Ligand Engineering in Tin-Based Perovskite Solar Cells
Corresponding Author: Hua Dong
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 167
Abstract
Perovskite solar cells (PSCs) have attracted aggressive attention in the photovoltaic field in light of the rapid increasing power conversion efficiency. However, their large-scale application and commercialization are limited by the toxicity issue of lead (Pb). Among all the lead-free perovskites, tin (Sn)-based perovskites have shown potential due to their low toxicity, ideal bandgap structure, high carrier mobility, and long hot carrier lifetime. Great progress of Sn-based PSCs has been realized in recent years, and the certified efficiency has now reached over 14%. Nevertheless, this record still falls far behind the theoretical calculations. This is likely due to the uncontrolled nucleation states and pronounced Sn (IV) vacancies. With insights into the methodologies resolving both issues, ligand engineering-assisted perovskite film fabrication dictates the state-of-the-art Sn-based PSCs. Herein, we summarize the role of ligand engineering during each state of film fabrication, ranging from the starting precursors to the ending fabricated bulks. The incorporation of ligands to suppress Sn2+ oxidation, passivate bulk defects, optimize crystal orientation, and improve stability is discussed, respectively. Finally, the remained challenges and perspectives toward advancing the performance of Sn-based PSCs are presented. We expect this review can draw a clear roadmap to facilitate Sn-based PSCs via ligand engineering.
Highlights:
1 Systematic summary of ligand engineering in Sn-based perovskite solar cells at the molecular level (oxidation-suppression), crystal structural level (bulk-defect passivation and crystal orientation optimization), and film level (film stability).
2 The classification and composition of ligand engineering in the review are the same as the actual preparation process, which will help researchers to understand the role of ligands in combination with the actual experiment process.
3 Description of ligands focuses on the function of each functional group; the relevant conclusion can be universal.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- National Renewable Energy Laboratory, Best research-cell efficiencies chart [EB/OL] (2012). https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.pdf
- S. Liu, Y. Guan, Y. Sheng, Y. Hu, Y. Rong et al., A review on additives for halide perovskite solar cells. Adv. Energy Mater. 10(13), 1902492 (2020). https://doi.org/10.1002/aenm.201902492
- H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598(7881), 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8
- A. Abate, Perovskite solar cells go lead free. Joule 1(4), 659–664 (2017). https://doi.org/10.1016/j.joule.2017.09.007
- A. Babayigit, A. Ethirajan, M. Muller, B. Conings, Toxicity of organometal halide perovskite solar cells. Nat. Mater. 15(3), 247–251 (2016). https://doi.org/10.1038/nmat4572
- N. Lakhdar, A. Hima, Electron transport material effect on performance of perovskite solar cells based on CH3NH3GeI3. Opt. Mater. 99, 109517 (2020). https://doi.org/10.1016/j.optmat.2019.109517
- N. Ito, M.A. Kamarudin, D. Hirotani, Y. Zhang, Q. Shen et al., Mixed Sn–Ge perovskite for enhanced perovskite solar cell performance in air. J. Phys. Chem. Lett. 9(7), 1682–1688 (2018). https://doi.org/10.1021/acs.jpclett.8b00275
- C.H. Ng, K. Nishimura, N. Ito, K. Hamada, D. Hirotani et al., Role of GeI2 and SnF2 additives for SnGe perovskite solar cells. Nano Energy 58, 130–137 (2019). https://doi.org/10.1016/j.nanoen.2019.01.026
- Y. Jing, Y. Liu, J. Zhao, Z. Xia, Sb(3+) doping-induced triplet self-trapped excitons emission in lead-free Cs2SnCl6 nanocrystals. J. Phys. Chem. Lett. 10(23), 7439–7444 (2019). https://doi.org/10.1021/acs.jpclett.9b03035
- K. Ahmad, S.M. Mobin, Recent progress and challenges in A3Sb2X9-based perovskite solar cells. ACS Omega 5(44), 28404–28412 (2020). https://doi.org/10.1021/acsomega.0c04174
- P. Kumar, K. Ahmad, J. Dagar, E. Unger, S.M. Mobin, Two-step deposition approach for lead free (NH4)3Sb2I9 perovskite solar cells with enhanced open circuit voltage and performance. ChemElectroChem 8(16), 3150–3154 (2021). https://doi.org/10.1002/celc.202100957
- F. Jiang, D. Yang, Y. Jiang, T. Liu, X. Zhao et al., Chlorine-incorporation-induced formation of the layered phase for antimony-based lead-free perovskite solar cells. J. Am. Chem. Soc. 140(3), 1019–1027 (2018). https://doi.org/10.1021/jacs.7b10739
- T. Okano, Y. Suzuki, Gas-assisted coating of Bi-based (CH3NH3)3Bi2I9 active layer in perovskite solar cells. Mater. lett. 191, 77–79 (2017). https://doi.org/10.1016/j.matlet.2017.01.047
- M. Kong, H. Hu, L. Wan, M. Chen, Y. Gan et al., Nontoxic (CH3NH3)3Bi2I9 perovskite solar cells free of hole conductors with an alternative architectural design and a solution-processable approach. RSC Adv. 7(56), 35549–35557 (2017). https://doi.org/10.1039/C7RA04924B
- Z. Chen, J.J. Wang, Y. Ren, C. Yu, K. Shum, Schottky solar cells based on CsSnI3 thin-films. Appl. Phys. Lett. 101(9), 093901 (2012). https://doi.org/10.1063/1.4748888
