Surface Passivation and Energetic Modification Suppress Nonradiative Recombination in Perovskite Solar Cells
Corresponding Author: Qinye Bao
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 108
Abstract
Surface passivation via post-treatment is an important strategy for improving power conversion efficiency and operational stability of perovskite solar cells. However, so far the interaction mechanisms between passivating additive and perovskite are not well understood. Here, we report the atomic-scale interaction of surface passivating additive 2,2-difluoroethylammonium bromine (2FEABr) on the MAPbI3. It is found that the bulky 2FEA+ cations tend to distribute at film surface, while the Br− anions diffuse from surface into bulk. A combination of 19F, 207Pb, and 2H solid-state NMR further reveal the Br− anions’ partial substitution for the I− sites, the restricted motion of partial MA+ cations, and the firmed perovskite lattices, which would improve charge transport and stability of the perovskite films. Optical spectroscopy and ultraviolet photoelectron spectroscopy demonstrate that the 2FEABr induced surface passivation and energetic modification suppress the nonradiative recombination loss. These findings enable the efficiency of the p-i-n structured PSC significantly increasing from 19.44 to 21.06%, accompanied by excellent stability. Our work further establishes more knowledge link between passivating additive and PSC performance.
Highlights:
1 The partial substitution of Br− on I-sites, and the restricted motion of MA+ cations in correlation with suppressed electron-phonon coupling promote charge transport.
2 The perovskite parent lattice of 2FEABr-treated perovskites was firmed, and the difficulty degree for A-site MA+ cations running out of the inorganic framework was thus enhanced.
3 The efficiency was enhanced from 19.44% to 21.06%, accompanied with excellent stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T.M. Brenner, D.A. Egger, L. Kronik, G. Hodes, D. Cahen, Hybrid organic-inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007 (2016). https://doi.org/10.1038/natrevmats.2015.7
- S.D. Wolf, J. Holovsky, S.J. Moon, P. Loeper, B. Niesen et al., Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5(6), 1035–1039 (2014). https://doi.org/10.1021/jz500279b
- S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013). https://doi.org/10.1126/science.1243982
- G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam et al., Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342(6156), 344–347 (2013). https://doi.org/10.1126/science.1243167
- R.J. Sutton, G.E. Eperon, L. Miranda, E.S. Parrott, B.A. Kamino et al., Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 6(8), 1502458 (2016). https://doi.org/10.1002/aenm.201502458
- G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz et al., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7(3), 982–988 (2014). https://doi.org/10.1039/c3ee43822h
- X. Wang, J. He, B. Zhou, Y. Zhang, J. Wu et al., Bandgap-tunable preparation of smooth and large two-dimensional antimonene. Angew. Chem. Int. Ed. 57(28), 8668–8673 (2018). https://doi.org/10.1002/anie.201804886
- A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J.T.W. Wang et al., Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites. Nat. Phys. 11, 582–587 (2015). https://doi.org/10.1038/nphys3357
- K. Galkowski, A. Mitioglu, A. Miyata, P. Plochocka, O. Portugall et al., Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors. Energy Environ. Sci. 9(3), 962–970 (2016). https://doi.org/10.1039/c5ee03435c
- N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015). https://doi.org/10.1038/nature14133
- M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.P. Correa-Baena et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9(6), 1989–1997 (2016). https://doi.org/10.1039/c5ee03874j
- W. Ke, L. Mao, C.C. Stoumpos, J. Hoffman, I. Spanopoulos et al., Compositional and solvent engineering in Dion-Jacobson 2D perovskites boosts solar cell efficiency and stability. Adv. Energy Mater. 9(10), 1803384 (2019). https://doi.org/10.1002/aenm.201803384
- H. Chen, Z. Wei, H. He, X. Zheng, K.S. Wong et al., Solvent engineering boosts the efficiency of paintable carbon-based perovskite solar cells to beyond 14%. Adv. Energy Mater. 6(8), 1502087 (2016). https://doi.org/10.1002/aenm.201502087
- N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu et al., Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014). https://doi.org/10.1038/nmat4014
- P. Luo, W. Xia, S. Zhou, L. Sun, J. Cheng et al., Solvent engineering for ambient-air-processed, phase-stable CsPbI3 in perovskite solar cells. J. Phys. Chem. Lett. 7(6), 3603–3608 (2016). https://doi.org/10.1021/acs.jpclett.6b01576
- P. Docampo, J.M. Ball, M. Darwich, G.E. Eperon, H.J. Snaith, Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 4, 2761 (2013). https://doi.org/10.1038/ncomms3761
- M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012). https://doi.org/10.1126/science.1228604
- T.Y. Wang, J.W. Chen, G.X. Wu, D.D. Song, M.C. Li, Designing novel thin film polycrystalline solar cells for high efficiency: sandwich CIGS and heterojunction perovskite. J. Semicond. 38, 014005 (2017). https://doi.org/10.1088/1674-4926/38/1/014005
- NREL, Best research-Cell efficiencies. www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.pdf.Accessed Feb (2022).
