Stress and Strain in Perovskite/Silicon Tandem Solar Cells
Corresponding Author: Liming Ding
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 59
Abstract
Tandem solar cells based on metal halide perovskites are advancing rapidly during last few years [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17]. The certified power conversion efficiency (PCE) for monolithic perovskite/silicon tandem solar cell reaches 32.5% [18]. Since tandem solar cells contain more layers than single-junction solar cells, stress/strain control is an issue during fabrication and further practical operation. The stress can not only affect the stability of the perovskite layer but also change the optoelectronic properties of the films [19,20,21,22,23].
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.A. Bush, A.F. Palmstrom, Z.S.J. Yu, M. Boccard, R. Cheacharoen et al., 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2(4), 17009 (2017). https://doi.org/10.1038/nenergy.2017.9
- F. Sahli, J. Werner, B.A. Kamino, M. Brauninger, R. Monnard et al., Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17(9), 820–826 (2018). https://doi.org/10.1038/s41563-018-0115-4
- A. Al-Ashouri, E. Kohnen, B. Li, A. Magomedov, H. Hempel et al., Monolithic perovskite/silicon tandem solar cell with > 29% efficiency by enhanced hole extraction. Science 370(6522), 1300–1309 (2020). https://doi.org/10.1126/science.abd4016
- Y. Hou, E. Aydin, M. De Bastiani, C.X. Xiao, F.H. Isikgor et al., Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367(6482), 1135–1140 (2020). https://doi.org/10.1126/science.aaz3691
- D. Kim, H.J. Jung, I.J. Park, B.W. Larson, S.P. Dunfield et al., Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science 368(6487), 155–160 (2020). https://doi.org/10.1126/science.aba3433
- J. Liu, M. De Bastiani, E. Aydin, G.T. Harrison, Y.J. Gao et al., Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFx. Science 377(6603), 302–306 (2022). https://doi.org/10.1126/science.abn8910
- D.P. McMeekin, G. Sadoughi, W. Rehman, G.E. Eperon, M. Saliba et al., A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351(6269), 151–155 (2016). https://doi.org/10.1126/science.aad5845
- J.X. Xu, C.C. Boyd, Z.S.J. Yu, A.F. Palmstrom, D.J. Witter et al., Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems. Science 367(6482), 1097–1104 (2020). https://doi.org/10.1126/science.aaz5074
- L. Mazzarella, Y.H. Lin, S. Kirner, A.B. Morales-Vilches, L. Korte et al., Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25%. Adv. Energy Mater. 9(14), 1803241 (2019). https://doi.org/10.1002/aenm.201803241
- L. Liu, Z. Xiao, C. Zuo, L. Ding, Inorganic perovskite/organic tandem solar cells with efficiency over 20%. J. Semicond. 42(2), 020501 (2021). https://doi.org/10.1088/1674-4926/42/2/020501
- J. Sun, L. Ding, Perovskite/organic tandem solar cells. J. Semicond. 44(2), 020201 (2023). https://doi.org/10.1088/1674-4926/44/2/020201
- L. Liu, H. Xiao, K. Jin, Z. Xiao, X. Du et al., 4-terminal inorganic perovskite/organic tandem solar cells offer 22% efficiency. Nano-Micro Lett. 15(1), 23 (2022). https://doi.org/10.1007/s40820-022-00995-2
- S. Chen, C. Zuo, B. Xu, L. Ding, Monolithic perovskite/silicon tandem solar cells offer an efficiency over 29%. J. Semicond. 42(12), 120203 (2021). https://doi.org/10.1088/1674-4926/42/12/120203
- Y. Cheng, L. Ding, Perovskite/Si tandem solar cells: fundamentals, advances, challenges, and novel applications. SusMat 1(3), 324–344 (2021). https://doi.org/10.1002/sus2.25