- J. Zhou, M. Hao, Y. Zhang, X. Ma, J. Dong et al., Chemo-thermal surface dedoping for high-performance tin perovskite solar cells. Matter 5(2), 683–693 (2022). https://doi.org/10.1016/j.matt.2021.12.013
- W. Ke, C.C. Stoumpos, M.G. Kanatzidis, “Unleaded” perovskites: status quo and future prospects of tin-based perovskite solar cells. Adv. Mater. 31(47), e1803230 (2019). https://doi.org/10.1002/adma.201803230
- F. Gu, Z. Zhao, C. Wang, H. Rao, B. Zhao et al., Lead-free tin-based perovskite solar cells: Strategies toward high performance. Solar RRL 3(9), 1900213 (2019). https://doi.org/10.1002/solr.201900213
- L. Liang, P. Gao, Lead-free hybrid perovskite absorbers for viable application: can we eat the cake and have it too? Adv. Sci. 5(2), 1700331 (2018). https://doi.org/10.1002/advs.201700331
- T. Leijtens, R. Prasanna, A. Gold-Parker, M.F. Toney, M.D. McGehee, Mechanism of tin oxidation and stabilization by lead substitution in tin halide perovskites. ACS Energy Lett. 2(9), 2159–2165 (2017). https://doi.org/10.1021/acsenergylett.7b00636
- P. Xu, S. Chen, H.-J. Xiang, X.-G. Gong, S.-H. Wei, Influence of defects and synthesis conditions on the photovoltaic performance of perovskite semiconductor CsSnI3. Chem. Mater. 26(20), 6068–6072 (2014). https://doi.org/10.1021/cm503122j
- I. Chung, B. Lee, J. He, R.P. Chang, M.G. Kanatzidis, All-solid-state dye-sensitized solar cells with high efficiency. Nature 485(7399), 486–489 (2012). https://doi.org/10.1038/nature11067
- M.H. Kumar, S. Dharani, W.L. Leong, P.P. Boix, R.R. Prabhakar et al., Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 26(41), 7122–7127 (2014). https://doi.org/10.1002/adma.201401991
- T.M. Koh, T. Krishnamoorthy, N. Yantara, C. Shi, W.L. Leong et al., Formamidinium tin-based perovskite with low Eg for photovoltaic applications. J. Mater. Chem. A 3(29), 14996–15000 (2015). https://doi.org/10.1039/c5ta00190k
- A.G. Kontos, A. Kaltzoglou, E. Siranidi, D. Palles, G.K. Angeli et al., Structural stability, vibrational properties, and photoluminescence in CsSnI3 perovskite upon the addition of SnF2. Inorg. Chem. 56(1), 84–91 (2017). https://doi.org/10.1021/acs.inorgchem.6b02318
- L. Ma, F. Hao, C.C. Stoumpos, B.T. Phelan, M.R. Wasielewski et al., Carrier diffusion lengths of over 500 nm in lead-free perovskite CH3NH3SnI3 films. J. Am. Chem. Soc. 138(44), 14750–14755 (2016). https://doi.org/10.1021/jacs.6b09257
- T. Handa, T. Yamada, H. Kubota, S. Ise, Y. Miyamoto et al., Photocarrier recombination and injection dynamics in long-term stable lead-Free CH3NH3SnI3 perovskite thin films and solar cells. J. Phys. Chem. C 121(30), 16158–16165 (2017). https://doi.org/10.1021/acs.jpcc.7b06199
- S. Gupta, D. Cahen, G. Hodes, How SnF2 impacts the material properties of lead-free tin perovskites. J. Phys. Chem. C 122(25), 13926–13936 (2018). https://doi.org/10.1021/acs.jpcc.8b01045
- K.P. Marshall, R.I. Walton, R.A. Hatton, Tin perovskite/fullerene planar layer photovoltaics: improving the efficiency and stability of lead-free devices. J. Mater. Chem. A 3(21), 11631–11640 (2015). https://doi.org/10.1039/c5ta02950c
- K.P. Marshall, M. Walker, R.I. Walton, R.A. Hatton, Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics. Nat. Energy 1(12), 16178 (2016). https://doi.org/10.1038/nenergy.2016.178
- X. Liu, Y. Wang, T. Wu, X. He, X. Meng et al., Efficient and stable tin perovskite solar cells enabled by amorphous-polycrystalline structure. Nat. Commun. 11(1), 2678 (2020). https://doi.org/10.1038/s41467-020-16561-6
- Z. Dai, T. Lv, J. Barbaud, W. Tang, T. Wang et al., Stable tin perovskite solar cells developed via additive engineering. Sci. China Mater. 64(11), 2645–2654 (2021). https://doi.org/10.1007/s40843-021-1670-0
- J. Pascual, M. Flatken, R. Felix, G. Li, S.H. Turren-Cruz et al., Fluoride chemistry in tin halide perovskites. Angew. Chem. Int. Ed. 60(39), 21583–21591 (2021). https://doi.org/10.1002/anie.202107599
- J. Zillner, H.G. Boyen, P. Schulz, J. Hanisch, N. Gauquelin et al., The role of SnF2 additive on interface formation in all lead-free FASnI3 perovskite solar cells. Adv. Funct. Mater. 32(28), 2109649 (2022). https://doi.org/10.1002/adfm.202109649
- S.J. Lee, S.S. Shin, Y.C. Kim, D. Kim, T.K. Ahn et al., Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF(2)-pyrazine complex. J. Am. Chem. Soc. 138(12), 3974–3977 (2016). https://doi.org/10.1021/jacs.6b00142
- W. Li, J. Li, J. Li, J. Fan, Y. Mai et al., Addictive-assisted construction of all-inorganic CsSnIBr2 mesoscopic perovskite solar cells with superior thermal stability up to 473 K. J. Mater. Chem. A 4(43), 17104–17110 (2016). https://doi.org/10.1039/c6ta08332c
- Z. Zhu, C.C. Chueh, N. Li, C. Mao, A.K. Jen, Realizing efficient lead-free formamidinium tin triiodide perovskite solar cells via a sequential deposition route. Adv. Mater. 30(6), 1703800 (2018). https://doi.org/10.1002/adma.201703800
- J.O. Obila, H. Lei, E.O. Ayieta, A.A. Ogacho, B.O. Aduda et al., Optoelectronic property refinement of FASnI3 films for photovoltaic application. Mater. Lett. 300, 130099 (2021). https://doi.org/10.1016/j.matlet.2021.130099
