721 (2009). http://dx.doi.org/10.1016/j.matlet.2008.12.036
R. Cui, Y. Zhang and J. Wang, J. Phys. Chem. C 114, 15547 (2010). http://dx.doi.org/10.1021/jp100286c
I. Ibrahim, A. Bachmatiuk and F. Börrnert, Carbon 49, 5029 (2011). http://dx.doi.org/10.1016/j.carbon.2011.07.020
H. Wu, L. Chen and C. Tsai, Micro Nano Lett. 1, 25 (2006). http://dx.doi.org/10.1049/mnl:20065018
H. Yan, L. Liu and Z. Zhang, Appl. Phys. Lett. 95, 143114 (2009). http://dx.doi.org/10.1063/1.3242378
G. H. Kim and W. D. Kim, Appl. Phys. Lett. 88, 233101 (2006). http://dx.doi.org/10.1063/1.2210972
M. B. Bazbouz and G. K. Stylios, J. Appl. Polym. Sci. 107, 3023 (2008). http://dx.doi.org/10.1002/app.27407
L. Xiao, Y. Zhang and Y. Wang, Nanotechnology 22, 025502 (2011). http://dx.doi.org/10.1088/0957-4484/22/2/025502
K. Jiang, J. Wang and Q. Li, Adv. Mater. 23, 1154 (2011). http://dx.doi.org/10.1002/adma.201003989
J. K. N. Mbindyo, B. D. Reiss and B. R. Martin, Adv. Mater. 13, 249 (2001). http://dx.doi.org/10.1002/1521-4095(200102)13:4<249::AID-ADMA249>3.0.CO;2-9
N. I. Kovtyukhova and T. E. Mallouk, Chem. Eur. J. 8, 4354 (2002). http://dx.doi.org/10.1002/1521-3765(20021004)8:19<4354::AID-CHEM4354>3.0.CO;2-1
J. Lee, A. A. Wang and Y. Rheem, Electroanal. 19, 2287 (2007). http://dx.doi.org/10.1002/elan.200704000
M. Chen, L. Guo and R. Ravi, J. Phys. Chem. B 110, 211 (2006). http://dx.doi.org/10.1021/jp055204m
S. Myung, M. Lee and G. T. Kim, Adv. Mater. 17, 2361 (2005). http://dx.doi.org/10.1002/adma.200500682
K. Heo, E. Cho and J. E. Yang, Nano Lett. 8, 4523 (2008). http://dx.doi.org/10.1021/nl802570m
J. Kang, S. Myung and B. Kim, Nanotechnology 19, 095303 (2008). http://dx.doi.org/10.1088/0957-4484/19/9/095303
S. Myung, K. Heo and M. Lee, Nanotechnology 18, 205304 (2007). http://dx.doi.org/10.1088/0957-4484/18/20/205304
S. Myung, J. Im and L. Huang, J. Phys. Chem. B 110, 10217 (2006). http://dx.doi.org/10.1021/jp062108s
Y. K. Kim and S. J. Park, Nanotechnology 18, 015304 (2007). http://dx.doi.org/10.1088/0957-4484/18/1/015304
J. Im and J. Kang, J. Phys. Chem. B 110, 12839 (2006). http://dx.doi.org/10.1021/jp062146b
R. S. Mclean, X. Huang and C. Khripin, Nano Lett. 6, 55 (2006). http://dx.doi.org/10.1021/nl051952b
J. Im, L. Huang and J. Kang, J. Chem. Phys. 124, 224707 (2006). http://dx.doi.org/10.1063/1.2206590
M. Lee, J. Im and B. Lee, Nature Nanotechnol. 1, 66 (2006). http://dx.doi.org/10.1038/nnano.2006.46
C. Hangarter, Y. Rheem and B. Yoo, Nanotechnology 18, 205305 (2007). http://dx.doi.org/10.1088/0957-4484/18/20/205305
C. M. Hangarter and N. V. Myung, Chem. Mater. 17, 1320 (2005). http://dx.doi.org/10.1021/cm047955r
