Hollow Bio-derived Polymer Nanospheres with Ordered Mesopores for Sodium-Ion Battery
Corresponding Author: Shaohua Liu
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 31
Abstract
Bio-inspired hierarchical self-assembly provides elegant and powerful bottom-up strategies for the creation of complex materials. However, the current self-assembly approaches for natural bio-compounds often result in materials with limited diversity and complexity in architecture as well as microstructure. Here, we develop a novel coordination polymerization-driven hierarchical assembly of micelle strategy, using phytic acid-based natural compounds as an example, for the spatially controlled fabrication of metal coordination bio-derived polymers. The resultant ferric phytate polymer nanospheres feature hollow architecture, ordered meso-channels of ~ 12 nm, high surface area of 401 m2 g−1, and large pore volume of 0.53 cm3 g−1. As an advanced anode material, this bio-derivative polymer delivers a remarkable reversible capacity of 540 mAh g−1 at 50 mA g−1, good rate capability, and cycling stability for sodium-ion batteries. This study holds great potential of the design of new complex bio-materials with supramolecular chemistry.
Highlights:
1 A novel coordination polymerization-driven hierarchical assembly approach for spatially controlled fabrication of phytic acid-based bio-derivatives was developed.
2 The resultant ferric phytate bio-derived polymer featured hollow nanosphere architecture, ordered meso-channels, high surface area, and large pore volume, as anode material, delivering a remarkable electrochemical performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012). https://doi.org/10.1038/nature11439
- R. Mezzenga, J.M. Seddon, C.J. Drummond, B.J. Boyd, G.E. Schröder-Turk, L. Sagalowicz, Nature-inspired design and application of lipidic lyotropic liquid crystals. Adv. Mater. (2019). https://doi.org/10.1002/adma.201900818
- K. Chung, S. Yu, C.-J. Heo, J.W. Shim, S.-M. Yang et al., Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings. Adv. Mater. 24(18), 2375–2379 (2012). https://doi.org/10.1002/adma.201200521
- L.B. Gower, Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem. Rev. 108(11), 4551–4627 (2008). https://doi.org/10.1021/cr800443h
- U.G. Wegst, H. Bai, E. Saiz, A.P. Tomsia, R.O. Ritchie, Bioinspired structural materials. Nat. Mater. 14(1), 23–36 (2015). https://doi.org/10.1038/nmat4089
- R. Lakes, Materials with structural hierarchy. Nature 361(6412), 511–515 (1993). https://doi.org/10.1038/361511a0
- Y. Zhang, B.Y.W. Hsu, C. Ren, X. Li, J. Wang, Silica-based nanocapsules: synthesis, structure control and biomedical applications. Chem. Soc. Rev. 44(1), 315–335 (2015). https://doi.org/10.1039/C4CS00199K
- X.-Y. Yang, L.-H. Chen, Y. Li, J.C. Rooke, C. Sanchez, B.-L. Su, Hierarchically porous materials: synthesis strategies and structure design. Chem. Soc. Rev. 46(2), 481–558 (2017). https://doi.org/10.1039/C6CS00829A
- A.H. Groschel, F.H. Schacher, H. Schmalz, O.V. Borisov, E.B. Zhulina, A. Walther, A.H. Muller, Precise hierarchical self-assembly of multicompartment micelles. Nat. Commun. 3, 710 (2012). https://doi.org/10.1038/ncomms1707