- Z. Fang, Q. Zeng, C. Zuo, L. Zhang, H. Xiao et al., Perovskite-based tandem solar cells. Sci. Bull. 66(6), 621–636 (2021). https://doi.org/10.1016/j.scib.2020.11.006
- D. Zhao, L. Ding, All-perovskite tandem structures shed light on thin-film photovoltaics. Sci. Bull. 65(14), 1144–1146 (2020). https://doi.org/10.1016/j.scib.2020.04.013
- Q. Zeng, L. Liu, Z. Xiao, F. Liu, Y. Hua et al., A two-terminal all-inorganic perovskite/organic tandem solar cell. Sci. Bull. 64(13), 885–887 (2019). https://doi.org/10.1016/j.scib.2019.05.015
- NREL, "Best Research-cell Efficiency Chart," www.nrel.gov/pv/cell-efficiency.html Accessed: 20 Dec 2022
- M. Dailey, Y.N. Li, A.D. Printz, Residual film stresses in perovskite solar cells: origins, effects, and mitigation strategies. ACS Omega 6(45), 30214–30223 (2021). https://doi.org/10.1021/acsomega.1c04814
- H. Zhang, N.G. Park, Strain control to stabilize perovskite solar cells. Angew. Chem. Int. Ed. 61(48), e202212268 (2022). https://doi.org/10.1002/anie.202212268
- B.W. Yang, D. Bogachuk, J.J. Suo, L. Wagner, H. Kim et al., Strain effects on halide perovskite solar cells. Chem. Soc. Rev. 51(17), 7509–7530 (2022). https://doi.org/10.1039/d2cs00278g
- Y.A. Jiao, S.H. Yi, H.W. Wang, B. Li, W.Z. Hao et al., Strain engineering of metal malide perovskites on coupling anisotropic behaviors. Adv. Funct. Mater. 31(4), 202006243 (2021). https://doi.org/10.1002/adfm.202006243
- J.P. Wu, S.C. Liu, Z.B. Li, S. Wang, D.J. Xue et al., Strain in perovskite solar cells: origins, impacts and regulation. Natl. Sci. Rev. 8(8), nwab047 (2021). https://doi.org/10.1093/nsr/nwab047
- J.J. Zhao, Y.H. Deng, H.T. Wei, X.P. Zheng, Z.H. Yu et al., Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci. Adv. 3(11), eaao5616 (2017). https://doi.org/10.1126/sciadv.aao5616
- B. Chen, T. Li, Q.F. Dong, E. Mosconi, J.F. Song et al., Large electrostrictive response in lead halide perovskites. Nat. Mater. 17(11), 1020–1026 (2018). https://doi.org/10.1038/s41563-018-0170-x
- K.A. Bush, N. Rolston, A. Gold-Parker, S. Manzoor, J. Hausele et al., Controlling thin-film stress and wrinkling during perovskite film formation. ACS Energy Lett. 3(6), 1225–1232 (2018). https://doi.org/10.1021/acsenergylett.8b00544
- W. Zhu, L. Yang, J.W. Guo, Y.C. Zhou, C. Lu, Numerical study on interaction of surface cracking and interfacial delamination in thermal barrier coatings under tension. Appl. Surf. Sci. 315, 292–298 (2014). https://doi.org/10.1016/j.apsusc.2014.07.142
- S.G. Kim, J.H. Kim, P. Ramming, Y. Zhong, K. Schotz et al., How antisolvent miscibility affects perovskite film wrinkling and photovoltaic properties. Nat. Commun. 12(1), 1554 (2021). https://doi.org/10.1038/s41467-021-21803-2
- K. Liu, B. Chen, Z.S.J. Yu, Y.L. Wu, Z.T. Huang et al., Reducing sputter induced stress and damage for efficient perovskite/silicon tandem solar cells. J. Mater. Chem. A 10(3), 1343–1349 (2022). https://doi.org/10.1039/d1ta09143c
- M.D. Thouless, Cracking and delamination of coatings. J. Vac. Sci. Technol. A 9(4), 2510–2515 (1991). https://doi.org/10.1116/1.577265
- C.C. Boyd, R. Cheacharoen, T. Leijtens, M.D. McGehee, Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119(5), 3418–3451 (2019). https://doi.org/10.1021/acs.chemrev.8b00336