- G.J.A.H. Wetzelaer, M. Scheepers, A.M. Sempere, C. Momblona, J. Avila et al., Trap-assisted non-radiative recombination in organic-inorganic perovskite solar cells. Adv. Mater. 27(11), 1837–1841 (2015). https://doi.org/10.1002/adma.201405372
- J. Chen, N.G. Park, Materials and methods for interface engineering toward stable and efficient perovskite solar cells. ACS Energy Lett. 5(8), 2742–2786 (2020). https://doi.org/10.1021/acsenergylett.0c01240
- M. Wang, W. Wang, B. Ma, W. Shen, L. Liu et al., Lead-free perovskite materials for solar cells. Nano-Micro Lett. 13, 62 (2021). https://doi.org/10.1007/s40820-020-00578-z
- T. Wu, Y. Wang, X. Li, Y. Wu, X. Meng et al., Efficient defect passivation for perovskite solar cells by controlling the electron density distribution of donor-pi-acceptor molecules. Adv. Energy Mater. 9(17), 1803766 (2019). https://doi.org/10.1002/aenm.201803766
- Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
- X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai et al., Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 17102 (2017). https://doi.org/10.1038/nenergy.2017.102
- Y. Liu, B. Dong, A. Hagfeldt, J. Luo, M. Graetzel, Chemically tailored molecular surface modifiers for efficient and stable perovskite photovoltaics. SmartMat 2(1), 33–37 (2021). https://doi.org/10.1002/smm2.1025
- F. Li, X. Deng, F. Qi, Z. Li, D. Liu et al., Regulating surface termination for efficient inverted perovskite solar cells with greater than 23% efficiency. J. Am. Chem. Soc. 142(47), 20134–20142 (2020). https://doi.org/10.1021/jacs.0c09845
- X. Zhu, M. Du, J. Feng, H. Wang, Z. Xu et al., High-efficiency perovskite solar cells with imidazolium-based ionic liquid for surface passivation and charge transport. Angew. Chem. Int. Ed. 60(8), 4238–4244 (2021). https://doi.org/10.1002/anie.202010987
- X. Qin, Z. Zhao, Y. Wang, J. Wu, Q. Jiang et al., Recent progress in stability of perovskite solar cells. J. Semicond. 38, 011002 (2017). https://doi.org/10.1088/1674-4926/38/1/011002
- W. Zhao, J. Xu, K. He, Y. Cai, Y. Han et al., A special additive enables all cations and anions passivation for stable perovskite solar cells with efficiency over 23%. Nano-Micro Lett. 13, 169 (2021). https://doi.org/10.1007/s40820-021-00688-2
- Y. Xu, G. Li, R. Li, Y. Jing, H. Zhang et al., PbS/CdS heterojunction thin layer affords high-performance carbon-based all-inorganic solar cells. Nano Energy 95, 106973 (2022). https://doi.org/10.1016/j.nanoen.2022.106973
- Z. Ni, C. Bao, Y. Liu, Q. Jiang, W.Q. Wu et al., Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367(6484), 1352–1358 (2020). https://doi.org/10.1126/science.aba0893
- L. Liang, H. Luo, J. Hu, H. Li, P. Gao, Efficient perovskite solar cells by reducing interface-mediated recombination: a bulky amine approach. Adv. Energy Mater. 10(14), 2000197 (2020). https://doi.org/10.1002/aenm.202000197
- X. Jiang, J. Zhang, X. Liu, Z. Wang, X. Guo et al., Deeper insight into the role of organic ammonium cations in reducing surface defects of the perovskite film. Angew. Chem. Int. Ed. 61(12), e202115663 (2022). https://doi.org/10.1002/anie.202115663
- J. Suo, B. Yang, E. Mosconi, H.S. Choi, Y. Kim et al., Surface reconstruction engineering with synergistic effect of mixed-salt passivation treatment toward efficient and stable perovskite solar cells. Adv. Funct. Mater. 31(34), 2102902 (2021). https://doi.org/10.1002/adfm.202102902
- S. Nagane, S. Macpherson, M.A. Hope, D.J. Kubicki, W. Li et al., Tetrafluoroborate-induced reduction in defect density in hybrid perovskites through halide management. Adv. Mater. 33(32), 2102462 (2021). https://doi.org/10.1002/adma.202102462