- J.O. Obila, H. Lei, E.O. Ayieta, A.A. Ogacho, B.O. Aduda et al., Improving the efficiency and stability of tin-based perovskite solar cells using anilinium hypophosphite additive. New J. Chem. 45(18), 8092–8100 (2021). https://doi.org/10.1039/d1nj00602a
- Z. Dai, W. Tang, T. Wang, T. Lv, X. Luo et al., Stable tin perovskite solar cells enabled by widening the time window for crystallization. Sci. China Mater. 64(8), 1849–1857 (2021). https://doi.org/10.1007/s40843-020-1581-4
- T. Nakamura, S. Yakumaru, M.A. Truong, K. Kim, J. Liu et al., Sn(IV)-free tin perovskite films realized by in situ Sn(0) nanop treatment of the precursor solution. Nat. Commun. 11(1), 3008 (2020). https://doi.org/10.1038/s41467-020-16726-3
- Q. Tai, X. Guo, G. Tang, P. You, T.W. Ng et al., Antioxidant grain passivation for air-stable tin-based perovskite solar cells. Angew. Chem. Int. Ed. 58(3), 806–810 (2019). https://doi.org/10.1002/anie.201811539
- T. Wang, Q. Tai, X. Guo, J. Cao, C.-K. Liu et al., Highly air-stable tin-based perovskite solar cells through grain-surface protection by gallic acid. ACS Energy Lett. 5(6), 1741–1749 (2020). https://doi.org/10.1021/acsenergylett.0c00526
- H. Ban, T. Zhang, X. Gong, Q. Sun, X.-L. Zhang et al., Fully inorganic CsSnI3 mesoporous perovskite solar cells with high efficiency and stability via coadditive engineering. Solar RRL 5(7), 2100069 (2021). https://doi.org/10.1002/solr.202100069
- T.B. Song, T. Yokoyama, C.C. Stoumpos, J. Logsdon, D.H. Cao et al., Importance of reducing vapor atmosphere in the fabrication of tin-based perovskite solar cells. J. Am. Chem. Soc. 139(2), 836–842 (2017). https://doi.org/10.1021/jacs.6b10734
- T.-B. Song, T. Yokoyama, S. Aramaki, M.G. Kanatzidis, Performance enhancement of lead-free tin-based perovskite solar cells with reducing atmosphere-assisted dispersible additive. ACS Energy Lett. 2(4), 897–903 (2017). https://doi.org/10.1021/acsenergylett.7b00171
- M.E. Kayesh, T.H. Chowdhury, K. Matsuishi, R. Kaneko, S. Kazaoui et al., Enhanced photovoltaic performance of FASnI3-based perovskite solar cells with hydrazinium chloride coadditive. ACS Energy Lett. 3(7), 1584–1589 (2018). https://doi.org/10.1021/acsenergylett.8b00645
- D. Wu, P. Jia, W. Bi, Y. Tang, J. Zhang et al., Enhanced performance of tin halide perovskite solar cells by addition of hydrazine monohydrobromide. Org. Electron. 82, 105728 (2020). https://doi.org/10.1016/j.orgel.2020.105728
- F. Li, H. Fan, J. Zhang, J.-H. Huang, P. Wang et al., Trihydrazine dihydriodide-assisted fabrication of efficient formamidinium tin iodide perovskite solar cells. Solar RRL 3(9), 1900285 (2019). https://doi.org/10.1002/solr.201900285
- C. Wang, F. Gu, Z. Zhao, H. Rao, Y. Qiu et al., Self-repairing tin-based perovskite solar cells with a breakthrough efficiency over 11%. Adv. Mater. 32(31), e1907623 (2020). https://doi.org/10.1002/adma.201907623
- C. Wang, Y. Zhang, F. Gu, Z. Zhao, H. Li et al., Illumination durability and high-efficiency Sn-based perovskite solar cell under coordinated control of phenylhydrazine and halogen ions. Matter 4(2), 709–721 (2021). https://doi.org/10.1016/j.matt.2020.11.012
- X. Meng, T. Wu, X. Liu, X. He, T. Noda et al., Highly reproducible and efficient FASnI3 perovskite solar cells fabricated with volatilizable reducing solvent. J. Phys. Chem. Lett. 11(8), 2965–2971 (2020). https://doi.org/10.1021/acs.jpclett.0c00923
- F. Hu, C.-H. Chen, Y.-H. Lou, T.-Y. Teng, Y.-R. Shi et al., A vertical antioxidant strategy for high performance wide band gap tin perovskite photovoltaics. J. Mater. Chem. A 11(9), 4579–4586 (2023). https://doi.org/10.1039/D2TA09363D
- J. Cao, Q. Tai, P. You, G. Tang, T. Wang et al., Enhanced performance of tin-based perovskite solar cells induced by an ammonium hypophosphite additive. J. Mater. Chem. A 7(46), 26580–26585 (2019). https://doi.org/10.1039/c9ta08679j
- H. Mohammadian-Sarcheshmeh, M. Mazloum-Ardakani, M. Rameez, S. Shahbazi, E.W.-G. Diau, Application of a natural antioxidant as an efficient strategy to decrease the oxidation in Sn-based perovskites. J. Alloys Compd. 846, 156351 (2020). https://doi.org/10.1016/j.jallcom.2020.156351
- J. Gong, X. Li, W. Huang, P. Guo, T.J. Marks et al., Suppressed oxidation and photodarkening of hybrid tin iodide perovskite achieved with reductive organic small molecule. ACS Appl. Energy Mater. 4(5), 4704–4710 (2021). https://doi.org/10.1021/acsaem.1c00316
- F. Gu, S. Ye, Z. Zhao, H. Rao, Z. Liu et al., Improving performance of lead-free formamidinium tin triiodide perovskite solar cells by tin source purification. Solar RRL 2(10), 1800136 (2018). https://doi.org/10.1002/solr.201800136
- T. Zhang, H. Li, H. Ban, Q. Sun, Y. Shen et al., Efficient CsSnI3-based inorganic perovskite solar cells based on a mesoscopic metal oxide framework via incorporating a donor element. J. Mater. Chem. A 8(7), 4118–4124 (2020). https://doi.org/10.1039/c9ta11794f
- E. Jokar, C.-H. Chien, A. Fathi, M. Rameez, Y.-H. Chang et al., Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells. Energy Environ. Sci. 11(9), 2353–2362 (2018). https://doi.org/10.1039/c8ee00956b
- M.A. Kamarudin, D. Hirotani, Z. Wang, K. Hamada, K. Nishimura et al., Suppression of charge carrier recombination in lead-free tin halide perovskite via lewis base post-treatment. J. Phys. Chem. Lett. 10(17), 5277–5283 (2019). https://doi.org/10.1021/acs.jpclett.9b02024