- Q. Li, S.R. Li, K. Wang, Z.W. Quan, Y. Meng et al., High-pressure study of perovskite-like organometal halide: band-gap narrowing and structural evolution of [NH3(CH2)4NH3]CuCl4. J. Phys. Chem. Lett. 8(2), 500–506 (2017). https://doi.org/10.1021/acs.jpclett.6b02786
- C.Y. Ge, M.Y. Hu, P. Wu, Q. Tan, Z.Z. Chen et al., Ultralow thermal conductivity and ultrahigh thermal expansion of single-crystal organic-inorganic hybrid perovskite CH3NH3PbX3 (X = CI, Br, I). J. Phys. Chem. C 122(28), 15973–15978 (2018). https://doi.org/10.1021/acs.jpcc.8b05919
- D.J. Xue, Y. Hou, S.C. Liu, M.Y. Wei, B. Chen et al., Regulating strain in perovskite thin films through charge-transport layers. Nat. Commun. 11(1), 1514 (2020). https://doi.org/10.1038/s41467-020-15338-1
- Y.C. Zhao, P. Miao, J. Elia, H.Y. Hu, X.X. Wang et al., Strain-activated light-induced halide segregation in mixed-halide perovskite solids. Nat. Commun. 11(1), 6328 (2020). https://doi.org/10.1038/s41467-020-20066-7
- A. Ummadisingu, S. Meloni, A. Mattoni, W. Tress, M. Gratzel, Crystal-size-induced band gap tuning in perovskite films. Angew. Chem. Int. Ed. 60(39), 21368–21376 (2021). https://doi.org/10.1002/anie.202106394
- M.R. Islam, A.S.M.J. Islam, K. Liu, Z.J. Wang, S.C. Qu et al., Strain-induced tunability of the optoelectronic properties of inorganic lead iodide perovskites APbI3 (A = Rb and Cs). Physica B 638, 413960 (2022). https://doi.org/10.1016/j.physb.2022.413960
- R. Islam, K. Liu, Z.J. Wang, S. Hasan, Y.L. Wu et al., Strain-induced electronic and optical properties of inorganic lead halide perovskites APbBr 3 (A = Rb and Cs). Mater. Today Commun. 31, 103305 (2022). https://doi.org/10.1016/j.mtcomm.2022.103305
- L.N. Wang, Q.Z. Song, F.T. Pei, Y.H. Chen, J. Dou et al., Strain modulation for light-stable n-i-p perovskite/silicon tandem solar cells. Adv. Mater. 34(26), 202201315 (2022). https://doi.org/10.1002/adma.202201315
- B. Chen, Z.S. Yu, K. Liu, X.P. Zheng, Y. Liu et al., Grain engineering for perovskite/silicon monolithic tandem solar cells with efficiency of 25.4%. Joule 3(1), 177–190 (2019). https://doi.org/10.1016/j.joule.2018.10.003
- K. Mantulnikovs, A. Glushkova, P. Matus, L. Ciric, M. Kollar et al., Morphology and photoluminescence of CH3NH3PbI3 deposits on nonplanar, strongly curved substrates. ACS Photonics 5(4), 1476–1485 (2018). https://doi.org/10.1021/acsphotonics.7b01496
- K. Liu, Y. Sun, Q.C. Li, C. Yang, M. Azam et al., A wrinkled structure with broadband and omnidirectional light-trapping abilities for improving the performance of organic solar cells with low defect density. Nanoscale 11(46), 22467–22474 (2019). https://doi.org/10.1039/c9nr08477k
- P. Tockhorn, J. Sutter, A. Cruz, P. Wagner, K. Jäger et al., Nano-optical designs for high-efficiency monolithic perovskite–silicon tandem solar cells. Nat. Nanotechnol. 17(11), 1214–1221 (2022). https://doi.org/10.1038/s41565-022-01228-8
- B. Chen, Z.S.J. Yu, S. Manzoor, S. Wang, W. Weigand et al., Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule 4(4), 850–864 (2020). https://doi.org/10.1016/j.joule.2020.01.008
- Y.Y. Zhao, J.L. Duan, Y.D. Wang, X.Y. Yang, Q.W. Tang, Precise stress control of inorganic perovskite films for carbon-based solar cells with an ultrahigh voltage of 1.622 V. Nano Energy 67, 104286 (2020). https://doi.org/10.1016/j.nanoen.2019.104286