- B. Luo, Y. Guo, Y. Xiao, X. Lian, T. Tan et al., Fluorinated spacers regulate the emission and bandgap of two-dimensional single-layered lead bromide perovskites by hydrogen bonding. J. Phys. Chem. Lett. 10(17), 5271–5276 (2019). https://doi.org/10.1021/acs.jpclett.9b02172
- W.D. Zhu, C.X. Bao, F.M. Li, T. Yu, H. Gao et al., Halide exchange engineering for CH3NH3PbI3-xBrx perovskite solar cells with high performance and stability. Nano Energy 19, 17–26 (2016). https://doi.org/10.1016/j.nanoen.2015.11.024
- A. Johnston, G. Walters, M.I. Saidaminov, Z. Huang, K. Bertens et al., Bromine incorporation and suppressed cation rotation in mixed-halide perovskites. ACS Nano 14(11), 15107–15118 (2020). https://doi.org/10.1021/acsnano.0c05179
- U. Groß, S. Rüdiger, A.R. Grimmer, E. Kemnitz, 19F-NMR solid state investigations of monovalent alkali metal fluorides and tetra-alkylammonium fluorides. J. Fluorine Chem. 115(2), 193–199 (2002). https://doi.org/10.1016/S0022-1139(02)00062-3
- R. Wang, J. Xue, K.L. Wang, Z.K. Wang, Y. Luo et al., Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 366(6472), 1509–1513 (2019). https://doi.org/10.1126/science.aay9698
- B. Chen, P.N. Rudd, S. Yang, Y. Yuan, J. Huang, Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48(14), 3842–3876 (2019). https://doi.org/10.1039/c8cs00853a
- T. Wu, X. Li, Y. Qi, Y. Zhang, L. Han, Defect passivation for perovskite solar cells: from molecule design to device performance. Chemsuschem 14(20), 4354–4376 (2021). https://doi.org/10.1002/cssc.202101573
- W.C. Qiao, J. Yang, W. Dong, G. Yang, Q. Bao et al., Metastable alloying structures in MAPbI3-xClx crystals. NPG Asia Mater. 12, 68 (2020). https://doi.org/10.1038/s41427-020-00249-w
- W.C. Qiao, J. Wu, R. Zhang, W. Ou-Yang, X. Chen et al., In situ NMR investigation of the photoresponse of perovskite crystal. Matter 3(6), 2042–2054 (2020). https://doi.org/10.1016/j.matt.2020.09.004
- D.J. Kubicki, D. Prochowicz, A. Hofstetter, M. Saski, P. Yadav et al., Formation of stable mixed guanidinium-methylammonium phases with exceptionally long carrier lifetimes for high-efficiency lead iodide-based perovskite photovoltaics. J. Am. Chem. Soc. 140(9), 3345–3351 (2018). https://doi.org/10.1021/jacs.7b12860
- X. Gong, O. Voznyy, A. Jain, W. Liu, R. Sabatini et al., Electron-phonon interaction in efficient perovskite blue emitters. Nat. Mater. 17, 550–556 (2018). https://doi.org/10.1038/s41563-018-0081-x
- Q. Du, C. Zhu, Z. Yin, G. Na, C. Cheng et al., Stacking effects on electron-phonon coupling in layered hybrid perovskites via microstrain manipulation. ACS Nano 14(5), 5806–5817 (2020). https://doi.org/10.1021/acsnano.0c00907
- S. Xiong, Z. Hou, S. Zou, X. Lu, J. Yang et al., Direct observation on P- to N-type transformation of perovskite surface region during defect passivation driving high photovoltaic efficiency. Joule 5(2), 467–480 (2021). https://doi.org/10.1016/j.joule.2020.12.009
- X. Zheng, Y. Hou, C. Bao, J. Yin, F. Yuan et al., Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 5, 131–140 (2020). https://doi.org/10.1038/s41560-019-0538-4
- J.Y. Ma, J. Ding, H.J. Yan, D. Wang, J.S. Hu, Temperature-dependent local electrical properties of organic-inorganic halide perovskites: in situ KPFM and c-AFM investigation. ACS Appl. Mater. Interfaces 11(24), 21627–21633 (2019). https://doi.org/10.1021/acsami.9b06418
- D. Ghosh, P.W. Atkins, M.S. Islam, A.B. Walker, C. Eames, Good vibrations: locking of octahedral tilting in mixed-cation iodide perovskites for solar cells. ACS Energy Lett. 2(10), 2424–2429 (2017). https://doi.org/10.1021/acsenergylett.7b00729