M. Liu, J. Lagdani and H. Imrane, Appl. Phys. Lett. 90, 103105 (2007). http://dx.doi.org/10.1063/1.2711522
Y. Rheem, C. M. Hangarter and E. H. Yang, et al., IEEE Trans. Nanotechnol. 7, 251 (2008). http://dx.doi.org10.1109/TNANO.2008.917852
C. Ooi and B. B. Yellen, Langmuir 24, 8514 (2008). http://dx.doi.org/10.1021/la801006g
B. Yoo, Y. Rheem and W. P. Beyermann, et al., Nanotechnology 17, 2512 (2006). http://dx.doi.org/10.1088/0957-4484/17/10/012
M. G. Bellino, E. J. Calvo and G. J. Gordillo, Phys. Status Solidi RRL 3, 1 (2009). http://dx.doi.org/10.1002/pssr.200802207
J. Wang, L. Y. Zhang, P. Liu, T. M. Lan, J. Zhang, L. M. Wei, Eric Siu-Wai Kong, C.H. Jiang and Y. F. Zhang, Nano-Micro Lett. 2, 134 (2010). doi:10.5101/nml.v2i2.p134-138
J. Boote and S. Evans, Nanotechnology 16, 1500 (2005). http://dx.doi.org/10.1088/0957-4484/16/9/015
S. Evoy, N. DiLello and V. Deshpande, et al., Microelectron. Eng. 75, 31 (2004). http://dx.doi.org/10.1016/j.mee.2003.09.010
Y. Liu, J. H. Chung and W. K. Liu, et al., J. Phys. Chem. B 110, 14098 (2006). http://dx.doi.org/10.1021/jp061367e
P. A. Smith, C. D. Nordquist and T. N. Jackson, et al., Appl. Phys. Lett. 77, 1399 (2000). http://dx.doi.org/10.1063/1.1290272
D. Wang, R. Zhu and Z. Zhou, et al., Appl. Phys. Lett. 90, 103110 (2007). http://dx.doi.org/10.1063/1.2711756
X. Duan, Y. Huang and Y. Cui, et al., Nature 409, 66 (2001). http://dx.doi.org/10.1038/35051047
O. Harnack, C. Pacholski and H. Weller, et al., Nano Lett. 3, 1097 (2003). http://dx.doi.org/10.1021/nl034240z
S. Lu, J. Chung and R. S. Ruoff, Nanotechnology 16, 1765 (2005). http://dx.doi.org/10.1088/0957-4484/16/9/059
A. Subramanian, B. Vikramadity and B. J. Nelson, et al., Proceedings of 12th International Conference on Advanced Robotics 208 (2005). http://dx.doi.org/10.1109/ICAR.2005.1507414
K. Oh, J. H. Chung and J. J. Riley, et al., Langmuir 23, 11932 (2007). http://dx.doi.org/10.1021/la701755s
J. Lee, K. Moon and M. Ham, et al., Solid State Commun. 148, 194 (2008). http://dx.doi.org/10.1016/j.ssc.2008.08.022
A. Motayed, M. He and A. V. Davydov, et al., J. Appl. Phys. 100, 114310 (2006). http://dx.doi.org/10.1063/1.2397383
V. La Ferrara, B. Alfano and E. Massera, et al., IEEE Trans. Nanotechnol. 7, 776 (2008). http://dx.doi.org/10.1109/TNANO.2008.926333
A. O’Riordan, D. Iacopino and P. Lovera, et al., Nanotechnology 22, 105602 (2011). http://dx.doi.org/10.1088/0957-4484/22/10/105602
X. Li, E. Chin and H. Sun, et al., Sens. Actuators B 148, 404 (2010). http://dx.doi.org/10.1016/j.snb.2010.05.062
C. Chen and Y. Zhang, J. Phys. D: Appl. Phys. 39, 172 (2006). http://dx.doi.org/10.1088/0022-3727/39/1/025
H. W. Seo, C. S. Han and S. O. Hwang, et al., Nanotechnology 17, 3388 (2006). http://dx.doi.org/10.1088/0957-4484/17/14/008