- M. Ross, S. Severin, M.B. Stutz, P. Wagner, H. Kobler et al., Co-evaporated formamidinium lead iodide based perovskites with 1000 h constant stability for fully textured monolithic perovskite/silicon tandem solar cells. Adv. Energy Mater. 11(35), 2101460 (2021). https://doi.org/10.1002/aenm.202101460
- J.Z. Jiang, M. Xiong, K. Fan, C.X. Bao, D.Y. Xin et al., Synergistic strain engineering of perovskite single crystals for highly stable and sensitive X-ray detectors with low-bias imaging and monitoring. Nat. Photonics 16(8), 575–581 (2022). https://doi.org/10.1038/s41566-022-01024-9
References
K.A. Bush, A.F. Palmstrom, Z.S.J. Yu, M. Boccard, R. Cheacharoen et al., 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2(4), 17009 (2017). https://doi.org/10.1038/nenergy.2017.9
F. Sahli, J. Werner, B.A. Kamino, M. Brauninger, R. Monnard et al., Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17(9), 820–826 (2018). https://doi.org/10.1038/s41563-018-0115-4
A. Al-Ashouri, E. Kohnen, B. Li, A. Magomedov, H. Hempel et al., Monolithic perovskite/silicon tandem solar cell with > 29% efficiency by enhanced hole extraction. Science 370(6522), 1300–1309 (2020). https://doi.org/10.1126/science.abd4016
Y. Hou, E. Aydin, M. De Bastiani, C.X. Xiao, F.H. Isikgor et al., Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367(6482), 1135–1140 (2020). https://doi.org/10.1126/science.aaz3691
D. Kim, H.J. Jung, I.J. Park, B.W. Larson, S.P. Dunfield et al., Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science 368(6487), 155–160 (2020). https://doi.org/10.1126/science.aba3433
J. Liu, M. De Bastiani, E. Aydin, G.T. Harrison, Y.J. Gao et al., Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFx. Science 377(6603), 302–306 (2022). https://doi.org/10.1126/science.abn8910
D.P. McMeekin, G. Sadoughi, W. Rehman, G.E. Eperon, M. Saliba et al., A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351(6269), 151–155 (2016). https://doi.org/10.1126/science.aad5845
J.X. Xu, C.C. Boyd, Z.S.J. Yu, A.F. Palmstrom, D.J. Witter et al., Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems. Science 367(6482), 1097–1104 (2020). https://doi.org/10.1126/science.aaz5074
L. Mazzarella, Y.H. Lin, S. Kirner, A.B. Morales-Vilches, L. Korte et al., Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25%. Adv. Energy Mater. 9(14), 1803241 (2019). https://doi.org/10.1002/aenm.201803241
L. Liu, Z. Xiao, C. Zuo, L. Ding, Inorganic perovskite/organic tandem solar cells with efficiency over 20%. J. Semicond. 42(2), 020501 (2021). https://doi.org/10.1088/1674-4926/42/2/020501
J. Sun, L. Ding, Perovskite/organic tandem solar cells. J. Semicond. 44(2), 020201 (2023). https://doi.org/10.1088/1674-4926/44/2/020201
L. Liu, H. Xiao, K. Jin, Z. Xiao, X. Du et al., 4-terminal inorganic perovskite/organic tandem solar cells offer 22% efficiency. Nano-Micro Lett. 15(1), 23 (2022). https://doi.org/10.1007/s40820-022-00995-2
S. Chen, C. Zuo, B. Xu, L. Ding, Monolithic perovskite/silicon tandem solar cells offer an efficiency over 29%. J. Semicond. 42(12), 120203 (2021). https://doi.org/10.1088/1674-4926/42/12/120203
Y. Cheng, L. Ding, Perovskite/Si tandem solar cells: fundamentals, advances, challenges, and novel applications. SusMat 1(3), 324–344 (2021). https://doi.org/10.1002/sus2.25
Z. Fang, Q. Zeng, C. Zuo, L. Zhang, H. Xiao et al., Perovskite-based tandem solar cells. Sci. Bull. 66(6), 621–636 (2021). https://doi.org/10.1016/j.scib.2020.11.006
D. Zhao, L. Ding, All-perovskite tandem structures shed light on thin-film photovoltaics. Sci. Bull. 65(14), 1144–1146 (2020). https://doi.org/10.1016/j.scib.2020.04.013