- S. Park, J.-H. Lim, S.-W. Chung, C.A. Mirkin, Self-assembly of mesoscopic metal-polymer amphiphiles. Science 303(5656), 348 (2004). https://doi.org/10.1126/science.1093276
- G. Férey, F. Millange, M. Morcrette, C. Serre, M.-L. Doublet, J.-M. Grenèche, J.-M. Tarascon, Mixed-valence Li/Fe-based metal-organic frameworks with both reversible redox and sorption properties. Angew. Chem. Int. Ed. 46(18), 3259–3263 (2007). https://doi.org/10.1002/anie.200605163
- M. Faustini, L. Nicole, E. Ruiz-Hitzky, C. Sanchez, History of organic–inorganic hybrid materials: prehistory, art, science, and advanced applications. Adv. Funct. Mater. 28(27), 1704158 (2018). https://doi.org/10.1002/adfm.201704158
- M. Pramanik, Y. Tsujimoto, V. Malgras, S.X. Dou, J.H. Kim, Y. Yamauchi, Mesoporous iron phosphonate electrodes with crystalline frameworks for lithium-ion batteries. Chem. Mater. 27(3), 1082–1089 (2015). https://doi.org/10.1021/cm5044045
- M.H. Sun, S.Z. Huang, L.H. Chen, Y. Li, X.Y. Yang, Z.Y. Yuan, B.L. Su, Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem. Soc. Rev. 45(12), 3479–3563 (2016). https://doi.org/10.1039/c6cs00135a
- K.P. Singh, E.J. Bae, J.S. Yu, Fe–P: a new class of electroactive catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 137(9), 3165–3168 (2015). https://doi.org/10.1021/Ja511759u
- J. Song, B. Zhou, H. Zhou, L. Wu, Q. Meng, Z. Liu, B. Han, Porous zirconium-phytic acid hybrid: a highly efficient catalyst for Meerwein–Ponndorf–Verley reductions. Angew. Chem. Int. Ed. 54(32), 9399–9403 (2015). https://doi.org/10.1002/anie.201504001
- L. Li, G. Zhang, Z. Su, One-step assembly of phytic acid metal complexes for superhydrophilic coatings. Angew. Chem. Int. Ed. 55(31), 9093–9096 (2016). https://doi.org/10.1002/anie.201604671
- H. Zhou, X. Li, Y. Li, M. Zheng, H. Pang, Applications of MxSey (M = Fe Co, Ni) and their composites in electrochemical energy storage and conversion. Nano-Micro Lett. 11, 40 (2019). https://doi.org/10.1007/s40820-019-0272-2
- N. Zhang, X. Han, Y. Liu, X. Hu, Q. Zhao, J. Chen, 3D porous γ-Fe2O3@C nanocomposite as high-performance anode material of Na-ion batteries. Adv. Energy Mater. 5(5), 1401123 (2015). https://doi.org/10.1002/aenm.201401123
- J. Zhang, S. Karmakar, M. Yu, N. Mitter, J. Zou, C. Yu, Synthesis of silica vesicles with controlled entrance size for high loading, sustained release, and cellular delivery of therapeutical proteins. Small 10(24), 5068–5076 (2014). https://doi.org/10.1002/smll.201401538
- H. Wang, X. Zhou, M. Yu, Y. Wang, L. Han et al., Supra-assembly of siliceous vesicles. J. Am. Chem. Soc. 128(50), 15992–15993 (2006). https://doi.org/10.1021/ja066707o
- D. Kong, J. Zoñ, J. McBee, A. Clearfield, Rational design and synthesis of porous organic–inorganic hybrid frameworks constructed by 1,3,5-benzenetriphosphonic acid and pyridine synthons. Inorg. Chem. 45(3), 977–986 (2006). https://doi.org/10.1021/ic0509377
- F. Yang, H. Gao, J. Hao, S. Zhang, P. Li, Y. Liu, J. Chen, Z. Guo, Yolk–shell structured FeP@C nanoboxes as advanced anode materials for rechargeable lithium-/potassium-ion batteries. Adv. Funct. Mater. 29(16), 1808291 (2019). https://doi.org/10.1002/adfm.201808291