- X. Liu, T. Wu, J.-Y. Chen, X. Meng, X. He et al., Templated growth of FASnI3 crystals for efficient tin perovskite solar cells. Energy Environ. Sci. 13(9), 2896–2902 (2020). https://doi.org/10.1039/d0ee01845g
- Y. Huang, Y. Jiang, S. Zou, Z. Zhang, J. Jin et al., Substitution of ethylammonium halides enabling lead-free tin-based perovskite solar cells with enhanced efficiency and stability. ACS Appl. Mater. Interfaces 15(12), 15775–15784 (2023). https://doi.org/10.1021/acsami.3c00299
- C. Ran, W. Gao, J. Li, J. Xi, L. Li et al., Conjugated organic cations enable efficient self-healing FASnI3 solar cells. Joule 3(12), 3072–3087 (2019). https://doi.org/10.1016/j.joule.2019.08.023
- P. Li, H. Dong, J. Xu, J. Chen, B. Jiao et al., Ligand orientation-induced lattice robustness for highly efficient and stable tin-based perovskite solar cells. ACS Energy Lett. 5(7), 2327–2334 (2020). https://doi.org/10.1021/acsenergylett.0c00960
- H. Dong, P. Li, J. Dai, F. Yuan, R. Xu et al., High efficient and stable tin-based perovskite solar cells via short-chain ligand modification. Org. Electron. 96, 106198 (2021). https://doi.org/10.1016/j.orgel.2021.106198
- X. Meng, Y. Wang, J. Lin, X. Liu, X. He et al., Surface-controlled oriented growth of FASnI3 crystals for efficient lead-free perovskite solar cells. Joule 4(4), 902–912 (2020). https://doi.org/10.1016/j.joule.2020.03.007
- J. Wang, C. Yang, H. Chen, M. Lv, T. Liu et al., Oriented attachment of tin halide perovskites for photovoltaic applications. ACS Energy Lett. 8(3), 1590–1596 (2023). https://doi.org/10.1021/acsenergylett.2c02776
- B. Ma, J. Chen, M. Wang, X. Xu, J. Qian et al., Passivating charged defects with 1,6-hexamethylenediamine to realize efficient and stable tin-based perovskite solar cells. J. Phys. Chem. C 124(30), 16289–16299 (2020). https://doi.org/10.1021/acs.jpcc.0c03401
- Q. Fu, X. Tang, D. Li, L. Huang, S. Xiao et al., An efficient and stable tin-based perovskite solar cell passivated by aminoguanidine hydrochloride. J. Mater. Chem. C 8(23), 7786–7792 (2020). https://doi.org/10.1039/d0tc01464h
- C. Liu, J. Tu, X. Hu, Z. Huang, X. Meng et al., Enhanced hole transportation for inverted tin-based perovskite solar cells with high performance and stability. Adv. Funct. Mater. 29(18), 1808059 (2019). https://doi.org/10.1002/adfm.201808059
- B. Chang, B. Li, Z. Wang, H. Li, L. Wang et al., Efficient bulk defect suppression strategy in FASnI3 perovskite for photovoltaic performance enhancement. Adv. Funct. Mater. 32(12), 2107710 (2021). https://doi.org/10.1002/adfm.202107710
- X. Meng, Y. Li, Y. Qu, H. Chen, N. Jiang et al., Crystallization kinetics modulation of FASnI3 films with pre-nucleation clusters for efficient lead-free perovskite solar cells. Angew. Chem. Int. Ed. 60(7), 3693–3698 (2021). https://doi.org/10.1002/anie.202012280
- M.E. Kayesh, K. Matsuishi, R. Kaneko, S. Kazaoui, J.-J. Lee et al., Coadditive engineering with 5-ammonium valeric acid iodide for efficient and stable Sn perovskite solar cells. ACS Energy Lett. 4(1), 278–284 (2018). https://doi.org/10.1021/acsenergylett.8b02216
- T.H. Chowdhury, R. Kaneko, T. Kaneko, K. Sodeyama, J.-J. Lee et al., Electronic defect passivation of FASnI3 films by simultaneous hydrogen-bonding and chlorine co-ordination for highly efficient and stable perovskite solar cells. Chem. Eng. J. 431, 133745 (2022). https://doi.org/10.1016/j.cej.2021.133745
- X. Meng, J. Lin, X. Liu, X. He, Y. Wang et al., Highly stable and efficient FASnI3-based perovskite solar cells by introducing hydrogen bonding. Adv. Mater. 31(42), e1903721 (2019). https://doi.org/10.1002/adma.201903721
- G. Liu, C. Liu, Z. Lin, J. Yang, Z. Huang et al., Regulated crystallization of efficient and stable tin-based perovskite solar cells via a self-sealing polymer. ACS Appl. Mater. Interfaces 12(12), 14049–14056 (2020). https://doi.org/10.1021/acsami.0c01311
- B. Li, H. Di, B. Chang, R. Yin, L. Fu et al., Efficient passivation strategy on Sn related defects for high performance all-inorganic CsSnI3 perovskite solar cells. Adv. Funct. Mater. 31(11), 2007447 (2021). https://doi.org/10.1002/adfm.202007447
- X. Cao, J. Li, H. Dong, P. Li, Q. Fan et al., Stability improvement of tin-based halide perovskite by precursor-solution regulation with dual-functional reagents. Adv. Funct. Mater. 31(40), 2104344 (2021). https://doi.org/10.1002/adfm.202104344
- P. Li, H. Dong, J. Li, X. Cao, J. Xi et al., Synergistic trifluoroacetamide regulating crystal orientation and energy alignment for tin-based perovskite solar cells. Org. Electron. 113, 106707 (2023). https://doi.org/10.1016/j.orgel.2022.106707
- X. Cao, P. Li, X. Zhu, H. Li, R. Xu et al., Non-fullerene agent enables efficient and stable tin-based perovskite solar cells. Solar RRL (2023). https://doi.org/10.1002/solr.202300268
- X. He, T. Wu, X. Liu, Y. Wang, X. Meng et al., Highly efficient tin perovskite solar cells achieved in a wide oxygen concentration range. J. Mater. Chem. A 8(5), 2760–2768 (2020). https://doi.org/10.1039/c9ta13159k