A. I. Baca, J. J. Brown and K. A. Bertness, et al., Nanotechnology 23, 245301 (2012). http://dx.doi.org/10.1088/0957-4484/23/24/245301
A. Vijayaraghavan, S. Blatt and D. Weissenberger, et al., Nano Lett. 7, 1556–1560 (2007). http://dx.doi.org/10.1021/nl0703727
Z. Chen, Z. Wu and L. Tong, et al., Anal. Chem. 78, 8069–8075 (2006). http://dx.doi.org/10.1021/ac0614487
L. An and C. R. Friedrich, J. Appl. Phys., 105, 074314 (2009). http://dx.doi.org/10.1063/1.3093975
C. Chen, W. Zhang and Y. Zhang, Appl. Phys. Lett. 95, 192110 (2009). http://dx.doi.org/10.1063/1.3263723
L. Liu, X. Ye and K. Wu, et al., Sensors 9, 1714 (2009). http://dx.doi.org/10.3390/s90301714
E. M. Freer, O. Grachev and D. P. Stumbo, Nat. Nanotechnol. 5, 525 (2010). http://dx.doi.org/10.1038/nnano.2010.106
S. Raychaudhuri, S. A. Dayeh and D. Wang, et al., Nano Lett. 9, 2260 (2009). http://dx.doi.org/10.1021/nl900423g
M. Li, R. B. Bhiladvala and T. J. Morrow, et al., Nat. Nanotechnol. 3, 88 (2008). http://dx.doi.org/10.1038/nnano.2008.26
N. Mohseni Kiasari and P. Servati, IEEE Electr. Device L. 32, 982 (2011). http://dx.doi.org/10.1109/LED.2011.2149492
Z. Wang, M. Kroener and P. Woias, Sensor Actuat. A-Phys. (2012).
D. A. Brown, J. H. Kim and H. B. Lee, et al., Sensors 12, 5725 (2012). http://dx.doi.org/10.3390/s120505725
L. Liao, J. Bai and R. Cheng, et al., Nano Lett. 12, 2653 (2011). http://dx.doi.org/10.1021/nl201922c
S. J. Papadakis, J. A. Hoffmann and D. Deglau, et al., Nanoscale 3, 1059 (2011). http://dx.doi.org/10.1039/c0nr00536c
S. Y. Lee, A. Umar and D. I. Suh, et al., Physica E 40, 866 (2008). http://dx.doi.org/10.1016/j.physe.2007.10.094
Z. Xiao and F. Camino, Nanotechnology 20, 135205 (2009). http://dx.doi.org/10.1088/0957-4484/20/13/135205
P. Li and W. Xue, Nanoscale Res. Lett. 5, 1072 (2010). http://dx.doi.org/10.1007/s11671-010-9604-3
Y. Huang, X. Duan and Q. Wei, et al., Science 291, 630 (2001). http://dx.doi.org/10.1126/science.291.5504.630
X. Duan, C. Niu and V. Sahi, et al., Nature 425, 274 (2003). http://dx.doi.org/10.1038/nature01996
M. C. McAlpine, R. S. Friedman and S. Jin, et al., Nano Lett. 3, 1531 (2003). http://dx.doi.org/10.1021/nl0346427
M. C. McAlpine, R. S. Friedman and C. M. Lieber, Nano Lett. 3, 443 (2003). http://dx.doi.org/10.1021/nl034031e
Y. Cui, Q. Wei and H. Park, et al., Science 293, 1289 (2001). http://dx.doi.org/10.1126/science.1062711
D. Wang, R. Tu and L. Zhang, et al., Angew. Chem. Int. Ed. 44, 2925 (2005). http://dx.doi.org/10.1002/anie.200500291
S. Li, N. Liu and M. B. Chan-Park, et al., Nanotechnology 18, 455302 (2007). http://dx.doi.org/10.1088/0957-4484/18/45/455302