Q. Zeng, L. Liu, Z. Xiao, F. Liu, Y. Hua et al., A two-terminal all-inorganic perovskite/organic tandem solar cell. Sci. Bull. 64(13), 885–887 (2019). https://doi.org/10.1016/j.scib.2019.05.015
NREL, "Best Research-cell Efficiency Chart," www.nrel.gov/pv/cell-efficiency.html Accessed: 20 Dec 2022
M. Dailey, Y.N. Li, A.D. Printz, Residual film stresses in perovskite solar cells: origins, effects, and mitigation strategies. ACS Omega 6(45), 30214–30223 (2021). https://doi.org/10.1021/acsomega.1c04814
H. Zhang, N.G. Park, Strain control to stabilize perovskite solar cells. Angew. Chem. Int. Ed. 61(48), e202212268 (2022). https://doi.org/10.1002/anie.202212268
B.W. Yang, D. Bogachuk, J.J. Suo, L. Wagner, H. Kim et al., Strain effects on halide perovskite solar cells. Chem. Soc. Rev. 51(17), 7509–7530 (2022). https://doi.org/10.1039/d2cs00278g
Y.A. Jiao, S.H. Yi, H.W. Wang, B. Li, W.Z. Hao et al., Strain engineering of metal malide perovskites on coupling anisotropic behaviors. Adv. Funct. Mater. 31(4), 202006243 (2021). https://doi.org/10.1002/adfm.202006243
J.P. Wu, S.C. Liu, Z.B. Li, S. Wang, D.J. Xue et al., Strain in perovskite solar cells: origins, impacts and regulation. Natl. Sci. Rev. 8(8), nwab047 (2021). https://doi.org/10.1093/nsr/nwab047
J.J. Zhao, Y.H. Deng, H.T. Wei, X.P. Zheng, Z.H. Yu et al., Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci. Adv. 3(11), eaao5616 (2017). https://doi.org/10.1126/sciadv.aao5616
B. Chen, T. Li, Q.F. Dong, E. Mosconi, J.F. Song et al., Large electrostrictive response in lead halide perovskites. Nat. Mater. 17(11), 1020–1026 (2018). https://doi.org/10.1038/s41563-018-0170-x
K.A. Bush, N. Rolston, A. Gold-Parker, S. Manzoor, J. Hausele et al., Controlling thin-film stress and wrinkling during perovskite film formation. ACS Energy Lett. 3(6), 1225–1232 (2018). https://doi.org/10.1021/acsenergylett.8b00544
W. Zhu, L. Yang, J.W. Guo, Y.C. Zhou, C. Lu, Numerical study on interaction of surface cracking and interfacial delamination in thermal barrier coatings under tension. Appl. Surf. Sci. 315, 292–298 (2014). https://doi.org/10.1016/j.apsusc.2014.07.142
S.G. Kim, J.H. Kim, P. Ramming, Y. Zhong, K. Schotz et al., How antisolvent miscibility affects perovskite film wrinkling and photovoltaic properties. Nat. Commun. 12(1), 1554 (2021). https://doi.org/10.1038/s41467-021-21803-2
K. Liu, B. Chen, Z.S.J. Yu, Y.L. Wu, Z.T. Huang et al., Reducing sputter induced stress and damage for efficient perovskite/silicon tandem solar cells. J. Mater. Chem. A 10(3), 1343–1349 (2022). https://doi.org/10.1039/d1ta09143c
M.D. Thouless, Cracking and delamination of coatings. J. Vac. Sci. Technol. A 9(4), 2510–2515 (1991). https://doi.org/10.1116/1.577265
C.C. Boyd, R. Cheacharoen, T. Leijtens, M.D. McGehee, Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119(5), 3418–3451 (2019). https://doi.org/10.1021/acs.chemrev.8b00336
Q. Li, S.R. Li, K. Wang, Z.W. Quan, Y. Meng et al., High-pressure study of perovskite-like organometal halide: band-gap narrowing and structural evolution of [NH3(CH2)4NH3]CuCl4. J. Phys. Chem. Lett. 8(2), 500–506 (2017). https://doi.org/10.1021/acs.jpclett.6b02786
C.Y. Ge, M.Y. Hu, P. Wu, Q. Tan, Z.Z. Chen et al., Ultralow thermal conductivity and ultrahigh thermal expansion of single-crystal organic-inorganic hybrid perovskite CH3NH3PbX3 (X = CI, Br, I). J. Phys. Chem. C 122(28), 15973–15978 (2018). https://doi.org/10.1021/acs.jpcc.8b05919