- T.A.S. Doherty, S. Nagane, D.J. Kubicki, Y.K. Jung, D.N. Johnstone et al., Stabilized tilted-octahedra halide perovskites inhibit local formation of performance-limiting phases. Science 374(6575), 1598–1605 (2021). https://doi.org/10.1126/science.abl4890
References
T.M. Brenner, D.A. Egger, L. Kronik, G. Hodes, D. Cahen, Hybrid organic-inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007 (2016). https://doi.org/10.1038/natrevmats.2015.7
S.D. Wolf, J. Holovsky, S.J. Moon, P. Loeper, B. Niesen et al., Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5(6), 1035–1039 (2014). https://doi.org/10.1021/jz500279b
S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013). https://doi.org/10.1126/science.1243982
G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam et al., Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342(6156), 344–347 (2013). https://doi.org/10.1126/science.1243167
R.J. Sutton, G.E. Eperon, L. Miranda, E.S. Parrott, B.A. Kamino et al., Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 6(8), 1502458 (2016). https://doi.org/10.1002/aenm.201502458
G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz et al., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7(3), 982–988 (2014). https://doi.org/10.1039/c3ee43822h
X. Wang, J. He, B. Zhou, Y. Zhang, J. Wu et al., Bandgap-tunable preparation of smooth and large two-dimensional antimonene. Angew. Chem. Int. Ed. 57(28), 8668–8673 (2018). https://doi.org/10.1002/anie.201804886
A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J.T.W. Wang et al., Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites. Nat. Phys. 11, 582–587 (2015). https://doi.org/10.1038/nphys3357
K. Galkowski, A. Mitioglu, A. Miyata, P. Plochocka, O. Portugall et al., Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors. Energy Environ. Sci. 9(3), 962–970 (2016). https://doi.org/10.1039/c5ee03435c
N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015). https://doi.org/10.1038/nature14133
M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.P. Correa-Baena et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9(6), 1989–1997 (2016). https://doi.org/10.1039/c5ee03874j
W. Ke, L. Mao, C.C. Stoumpos, J. Hoffman, I. Spanopoulos et al., Compositional and solvent engineering in Dion-Jacobson 2D perovskites boosts solar cell efficiency and stability. Adv. Energy Mater. 9(10), 1803384 (2019). https://doi.org/10.1002/aenm.201803384
H. Chen, Z. Wei, H. He, X. Zheng, K.S. Wong et al., Solvent engineering boosts the efficiency of paintable carbon-based perovskite solar cells to beyond 14%. Adv. Energy Mater. 6(8), 1502087 (2016). https://doi.org/10.1002/aenm.201502087
N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu et al., Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014). https://doi.org/10.1038/nmat4014
P. Luo, W. Xia, S. Zhou, L. Sun, J. Cheng et al., Solvent engineering for ambient-air-processed, phase-stable CsPbI3 in perovskite solar cells. J. Phys. Chem. Lett. 7(6), 3603–3608 (2016). https://doi.org/10.1021/acs.jpclett.6b01576
P. Docampo, J.M. Ball, M. Darwich, G.E. Eperon, H.J. Snaith, Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 4, 2761 (2013). https://doi.org/10.1038/ncomms3761
M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012). https://doi.org/10.1126/science.1228604
T.Y. Wang, J.W. Chen, G.X. Wu, D.D. Song, M.C. Li, Designing novel thin film polycrystalline solar cells for high efficiency: sandwich CIGS and heterojunction perovskite. J. Semicond. 38, 014005 (2017). https://doi.org/10.1088/1674-4926/38/1/014005
NREL, Best research-Cell efficiencies. www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.pdf.Accessed Feb (2022).