D. Wang and H. Dai, Appl. Phys. A: Mater. 85, 217 (2006).
Y. T. Liu, X. M. Xie and Y. F. Gao, et al., Mater. Lett. 61, 334 (2007). http://dx.doi.org/10.1016/j.matlet.2006.04.058
M. Liu, Y. Chen and Q. Guo, et al., Nanotechnology 22, 125302 (2011). http://dx.doi.org/10.1088/0957-4484/22/12/125302
M. Liu, Y. Chen and Q. Guo, et al., J. Nanoelectron. Optoelectron. 6, 144 (2011). http://dx.doi.org/10.1166/jno.2011.1153
G. Yu, A. Cao and C. M. Lieber, Nat. Nanotechnol. 2, 372 (2007). http://dx.doi.org/10.1038/nnano.2007.150
G. Yu, X. Li and C. M. Lieber, et al., J. Mater. Chem. 18, 728 (2008). http://dx.doi.org/10.1039/b713697h
J. Park, G. Shin and J. S. Ha, Nanotechnology 19, 395303 (2008). http://dx.doi.org/10.1088/0957-4484/19/39/395303
A. Tao, F. Kim, C. Hess, et al., Nano Lett. 3, 1229 (2003). http://dx.doi.org/10.1021/nl0344209
D. Whang, S. Jin and Y. Wu, et al., Nano Lett. 3, 1255 (2003). http://dx.doi.org/10.1021/nl0345062
S. Acharya, A. B. Panda and N. Belman, et al., Adv. Mater. 18, 210 (2006). http://dx.doi.org/10.1002/adma.200501234
L. Jia, Y. Zhang and J. Li, et al., J. Appl. Phys. 104, 074318 (2008). http://dx.doi.org/10.1063/1.2996033
D. Wang, Y. L. Chang and Z. Liu, et al., J. Am. Chem. Soc. 127, 11871 (2005). http://dx.doi.org/10.1021/ja053836g
S. Jin, D. Whang and M. C. McAlpine, et al., Nano Lett. 4, 915 (2004). http://dx.doi.org/10.1021/nl049659j
J. Li and Y. Zhang, Carbon 45, 493 (2007). http://dx.doi.org/10.1016/j.carbon.2006.10.027
Z. Fan, J. C. Ho and Z. A. Jacobson, et al., Nano Lett. 8, 20 (2008). http://dx.doi.org/10.1021/nl071626r
A. Javey, S. W. Nam and R. S. Friedman, et al., Nano Lett. 7, 773 (2007). http://dx.doi.org/10.1021/nl063056l
R. Yerushalmi, Z. A. Jacobson and J. C. Ho, et al., Appl. Phys. Lett. 91, 203104 (2007). http://dx.doi.org/10.1063/1.2813618
L. Jiao, B. Fan and X. Xian, et al., J. Am. Chem. Soc. 130, 12612 (2008). http://dx.doi.org/10.1021/ja805070b
Y. K. Chang and F. C. N. Hong, Nanotechnology 20, 195302 (2009). http://dx.doi.org/10.1088/0957-4484/20/19/195302
L. Wen, K. M. Wong and Y. Fang, et al., J. Mater. Chem. 21, 7090 (2011). http://dx.doi.org/10.1039/c1jm10496a
J. Yang, M. S. Lee and H. J. Lee, et al., Appl. Phys. Lett. 98, 253106 (2011). http://dx.doi.org/10.1063/1.3601466
G. W. Hsieh, J. J. Wang and K. Ogata, et al., J. Phys. Chem. C, 116, 7118 (2012). http://dx.doi.org/10.1021/jp210341g
F. Xu, J. W. Durham and B. J. Wiley, et al., ACS nano 5, 1556 (2011). http://dx.doi.org/10.1021/nn103183d
A. Pevzner, Y. Engel and R. Elnathan, et al., Nano Lett. 10, 1202 (2010). http://dx.doi.org/10.1021/nl903560u
Y. Xiang, A. Keilbach and L. Moreno Codinachs, et al., Nano Lett. 10, 1341 (2010). http://dx.doi.org/10.1021/nl904207n