D.J. Xue, Y. Hou, S.C. Liu, M.Y. Wei, B. Chen et al., Regulating strain in perovskite thin films through charge-transport layers. Nat. Commun. 11(1), 1514 (2020). https://doi.org/10.1038/s41467-020-15338-1
Y.C. Zhao, P. Miao, J. Elia, H.Y. Hu, X.X. Wang et al., Strain-activated light-induced halide segregation in mixed-halide perovskite solids. Nat. Commun. 11(1), 6328 (2020). https://doi.org/10.1038/s41467-020-20066-7
A. Ummadisingu, S. Meloni, A. Mattoni, W. Tress, M. Gratzel, Crystal-size-induced band gap tuning in perovskite films. Angew. Chem. Int. Ed. 60(39), 21368–21376 (2021). https://doi.org/10.1002/anie.202106394
M.R. Islam, A.S.M.J. Islam, K. Liu, Z.J. Wang, S.C. Qu et al., Strain-induced tunability of the optoelectronic properties of inorganic lead iodide perovskites APbI3 (A = Rb and Cs). Physica B 638, 413960 (2022). https://doi.org/10.1016/j.physb.2022.413960
R. Islam, K. Liu, Z.J. Wang, S. Hasan, Y.L. Wu et al., Strain-induced electronic and optical properties of inorganic lead halide perovskites APbBr 3 (A = Rb and Cs). Mater. Today Commun. 31, 103305 (2022). https://doi.org/10.1016/j.mtcomm.2022.103305
L.N. Wang, Q.Z. Song, F.T. Pei, Y.H. Chen, J. Dou et al., Strain modulation for light-stable n-i-p perovskite/silicon tandem solar cells. Adv. Mater. 34(26), 202201315 (2022). https://doi.org/10.1002/adma.202201315
B. Chen, Z.S. Yu, K. Liu, X.P. Zheng, Y. Liu et al., Grain engineering for perovskite/silicon monolithic tandem solar cells with efficiency of 25.4%. Joule 3(1), 177–190 (2019). https://doi.org/10.1016/j.joule.2018.10.003
K. Mantulnikovs, A. Glushkova, P. Matus, L. Ciric, M. Kollar et al., Morphology and photoluminescence of CH3NH3PbI3 deposits on nonplanar, strongly curved substrates. ACS Photonics 5(4), 1476–1485 (2018). https://doi.org/10.1021/acsphotonics.7b01496
K. Liu, Y. Sun, Q.C. Li, C. Yang, M. Azam et al., A wrinkled structure with broadband and omnidirectional light-trapping abilities for improving the performance of organic solar cells with low defect density. Nanoscale 11(46), 22467–22474 (2019). https://doi.org/10.1039/c9nr08477k
P. Tockhorn, J. Sutter, A. Cruz, P. Wagner, K. Jäger et al., Nano-optical designs for high-efficiency monolithic perovskite–silicon tandem solar cells. Nat. Nanotechnol. 17(11), 1214–1221 (2022). https://doi.org/10.1038/s41565-022-01228-8
B. Chen, Z.S.J. Yu, S. Manzoor, S. Wang, W. Weigand et al., Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule 4(4), 850–864 (2020). https://doi.org/10.1016/j.joule.2020.01.008
Y.Y. Zhao, J.L. Duan, Y.D. Wang, X.Y. Yang, Q.W. Tang, Precise stress control of inorganic perovskite films for carbon-based solar cells with an ultrahigh voltage of 1.622 V. Nano Energy 67, 104286 (2020). https://doi.org/10.1016/j.nanoen.2019.104286
M. Ross, S. Severin, M.B. Stutz, P. Wagner, H. Kobler et al., Co-evaporated formamidinium lead iodide based perovskites with 1000 h constant stability for fully textured monolithic perovskite/silicon tandem solar cells. Adv. Energy Mater. 11(35), 2101460 (2021). https://doi.org/10.1002/aenm.202101460
J.Z. Jiang, M. Xiong, K. Fan, C.X. Bao, D.Y. Xin et al., Synergistic strain engineering of perovskite single crystals for highly stable and sensitive X-ray detectors with low-bias imaging and monitoring. Nat. Photonics 16(8), 575–581 (2022). https://doi.org/10.1038/s41566-022-01024-9