- H. Kunieda, K. Shinoda, Krafft points, critical micelle concentrations, surface tension, and solubilizing power of aqueous solutions of fluorinated surfactants. J. Phys. Chem. C 80(22), 2468–2470 (1976). https://doi.org/10.1021/j100563a007
- J. Zhang, A. Song, Z. Li, G. Xu, J. Hao, Phase behaviors and self-assembly properties of two catanionic surfactant systems: C8F17COOH/tTaOH/H2O and C8H17COOH/tTaOH/H2O. J. Phys. Chem. B 114(41), 13128–13135 (2010). https://doi.org/10.1021/jp104579h
- J. Wei, G. Wang, F. Chen, M. Bai, Y. Liang, H. Wang, D. Zhao, Y. Zhao, Sol–gel synthesis of metal-phenolic coordination spheres and their derived carbon composites. Angew. Chem. Int. Ed. 57(31), 9838–9843 (2018). https://doi.org/10.1002/anie.201805781
- S. Liu, F. Wang, R. Dong, T. Zhang, J. Zhang, X. Zhuang, Y. Mai, X. Feng, Dual-template synthesis of 2D mesoporous polypyrrole nanosheets with controlled pore size. Adv. Mater. 28(38), 8365–8370 (2016). https://doi.org/10.1002/adma.201603036
- S. Liu, J. Zhang, R. Dong, P. Gordiichuk, T. Zhang et al., Two-dimensional mesoscale-ordered conducting polymers. Angew. Chem. Int. Ed. 55(40), 12516–12521 (2016). https://doi.org/10.1002/anie.201606988
- Y. Wen, F. Wei, W. Zhang, A. Cui, J. Cui et al., Two-dimensional mesoporous sensing materials. Chin. Chem. Lett. (2019). https://doi.org/10.1016/j.cclet.2019.04.071. (in press)
- Y. Wang, X. Yu, S. Xu, J. Bai, R. Xiao et al., A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nat. Commun. 4, 2365 (2013). https://doi.org/10.1038/ncomms3365
- W. Guo, W. Sun, L.-P. Lv, S. Kong, Y. Wang, Microwave-assisted morphology evolution of Fe-based metal-organic frameworks and their derived Fe2O3 nanostructures for Li-ion storage. ACS Nano 11(4), 4198–4205 (2017). https://doi.org/10.1021/acsnano.7b01152
- Y. Yan, Y.-X. Yin, Y.-G. Guo, L.-J. Wan, A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 4(8), 1301584 (2014). https://doi.org/10.1002/aenm.201301584
- N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114(23), 11636–11682 (2014). https://doi.org/10.1021/cr500192f
- J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46(12), 3529–3614 (2017). https://doi.org/10.1039/C6CS00776G
- Y. Fang, L. Xiao, J. Qian, X. Ai, H. Yang, Y. Cao, Mesoporous amorphous FePO4 nanospheres as high-performance cathode material for sodium-ion batteries. Nano Lett. 14(6), 3539–3543 (2014). https://doi.org/10.1021/nl501152f
- K. Lan, Y. Liu, W. Zhang, Y. Liu, A. Elzatahry et al., Uniform ordered two-dimensional mesoporous TiO2 nanosheets from hydrothermal-induced solvent-confined monomicelle assembly. J. Am. Chem. Soc. 140(11), 4135–4143 (2018). https://doi.org/10.1021/jacs.8b00909
- H. Liu, W. Li, D. Shen, D. Zhao, G. Wang, Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J. Am. Chem. Soc. 137(40), 13161–13166 (2015). https://doi.org/10.1021/jacs.5b08743
- P. Mei, J. Lee, M. Pramanik, A. Alshehri, J. Kim et al., Mesoporous manganese phosphonate nanorods as a prospective anode for lithium-ion batteries. ACS Appl. Mater. Interfaces. 10(23), 19739–19745 (2018). https://doi.org/10.1021/acsami.8b05292
- D. Zhao, T. Meng, J. Qin, W. Wang, Z. Yin, M. Cao, Rational construction of multivoids-assembled hybrid nanospheres based on VPO4 encapsulated in porous carbon with superior lithium storage performance. ACS Appl. Mater. Interfaces. 9(2), 1437–1445 (2017). https://doi.org/10.1021/acsami.6b11670