- T. Wu, X. Liu, X. He, Y. Wang, X. Meng et al., Efficient and stable tin-based perovskite solar cells by introducing π-conjugated Lewis base. Sci. China Chem. 63(1), 107–115 (2019). https://doi.org/10.1007/s11426-019-9653-8
- J. Yang, W. Sheng, S. Xiao, G. Liu, Z. Lin et al., Directional crystallization by floating self-assembly for efficient and stable tin-based perovskite solar cells. Chem. Mater. 33(12), 4362–4372 (2021). https://doi.org/10.1021/acs.chemmater.0c04906
- N. Sun, W. Gao, H. Dong, X. Liu, L. Chao et al., Bi-linkable reductive cation as molecular glue for one year stable Sn-based perovskite solar cells. ACS Appl. Energy Mater. 5(4), 4008–4016 (2022). https://doi.org/10.1021/acsaem.1c03767
- B. Chang, B. Li, L. Pan, H. Li, L. Wang et al., Polyethylene glycol polymer scaffold induced intermolecular interactions for crystallization regulation and defect passivation in FASnI3 films. ACS Appl. Energy Mater. 4(4), 3622–3632 (2021). https://doi.org/10.1021/acsaem.1c00009
- J. Choi, S.J. Yang, S.G. Han, W. Sung, D. Yoo et al., Defect-stabilized tin-based perovskite solar cells enabled by multifunctional molecular additives. Chem. Mater. 35(3), 1148–1158 (2023). https://doi.org/10.1021/acs.chemmater.2c03141
- L. Rao, X. Meng, S. Xiao, Z. Xing, Q. Fu et al., Wearable tin-based perovskite solar cells achieved by a crystallographic size effect. Angew. Chem. Int. Ed. 60(26), 14693–14700 (2021). https://doi.org/10.1002/anie.202104201
- M. Hu, R. Nie, H. Kim, J. Wu, S. Chen et al., Regulating the surface passivation and residual strain in pure tin perovskite films. ACS Energy Lett. 6(10), 3555–3562 (2021). https://doi.org/10.1021/acsenergylett.1c01575
- Z. Lin, C. Liu, G. Liu, J. Yang, X. Duan et al., Preparation of efficient inverted tin-based perovskite solar cells via the bidentate coordination effect of 8-hydroxyquinoline. Chem. Commun. 56(28), 4007–4010 (2020). https://doi.org/10.1039/d0cc01106a
- J. Liu, S. Wang, W. Zhu, Z. Tang, L. Ding et al., Highly symmetric Lewis base coordinated with Sn2+ for reducing voltage loss and retarding oxidation in tin-halide perovskite solar cells. Chem. Eng. J. 453, 139975 (2023). https://doi.org/10.1016/j.cej.2022.139975
- Z. Zhu, Q. Mi, Substituted thiourea as versatile ligands for crystallization control and surface passivation of tin-based perovskite. Cell Rep. Phys. Sci. 3(1), 100690 (2022). https://doi.org/10.1016/j.xcrp.2021.100690
- J. Qiu, Y. Xia, Y. Chen, W. Huang, Management of crystallization kinetics for efficient and stable low-dimensional ruddlesden-popper (LDRP) lead-free perovskite solar cells. Adv. Sci. 6(1), 1800793 (2019). https://doi.org/10.1002/advs.201800793
- R. Xu, H. Dong, P. Li, X. Cao, H. Li et al., Formamidine acetate induces regulation of crystallization and stabilization in Sn-based perovskite solar cells. ACS Appl. Mater. Interfaces 13(28), 33218–33225 (2021). https://doi.org/10.1021/acsami.1c05097
- S. Wang, H. Yao, W. Zhu, C. Wu, Z. Tang et al., Stabilization of perovskite lattice and suppression of Sn2+/Sn4+ oxidation via formamidine acetate for high efficiency tin perovskite solar cells. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202215041
- G. Li, Z. Su, M. Li, F. Yang, M.H. Aldamasy et al., Ionic liquid stabilizing high-efficiency tin halide perovskite solar cells. Adv. Energy Mater. 11(32), 2101539 (2021). https://doi.org/10.1002/aenm.202101539
- Z. Lin, Y. Su, R. Dai, G. Liu, J. Yang et al., Ionic liquid-induced ostwald ripening effect for efficient and stable tin-based perovskite solar cells. ACS Appl. Mater. Interfaces 13(13), 15420–15428 (2021). https://doi.org/10.1021/acsami.1c01408
- J. Chen, C. Tian, C. Sun, P. Yang, W. Feng et al., Chlorofullerene C60Cl6 enables efficient and stable tin-based perovskite solar cells. Energy Environ. Mater. (2022). https://doi.org/10.1002/eem2.12529
- D.B. Mitzi, Templating and structural engineering in organic–inorganic perovskites. J. Chem. Soc. Dalton T. 1, 1–12 (2001). https://doi.org/10.1039/b007070j
- D.H. Cao, C.C. Stoumpos, O.K. Farha, J.T. Hupp, M.G. Kanatzidis, 2D homologous perovskites as light-absorbing materials for solar cell applications. J Am. Chem. Soc. 137(24), 7843–7850 (2015). https://doi.org/10.1021/jacs.5b03796
- A.R.B.M. Yusoff, M.K. Nazeeruddin, Low-dimensional perovskites: from synthesis to stability in perovskite solar cells. Adv. Energy Mater. 8(26), 1702073 (2018). https://doi.org/10.1002/aenm.201702073
- Y. Lin, Y. Bai, Y. Fang, Q. Wang, Y. Deng et al., Suppressed ion migration in low-dimensional perovskites. ACS Energy Lett. 2(7), 1571–1572 (2017). https://doi.org/10.1021/acsenergylett.7b00442
- W. Peng, J. Yin, K.T. Ho, O. Ouellette, M. De Bastiani et al., Ultralow self-doping in two-dimensional hybrid perovskite single crystals. Nano Lett. 17(8), 4759–4767 (2017). https://doi.org/10.1021/acs.nanolett.7b01475
- C.C. Stoumpos, L. Mao, C.D. Malliakas, M.G. Kanatzidis, Structure-band gap relationships in hexagonal polytypes and low-dimensional structures of hybrid tin iodide perovskites. Inorg. Chem. 56(1), 56–73 (2017). https://doi.org/10.1021/acs.inorgchem.6b02764
- L. Ma, J. Dai, X.C. Zeng, Two-dimensional single-layer organic–inorganic hybrid perovskite semiconductors. Adv. Energy Mater. 7(7), 1601731 (2016). https://doi.org/10.1002/aenm.201601731