G.J.A.H. Wetzelaer, M. Scheepers, A.M. Sempere, C. Momblona, J. Avila et al., Trap-assisted non-radiative recombination in organic-inorganic perovskite solar cells. Adv. Mater. 27(11), 1837–1841 (2015). https://doi.org/10.1002/adma.201405372
J. Chen, N.G. Park, Materials and methods for interface engineering toward stable and efficient perovskite solar cells. ACS Energy Lett. 5(8), 2742–2786 (2020). https://doi.org/10.1021/acsenergylett.0c01240
M. Wang, W. Wang, B. Ma, W. Shen, L. Liu et al., Lead-free perovskite materials for solar cells. Nano-Micro Lett. 13, 62 (2021). https://doi.org/10.1007/s40820-020-00578-z
T. Wu, Y. Wang, X. Li, Y. Wu, X. Meng et al., Efficient defect passivation for perovskite solar cells by controlling the electron density distribution of donor-pi-acceptor molecules. Adv. Energy Mater. 9(17), 1803766 (2019). https://doi.org/10.1002/aenm.201803766
Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai et al., Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 17102 (2017). https://doi.org/10.1038/nenergy.2017.102
Y. Liu, B. Dong, A. Hagfeldt, J. Luo, M. Graetzel, Chemically tailored molecular surface modifiers for efficient and stable perovskite photovoltaics. SmartMat 2(1), 33–37 (2021). https://doi.org/10.1002/smm2.1025
F. Li, X. Deng, F. Qi, Z. Li, D. Liu et al., Regulating surface termination for efficient inverted perovskite solar cells with greater than 23% efficiency. J. Am. Chem. Soc. 142(47), 20134–20142 (2020). https://doi.org/10.1021/jacs.0c09845
X. Zhu, M. Du, J. Feng, H. Wang, Z. Xu et al., High-efficiency perovskite solar cells with imidazolium-based ionic liquid for surface passivation and charge transport. Angew. Chem. Int. Ed. 60(8), 4238–4244 (2021). https://doi.org/10.1002/anie.202010987
X. Qin, Z. Zhao, Y. Wang, J. Wu, Q. Jiang et al., Recent progress in stability of perovskite solar cells. J. Semicond. 38, 011002 (2017). https://doi.org/10.1088/1674-4926/38/1/011002
W. Zhao, J. Xu, K. He, Y. Cai, Y. Han et al., A special additive enables all cations and anions passivation for stable perovskite solar cells with efficiency over 23%. Nano-Micro Lett. 13, 169 (2021). https://doi.org/10.1007/s40820-021-00688-2
Y. Xu, G. Li, R. Li, Y. Jing, H. Zhang et al., PbS/CdS heterojunction thin layer affords high-performance carbon-based all-inorganic solar cells. Nano Energy 95, 106973 (2022). https://doi.org/10.1016/j.nanoen.2022.106973
Z. Ni, C. Bao, Y. Liu, Q. Jiang, W.Q. Wu et al., Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367(6484), 1352–1358 (2020). https://doi.org/10.1126/science.aba0893
L. Liang, H. Luo, J. Hu, H. Li, P. Gao, Efficient perovskite solar cells by reducing interface-mediated recombination: a bulky amine approach. Adv. Energy Mater. 10(14), 2000197 (2020). https://doi.org/10.1002/aenm.202000197
X. Jiang, J. Zhang, X. Liu, Z. Wang, X. Guo et al., Deeper insight into the role of organic ammonium cations in reducing surface defects of the perovskite film. Angew. Chem. Int. Ed. 61(12), e202115663 (2022). https://doi.org/10.1002/anie.202115663
J. Suo, B. Yang, E. Mosconi, H.S. Choi, Y. Kim et al., Surface reconstruction engineering with synergistic effect of mixed-salt passivation treatment toward efficient and stable perovskite solar cells. Adv. Funct. Mater. 31(34), 2102902 (2021). https://doi.org/10.1002/adfm.202102902
S. Nagane, S. Macpherson, M.A. Hope, D.J. Kubicki, W. Li et al., Tetrafluoroborate-induced reduction in defect density in hybrid perovskites through halide management. Adv. Mater. 33(32), 2102462 (2021). https://doi.org/10.1002/adma.202102462