- Z. Xu, J. Yang, T. Zhang, Y. Nuli, J. Wang, S.-I. Hirano, Silicon microparticle anodes with self-healing multiple network binder. Joule 2(5), 950–961 (2018). https://doi.org/10.1016/j.joule.2018.02.012
- H. Ying, W.-Q. Han, Metallic Sn-based anode materials: application in high-performance lithium-ion and sodium-ion batteries. Adv. Sci. 4(11), 1700298 (2017). https://doi.org/10.1002/advs.201700298
- W. Wang, J. Zhou, Z. Wang, L. Zhao, P. Li et al., Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv. Energy Mater. 8(5), 1701648 (2018). https://doi.org/10.1002/aenm.201701648
- K. Lan, Y. Xia, R. Wang, Z. Zhao, W. Zhang et al., Confined interfacial monomicelle assembly for precisely controlled coating of single-layered titania mesopores. Matter (2019). https://doi.org/10.1016/j.matt.2019.03.003
References
K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012). https://doi.org/10.1038/nature11439
R. Mezzenga, J.M. Seddon, C.J. Drummond, B.J. Boyd, G.E. Schröder-Turk, L. Sagalowicz, Nature-inspired design and application of lipidic lyotropic liquid crystals. Adv. Mater. (2019). https://doi.org/10.1002/adma.201900818
K. Chung, S. Yu, C.-J. Heo, J.W. Shim, S.-M. Yang et al., Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings. Adv. Mater. 24(18), 2375–2379 (2012). https://doi.org/10.1002/adma.201200521
L.B. Gower, Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem. Rev. 108(11), 4551–4627 (2008). https://doi.org/10.1021/cr800443h
U.G. Wegst, H. Bai, E. Saiz, A.P. Tomsia, R.O. Ritchie, Bioinspired structural materials. Nat. Mater. 14(1), 23–36 (2015). https://doi.org/10.1038/nmat4089
R. Lakes, Materials with structural hierarchy. Nature 361(6412), 511–515 (1993). https://doi.org/10.1038/361511a0
Y. Zhang, B.Y.W. Hsu, C. Ren, X. Li, J. Wang, Silica-based nanocapsules: synthesis, structure control and biomedical applications. Chem. Soc. Rev. 44(1), 315–335 (2015). https://doi.org/10.1039/C4CS00199K
X.-Y. Yang, L.-H. Chen, Y. Li, J.C. Rooke, C. Sanchez, B.-L. Su, Hierarchically porous materials: synthesis strategies and structure design. Chem. Soc. Rev. 46(2), 481–558 (2017). https://doi.org/10.1039/C6CS00829A
A.H. Groschel, F.H. Schacher, H. Schmalz, O.V. Borisov, E.B. Zhulina, A. Walther, A.H. Muller, Precise hierarchical self-assembly of multicompartment micelles. Nat. Commun. 3, 710 (2012). https://doi.org/10.1038/ncomms1707
S. Park, J.-H. Lim, S.-W. Chung, C.A. Mirkin, Self-assembly of mesoscopic metal-polymer amphiphiles. Science 303(5656), 348 (2004). https://doi.org/10.1126/science.1093276
G. Férey, F. Millange, M. Morcrette, C. Serre, M.-L. Doublet, J.-M. Grenèche, J.-M. Tarascon, Mixed-valence Li/Fe-based metal-organic frameworks with both reversible redox and sorption properties. Angew. Chem. Int. Ed. 46(18), 3259–3263 (2007). https://doi.org/10.1002/anie.200605163
M. Faustini, L. Nicole, E. Ruiz-Hitzky, C. Sanchez, History of organic–inorganic hybrid materials: prehistory, art, science, and advanced applications. Adv. Funct. Mater. 28(27), 1704158 (2018). https://doi.org/10.1002/adfm.201704158
M. Pramanik, Y. Tsujimoto, V. Malgras, S.X. Dou, J.H. Kim, Y. Yamauchi, Mesoporous iron phosphonate electrodes with crystalline frameworks for lithium-ion batteries. Chem. Mater. 27(3), 1082–1089 (2015). https://doi.org/10.1021/cm5044045