- M. Pandey, K.W. Jacobsen, K.S. Thygesen, Band gap tuning and defect tolerance of atomically thin two-dimensional organic-inorganic halide perovskites. J. Phys. Chem. Lett. 7(21), 4346–4352 (2016). https://doi.org/10.1021/acs.jpclett.6b01998
- L. Mao, W. Ke, L. Pedesseau, Y. Wu, C. Katan et al., Hybrid dion-jacobson 2D lead iodide perovskites. J. Am. Chem. Soc. 140(10), 3775–3783 (2018). https://doi.org/10.1021/jacs.8b00542
- D.H. Cao, C.C. Stoumpos, T. Yokoyama, J.L. Logsdon, T.-B. Song et al., Thin films and solar cells based on semiconducting two-dimensional ruddlesden–popper (CH3(CH2)3NH3)2(CH3NH3)n−1SnnI3n+1 perovskites. ACS Energy Lett. 2(5), 982–990 (2017). https://doi.org/10.1021/acsenergylett.7b00202
- Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang et al., Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance. J. Am. Chem. Soc. 139(19), 6693–6699 (2017). https://doi.org/10.1021/jacs.7b01815
- S. Shao, J. Liu, G. Portale, H.-H. Fang, G.R. Blake et al., Highly reproducible Sn-based hybrid perovskite solar cells with 9% efficiency. Adv. Energy Mater. 8(4), 1702019 (2018). https://doi.org/10.1002/aenm.201702019
- S. Sandhu, R. Singh, K. Yoo, M. Kumar, J.-J. Lee, Effect of binary additives in mixed 2D/3D Sn-based perovskite solar cells. J. Power Sources 491, 229574 (2021). https://doi.org/10.1016/j.jpowsour.2021.229574
- M. Li, W.-W. Zuo, Y.-G. Yang, M.H. Aldamasy, Q. Wang et al., Tin halide perovskite films made of highly oriented 2d crystals enable more efficient and stable lead-free perovskite solar cells. ACS Energy Lett. 5(6), 1923–1929 (2020). https://doi.org/10.1021/acsenergylett.0c00782
- H. Yao, W. Zhu, J. Hu, C. Wu, S. Wang et al., Halogen engineering of 2D/3D tin halide perovskite for enhanced structural stability. Chem. Eng. J. 455, 140862 (2023). https://doi.org/10.1016/j.cej.2022.140862
- H. Kim, Y.H. Lee, T. Lyu, J.H. Yoo, T. Park et al., Boosting the performance and stability of quasi-two-dimensional tin-based perovskite solar cells using the formamidinium thiocyanate additive. J. Mater. Chem. A 6(37), 18173–18182 (2018). https://doi.org/10.1039/c8ta05916k
- I. Zimmermann, S. Aghazada, M.K. Nazeeruddin, Lead and HTM free stable two-dimensional tin perovskites with suitable band gap for solar cell applications. Angew. Chem. Int. Ed. 58(4), 1072–1076 (2019). https://doi.org/10.1002/anie.201811497
- Y. Xu, K.-J. Jiang, P. Wang, W.-M. Gu, G.-H. Yu et al., Highly oriented quasi-2D layered tin halide perovskites with 2-thiopheneethylammonium iodide for efficient and stable tin perovskite solar cells. New J. Chem. 46(5), 2259–2265 (2022). https://doi.org/10.1039/d1nj05178d
- B.B. Yu, Z. Chen, Y. Zhu, Y. Wang, B. Han et al., Heterogeneous 2D/3D tin-halides perovskite solar cells with certified conversion efficiency breaking 14%. Adv. Mater. 33(36), e2102055 (2021). https://doi.org/10.1002/adma.202102055
- L. Ma, M.G. Ju, J. Dai, X.C. Zeng, Tin and germanium based two-dimensional ruddlesden-popper hybrid perovskites for potential lead-free photovoltaic and photoelectronic applications. Nanoscale 10(24), 11314–11319 (2018). https://doi.org/10.1039/c8nr03589j
- J. Qiu, Y. Xia, Y. Zheng, W. Hui, H. Gu et al., 2D intermediate suppression for efficient ruddlesden–popper (RP) phase lead-free perovskite solar cells. ACS Energy Lett. 4(7), 1513–1520 (2019). https://doi.org/10.1021/acsenergylett.9b00954
- H. Xu, Y. Jiang, T. He, S. Li, H. Wang et al., Orientation regulation of tin-based reduced-dimensional perovskites for highly efficient and stable photovoltaics. Adv. Funct. Mater. 29(47), 1807696 (2019). https://doi.org/10.1002/adfm.201807696
- S. Shao, J. Dong, H. Duim, G.H. ten Brink, G.R. Blake et al., Enhancing the crystallinity and perfecting the orientation of formamidinium tin iodide for highly efficient Sn-based perovskite solar cells. Nano Energy 60, 810–816 (2019). https://doi.org/10.1016/j.nanoen.2019.04.040
- F. Li, Y. Xie, Y. Hu, M. Long, Y. Zhang et al., Effects of alkyl chain length on crystal growth and oxidation process of two-dimensional tin halide perovskites. ACS Energy Lett. 5(5), 1422–1429 (2020). https://doi.org/10.1021/acsenergylett.0c00286
- Z. Zhao, F. Gu, C. Wang, G. Zhan, N. Zheng et al., Orientation regulation of photoactive layer in tin-based perovskite solar cells with allylammonium cations. Solar RRL 4(10), 2000315 (2020). https://doi.org/10.1002/solr.202000315
- C. Ortiz-Cervantes, P. Carmona-Monroy, D. Solis-Ibarra, Two-dimensional halide perovskites in solar cells: 2D or not 2D? Chemsuschem 12(8), 1560–1575 (2019). https://doi.org/10.1002/cssc.201802992
- M. Pegu, M.P.U. Haris, S. Kazim, S. Ahmad, Understanding and harnessing the potential of layered perovskite-based absorbers for solar cells. Emergent Mater. 3(6), 751–778 (2020). https://doi.org/10.1007/s42247-020-00134-w
- M. Chen, M.-G. Ju, M. Hu, Z. Dai, Y. Hu et al., Lead-free dion–jacobson tin halide perovskites for photovoltaics. ACS Energy Lett. 4(1), 276–277 (2018). https://doi.org/10.1021/acsenergylett.8b02051
- V.V. Nawale, T. Sheikh, A. Nag, Dual excitonic emission in hybrid 2d layered tin iodide perovskites. J. Phys. Chem. C 124(38), 21129–21136 (2020). https://doi.org/10.1021/acs.jpcc.0c05301