B. Luo, Y. Guo, Y. Xiao, X. Lian, T. Tan et al., Fluorinated spacers regulate the emission and bandgap of two-dimensional single-layered lead bromide perovskites by hydrogen bonding. J. Phys. Chem. Lett. 10(17), 5271–5276 (2019). https://doi.org/10.1021/acs.jpclett.9b02172
W.D. Zhu, C.X. Bao, F.M. Li, T. Yu, H. Gao et al., Halide exchange engineering for CH3NH3PbI3-xBrx perovskite solar cells with high performance and stability. Nano Energy 19, 17–26 (2016). https://doi.org/10.1016/j.nanoen.2015.11.024
A. Johnston, G. Walters, M.I. Saidaminov, Z. Huang, K. Bertens et al., Bromine incorporation and suppressed cation rotation in mixed-halide perovskites. ACS Nano 14(11), 15107–15118 (2020). https://doi.org/10.1021/acsnano.0c05179
U. Groß, S. Rüdiger, A.R. Grimmer, E. Kemnitz, 19F-NMR solid state investigations of monovalent alkali metal fluorides and tetra-alkylammonium fluorides. J. Fluorine Chem. 115(2), 193–199 (2002). https://doi.org/10.1016/S0022-1139(02)00062-3
R. Wang, J. Xue, K.L. Wang, Z.K. Wang, Y. Luo et al., Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 366(6472), 1509–1513 (2019). https://doi.org/10.1126/science.aay9698
B. Chen, P.N. Rudd, S. Yang, Y. Yuan, J. Huang, Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48(14), 3842–3876 (2019). https://doi.org/10.1039/c8cs00853a
T. Wu, X. Li, Y. Qi, Y. Zhang, L. Han, Defect passivation for perovskite solar cells: from molecule design to device performance. Chemsuschem 14(20), 4354–4376 (2021). https://doi.org/10.1002/cssc.202101573
W.C. Qiao, J. Yang, W. Dong, G. Yang, Q. Bao et al., Metastable alloying structures in MAPbI3-xClx crystals. NPG Asia Mater. 12, 68 (2020). https://doi.org/10.1038/s41427-020-00249-w
W.C. Qiao, J. Wu, R. Zhang, W. Ou-Yang, X. Chen et al., In situ NMR investigation of the photoresponse of perovskite crystal. Matter 3(6), 2042–2054 (2020). https://doi.org/10.1016/j.matt.2020.09.004
D.J. Kubicki, D. Prochowicz, A. Hofstetter, M. Saski, P. Yadav et al., Formation of stable mixed guanidinium-methylammonium phases with exceptionally long carrier lifetimes for high-efficiency lead iodide-based perovskite photovoltaics. J. Am. Chem. Soc. 140(9), 3345–3351 (2018). https://doi.org/10.1021/jacs.7b12860
X. Gong, O. Voznyy, A. Jain, W. Liu, R. Sabatini et al., Electron-phonon interaction in efficient perovskite blue emitters. Nat. Mater. 17, 550–556 (2018). https://doi.org/10.1038/s41563-018-0081-x
Q. Du, C. Zhu, Z. Yin, G. Na, C. Cheng et al., Stacking effects on electron-phonon coupling in layered hybrid perovskites via microstrain manipulation. ACS Nano 14(5), 5806–5817 (2020). https://doi.org/10.1021/acsnano.0c00907
S. Xiong, Z. Hou, S. Zou, X. Lu, J. Yang et al., Direct observation on P- to N-type transformation of perovskite surface region during defect passivation driving high photovoltaic efficiency. Joule 5(2), 467–480 (2021). https://doi.org/10.1016/j.joule.2020.12.009
X. Zheng, Y. Hou, C. Bao, J. Yin, F. Yuan et al., Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 5, 131–140 (2020). https://doi.org/10.1038/s41560-019-0538-4
J.Y. Ma, J. Ding, H.J. Yan, D. Wang, J.S. Hu, Temperature-dependent local electrical properties of organic-inorganic halide perovskites: in situ KPFM and c-AFM investigation. ACS Appl. Mater. Interfaces 11(24), 21627–21633 (2019). https://doi.org/10.1021/acsami.9b06418
D. Ghosh, P.W. Atkins, M.S. Islam, A.B. Walker, C. Eames, Good vibrations: locking of octahedral tilting in mixed-cation iodide perovskites for solar cells. ACS Energy Lett. 2(10), 2424–2429 (2017). https://doi.org/10.1021/acsenergylett.7b00729
T.A.S. Doherty, S. Nagane, D.J. Kubicki, Y.K. Jung, D.N. Johnstone et al., Stabilized tilted-octahedra halide perovskites inhibit local formation of performance-limiting phases. Science 374(6575), 1598–1605 (2021). https://doi.org/10.1126/science.abl4890