M.H. Sun, S.Z. Huang, L.H. Chen, Y. Li, X.Y. Yang, Z.Y. Yuan, B.L. Su, Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem. Soc. Rev. 45(12), 3479–3563 (2016). https://doi.org/10.1039/c6cs00135a
K.P. Singh, E.J. Bae, J.S. Yu, Fe–P: a new class of electroactive catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 137(9), 3165–3168 (2015). https://doi.org/10.1021/Ja511759u
J. Song, B. Zhou, H. Zhou, L. Wu, Q. Meng, Z. Liu, B. Han, Porous zirconium-phytic acid hybrid: a highly efficient catalyst for Meerwein–Ponndorf–Verley reductions. Angew. Chem. Int. Ed. 54(32), 9399–9403 (2015). https://doi.org/10.1002/anie.201504001
L. Li, G. Zhang, Z. Su, One-step assembly of phytic acid metal complexes for superhydrophilic coatings. Angew. Chem. Int. Ed. 55(31), 9093–9096 (2016). https://doi.org/10.1002/anie.201604671
H. Zhou, X. Li, Y. Li, M. Zheng, H. Pang, Applications of MxSey (M = Fe Co, Ni) and their composites in electrochemical energy storage and conversion. Nano-Micro Lett. 11, 40 (2019). https://doi.org/10.1007/s40820-019-0272-2
N. Zhang, X. Han, Y. Liu, X. Hu, Q. Zhao, J. Chen, 3D porous γ-Fe2O3@C nanocomposite as high-performance anode material of Na-ion batteries. Adv. Energy Mater. 5(5), 1401123 (2015). https://doi.org/10.1002/aenm.201401123
J. Zhang, S. Karmakar, M. Yu, N. Mitter, J. Zou, C. Yu, Synthesis of silica vesicles with controlled entrance size for high loading, sustained release, and cellular delivery of therapeutical proteins. Small 10(24), 5068–5076 (2014). https://doi.org/10.1002/smll.201401538
H. Wang, X. Zhou, M. Yu, Y. Wang, L. Han et al., Supra-assembly of siliceous vesicles. J. Am. Chem. Soc. 128(50), 15992–15993 (2006). https://doi.org/10.1021/ja066707o
D. Kong, J. Zoñ, J. McBee, A. Clearfield, Rational design and synthesis of porous organic–inorganic hybrid frameworks constructed by 1,3,5-benzenetriphosphonic acid and pyridine synthons. Inorg. Chem. 45(3), 977–986 (2006). https://doi.org/10.1021/ic0509377
F. Yang, H. Gao, J. Hao, S. Zhang, P. Li, Y. Liu, J. Chen, Z. Guo, Yolk–shell structured FeP@C nanoboxes as advanced anode materials for rechargeable lithium-/potassium-ion batteries. Adv. Funct. Mater. 29(16), 1808291 (2019). https://doi.org/10.1002/adfm.201808291
H. Kunieda, K. Shinoda, Krafft points, critical micelle concentrations, surface tension, and solubilizing power of aqueous solutions of fluorinated surfactants. J. Phys. Chem. C 80(22), 2468–2470 (1976). https://doi.org/10.1021/j100563a007
J. Zhang, A. Song, Z. Li, G. Xu, J. Hao, Phase behaviors and self-assembly properties of two catanionic surfactant systems: C8F17COOH/tTaOH/H2O and C8H17COOH/tTaOH/H2O. J. Phys. Chem. B 114(41), 13128–13135 (2010). https://doi.org/10.1021/jp104579h
J. Wei, G. Wang, F. Chen, M. Bai, Y. Liang, H. Wang, D. Zhao, Y. Zhao, Sol–gel synthesis of metal-phenolic coordination spheres and their derived carbon composites. Angew. Chem. Int. Ed. 57(31), 9838–9843 (2018). https://doi.org/10.1002/anie.201805781
S. Liu, F. Wang, R. Dong, T. Zhang, J. Zhang, X. Zhuang, Y. Mai, X. Feng, Dual-template synthesis of 2D mesoporous polypyrrole nanosheets with controlled pore size. Adv. Mater. 28(38), 8365–8370 (2016). https://doi.org/10.1002/adma.201603036