- P. Li, X. Liu, Y. Zhang, C. Liang, G. Chen et al., Low-dimensional dion–jacobson-phase lead-free perovskites for high-performance photovoltaics with improved stability. Angew. Chem. Int. Ed. 59(17), 6909–6914 (2020). https://doi.org/10.1002/anie.202000460
- K. Chen, P. Wu, W. Yang, R. Su, D. Luo et al., Low-dimensional perovskite interlayer for highly efficient lead-free formamidinium tin iodide perovskite solar cells. Nano Energy 49, 411–418 (2018). https://doi.org/10.1016/j.nanoen.2018.05.006
- M. Liao, B.B. Yu, Z. Jin, W. Chen, Y. Zhu et al., Efficient and stable FASnI3 perovskite solar cells with effective interface modulation by low-dimensional perovskite layer. Chemsuschem 12(22), 5007–5014 (2019). https://doi.org/10.1002/cssc.201902000
- F. Wang, X. Jiang, H. Chen, Y. Shang, H. Liu et al., 2D-quasi-2D-3D hierarchy structure for tin perovskite solar cells with enhanced efficiency and stability. Joule 2(12), 2732–2743 (2018). https://doi.org/10.1016/j.joule.2018.09.012
- E. Ruggeri, M. Anaya, K. Galkowski, G. Delport, F.U. Kosasih et al., Controlling the growth kinetics and optoelectronic properties of 2D/3D lead-tin perovskite heterojunctions. Adv. Mater. 31(51), e1905247 (2019). https://doi.org/10.1002/adma.201905247
- T. Wu, D. Cui, X. Liu, X. Meng, Y. Wang et al., Efficient and stable tin perovskite solar cells enabled by graded heterostructure of light-absorbing layer. Solar RRL 4(9), 2000240 (2020). https://doi.org/10.1002/solr.202000240
- J.-T. Lin, T.-C. Chu, D.-G. Chen, Z.-X. Huang, H.-C. Chen et al., Vertical 2D/3D heterojunction of tin perovskites for highly efficient HTM-free perovskite solar cell. ACS Appl. Energy Mater. 4(3), 2041–2048 (2021). https://doi.org/10.1021/acsaem.0c02451
- T. Wang, H.L. Loi, J. Cao, Z. Qin, Z. Guan et al., High open circuit voltage over 1V achieved in tin-based perovskite solar cells with a 2D/3D vertical heterojunction. Adv. Sci. 9(18), e2200242 (2022). https://doi.org/10.1002/advs.202200242
- N. Pellet, P. Gao, G. Gregori, T.Y. Yang, M.K. Nazeeruddin et al., Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. 53(12), 3151–3157 (2014). https://doi.org/10.1002/anie.201309361
- W. Liao, D. Zhao, Y. Yu, N. Shrestha, K. Ghimire et al., Fabrication of efficient low-bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide. J. Am. Chem. Soc. 138(38), 12360–12363 (2016). https://doi.org/10.1021/jacs.6b08337
- K. Dey, B. Roose, S.D. Stranks, Optoelectronic properties of low-bandgap halide perovskites for solar cell applications. Adv. Mater. 33(40), e2102300 (2021). https://doi.org/10.1002/adma.202102300
- C. Ferrara, M. Patrini, A. Pisanu, P. Quadrelli, C. Milanese et al., Wide band-gap tuning in Sn-based hybrid perovskites through cation replacement: the FA1−xMAxSnBr3 mixed system. J. Mater. Chem. A 5(19), 9391–9395 (2017). https://doi.org/10.1039/c7ta01668a
- J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13(4), 1764–1769 (2013). https://doi.org/10.1021/nl400349b
- G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz et al., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7(3), 982–988 (2014). https://doi.org/10.1039/c3ee43822h
- D. Sabba, H.K. Mulmudi, R.R. Prabhakar, T. Krishnamoorthy, T. Baikie et al., Impact of anionic Br– substitution on open circuit voltage in lead free perovskite (CsSnI3-xBrx) solar cells. J. Phys. Chem. C 119(4), 1763–1767 (2015). https://doi.org/10.1021/jp5126624
- C.M. Tsai, N. Mohanta, C.Y. Wang, Y.P. Lin, Y.W. Yang et al., Formation of stable tin perovskites Co-crystallized with three halides for carbon-based mesoscopic lead-free perovskite solar cells. Angew. Chem. Int. Ed. 56(44), 13819–13823 (2017). https://doi.org/10.1002/anie.201707037
- S.J. Lee, S.S. Shin, J. Im, T.K. Ahn, J.H. Noh et al., Reducing carrier density in formamidinium tin perovskites and its beneficial effects on stability and efficiency of perovskite solar cells. ACS Energy Lett. 3(1), 46–53 (2017). https://doi.org/10.1021/acsenergylett.7b00976
- B.B. Yu, M. Liao, Y. Zhu, X. Zhang, Z. Du et al., Oriented crystallization of mixed-cation tin halides for highly efficient and stable lead-free perovskite solar cells. Adv. Funct. Mater. 30(24), 2002230 (2020). https://doi.org/10.1002/adfm.202002230
- J. Xiang, K. Wang, B. Xiang, X. Cui, Sn(2+)-stabilization in MASnI3 perovskites by superhalide incorporation. J. Chem. Phys. 148(12), 124111 (2018). https://doi.org/10.1063/1.5023737
- M. Rameez, S. Shahbazi, P. Raghunath, M.C. Lin, C.H. Hung et al., Development of novel mixed halide/superhalide tin-based perovskites for mesoscopic carbon-based solar cells. J. Phys. Chem. Lett. 11(7), 2443–2448 (2020). https://doi.org/10.1021/acs.jpclett.0c00479
- Z. Zhao, F. Gu, Y. Li, W. Sun, S. Ye et al., Mixed-organic-cation tin iodide for lead-free perovskite solar cells with an efficiency of 8.12%. Adv. Sci. 4(11), 1700204 (2017). https://doi.org/10.1002/advs.201700204
- X. Liu, K. Yan, D. Tan, X. Liang, H. Zhang et al., Solvent engineering improves efficiency of lead-free tin-based hybrid perovskite solar cells beyond 9%. ACS Energy Lett. 3(11), 2701–2707 (2018). https://doi.org/10.1021/acsenergylett.8b01588