S. Liu, J. Zhang, R. Dong, P. Gordiichuk, T. Zhang et al., Two-dimensional mesoscale-ordered conducting polymers. Angew. Chem. Int. Ed. 55(40), 12516–12521 (2016). https://doi.org/10.1002/anie.201606988
Y. Wen, F. Wei, W. Zhang, A. Cui, J. Cui et al., Two-dimensional mesoporous sensing materials. Chin. Chem. Lett. (2019). https://doi.org/10.1016/j.cclet.2019.04.071. (in press)
Y. Wang, X. Yu, S. Xu, J. Bai, R. Xiao et al., A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nat. Commun. 4, 2365 (2013). https://doi.org/10.1038/ncomms3365
W. Guo, W. Sun, L.-P. Lv, S. Kong, Y. Wang, Microwave-assisted morphology evolution of Fe-based metal-organic frameworks and their derived Fe2O3 nanostructures for Li-ion storage. ACS Nano 11(4), 4198–4205 (2017). https://doi.org/10.1021/acsnano.7b01152
Y. Yan, Y.-X. Yin, Y.-G. Guo, L.-J. Wan, A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 4(8), 1301584 (2014). https://doi.org/10.1002/aenm.201301584
N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114(23), 11636–11682 (2014). https://doi.org/10.1021/cr500192f
J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46(12), 3529–3614 (2017). https://doi.org/10.1039/C6CS00776G
Y. Fang, L. Xiao, J. Qian, X. Ai, H. Yang, Y. Cao, Mesoporous amorphous FePO4 nanospheres as high-performance cathode material for sodium-ion batteries. Nano Lett. 14(6), 3539–3543 (2014). https://doi.org/10.1021/nl501152f
K. Lan, Y. Liu, W. Zhang, Y. Liu, A. Elzatahry et al., Uniform ordered two-dimensional mesoporous TiO2 nanosheets from hydrothermal-induced solvent-confined monomicelle assembly. J. Am. Chem. Soc. 140(11), 4135–4143 (2018). https://doi.org/10.1021/jacs.8b00909
H. Liu, W. Li, D. Shen, D. Zhao, G. Wang, Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J. Am. Chem. Soc. 137(40), 13161–13166 (2015). https://doi.org/10.1021/jacs.5b08743
P. Mei, J. Lee, M. Pramanik, A. Alshehri, J. Kim et al., Mesoporous manganese phosphonate nanorods as a prospective anode for lithium-ion batteries. ACS Appl. Mater. Interfaces. 10(23), 19739–19745 (2018). https://doi.org/10.1021/acsami.8b05292
D. Zhao, T. Meng, J. Qin, W. Wang, Z. Yin, M. Cao, Rational construction of multivoids-assembled hybrid nanospheres based on VPO4 encapsulated in porous carbon with superior lithium storage performance. ACS Appl. Mater. Interfaces. 9(2), 1437–1445 (2017). https://doi.org/10.1021/acsami.6b11670
Z. Xu, J. Yang, T. Zhang, Y. Nuli, J. Wang, S.-I. Hirano, Silicon microparticle anodes with self-healing multiple network binder. Joule 2(5), 950–961 (2018). https://doi.org/10.1016/j.joule.2018.02.012
H. Ying, W.-Q. Han, Metallic Sn-based anode materials: application in high-performance lithium-ion and sodium-ion batteries. Adv. Sci. 4(11), 1700298 (2017). https://doi.org/10.1002/advs.201700298
W. Wang, J. Zhou, Z. Wang, L. Zhao, P. Li et al., Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv. Energy Mater. 8(5), 1701648 (2018). https://doi.org/10.1002/aenm.201701648
K. Lan, Y. Xia, R. Wang, Z. Zhao, W. Zhang et al., Confined interfacial monomicelle assembly for precisely controlled coating of single-layered titania mesopores. Matter (2019). https://doi.org/10.1016/j.matt.2019.03.003