- B.P. Nguyen, H.R. Jung, K.Y. Ryu, K. Kim, W. Jo, Effects of organic cations on carrier transport at the interface between perovskites and electron transport layers in (FA, MA)SnI3 solar cells. J. Phys. Chem. C 123(51), 30833–30841 (2019). https://doi.org/10.1021/acs.jpcc.9b08859
- G. Kieslich, S. Sun, A.K. Cheetham, An extended tolerance factor approach for organic-inorganic perovskites. Chem. Sci. 6(6), 3430–3433 (2015). https://doi.org/10.1039/c5sc00961h
- G. Giorgi, J.-I. Fujisawa, H. Segawa, K. Yamashita, Organic–inorganic hybrid lead iodide perovskite featuring zero dipole moment guanidinium cations: a theoretical analysis. J. Phys. Chem. C 119(9), 4694–4701 (2015). https://doi.org/10.1021/acs.jpcc.5b00051
- E. Jokar, C.H. Chien, C.M. Tsai, A. Fathi, E.W. Diau, Robust tin-based perovskite solar cells with hybrid organic cations to attain efficiency approaching 10%. Adv. Mater. 31(2), e1804835 (2019). https://doi.org/10.1002/adma.201804835
- E. Nakanishi, R. Nishikubo, A. Wakamiya, A. Saeki, How the mixed cations (guanidium, formamidinium, and phenylethylamine) in tin iodide perovskites affect their charge carrier dynamics and solar cell characteristics. J. Phys. Chem. Lett. 11(10), 4043–4051 (2020). https://doi.org/10.1021/acs.jpclett.0c00686
- W. Gao, C. Ran, J. Li, H. Dong, B. Jiao et al., Robust stability of efficient lead-free formamidinium tin iodide perovskite solar cells realized by structural regulation. J. Phys. Chem. Lett. 9(24), 6999–7006 (2018). https://doi.org/10.1021/acs.jpclett.8b03194
- K.P. Marshall, S. Tao, M. Walker, D.S. Cook, J. Lloyd-Hughes et al., Cs1−xRbxSnI3 light harvesting semiconductors for perovskite photovoltaics. Mater. Chem. Front. 2(8), 1515–1522 (2018). https://doi.org/10.1039/c8qm00159f
- D.B. Khadka, Y. Shirai, M. Yanagida, K. Miyano, Attenuating the defect activities with a rubidium additive for efficient and stable Sn-based halide perovskite solar cells. J. Mater. Chem. C 8(7), 2307–2313 (2020). https://doi.org/10.1039/c9tc06206h
- Y. Yin, M. Wang, V. Malgras, Y. Yamauchi, Stable and efficient tin-based perovskite solar cell via semiconducting–insulating structure. ACS Appl. Energy Mater. 3(11), 10447–10452 (2020). https://doi.org/10.1021/acsaem.0c01422
- Y. Lin, J. Liu, J. Hu, C. Ran, Y. Chen et al., In situ interfacial passivation of Sn-based perovskite films with a bi-functional ionic salt for enhanced photovoltaic performance. ACS Appl. Mater. Interfaces 13(49), 58809–58817 (2021). https://doi.org/10.1021/acsami.1c20045
- E. Jokar, H.S. Chuang, C.H. Kuan, H.P. Wu, C.H. Hou et al., Slow passivation and inverted hysteresis for hybrid tin perovskite solar cells attaining 13.5% via sequential deposition. J. Phys. Chem. Lett. 12(41), 10106–10111 (2021). https://doi.org/10.1021/acs.jpclett.1c03107
- B. Chen, S. Wang, X. Zhang, W. Zhu, Z. Cao et al., Reducing the interfacial voltage loss in tin halides perovskite solar cells. Chem. Eng. J. 445, 136769 (2022). https://doi.org/10.1016/j.cej.2022.136769
- K. Cao, Y. Cheng, J. Chen, Y. Huang, M. Ge et al., Regulated crystallization of FASnI3 films through seeded growth process for efficient tin perovskite solar cells. ACS Appl. Mater. Interfaces 12(37), 41454–41463 (2020). https://doi.org/10.1021/acsami.0c11253
- Z. Zhang, M.A. Kamarudin, A.K. Baranwal, L. Wang, G. Kapil et al., Indent-free vapor-assisted surface passivation strategy toward tin halide perovskite solar cells. ACS Appl. Mater. Interfaces 14(31), 36200–36208 (2022). https://doi.org/10.1021/acsami.2c06046
- W. Hou, Y. Xiao, G. Han, C. Qin, L. Xiao et al., Dimethyl sulfoxide and bromide methylamine co-treatment inducing defect healing for effective and stable perovskite solar cells. Mater. Res. Bull. 112, 165–173 (2019). https://doi.org/10.1016/j.materresbull.2018.12.013
- C. Mu, J. Pan, S. Feng, Q. Li, D. Xu, Quantitative doping of chlorine in formamidinium lead trihalide (FAPbI3−xClx) for planar heterojunction perovskite solar cells. Adv. Energy Mater. 7(6), 1601297 (2016). https://doi.org/10.1002/aenm.201601297
- Z. Jin, B.-B. Yu, M. Liao, D. Liu, J. Xiu et al., Enhanced efficiency and stability in Sn-based perovskite solar cells with secondary crystallization growth. J. Energy Chem. 54, 414–421 (2021). https://doi.org/10.1016/j.jechem.2020.06.044
- X. Jiang, H. Li, Q. Zhou, Q. Wei, M. Wei et al., One-step synthesis of SnI2·(DMSO)x adducts for high-performance tin perovskite solar cells. J. Am. Chem. Soc. 143(29), 10970–10976 (2021). https://doi.org/10.1021/jacs.1c03032
- R.M.I. Bandara, S.M. Silva, C.C. Underwood, K.I. Jayawardena, R.A. Sporea et al., Progress of Pb-Sn mixed perovskites for photovoltaics: A review. Energy Environ. Mater. 5(2), 370–400 (2022). https://doi.org/10.1002/eem2.12211
- T. Leijtens, K.A. Bush, R. Prasanna, M.D. McGehee, Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3(10), 828–838 (2018). https://doi.org/10.1038/s41560-018-0190-4
- Q. Chen, J. Luo, R. He, H. Lai, S. Ren et al., Unveiling roles of tin fluoride additives in high-efficiency low-bandgap mixed tin-lead perovskite solar cells. Adv. Energy Mater. 11(29), 2101045 (2021). https://doi.org/10.1002/aenm.202101045
- G. Kapil, T. Bessho, T. Maekawa, A.K. Baranwal, Y. Zhang et al., Tin-lead perovskite fabricated via ethylenediamine interlayer guides to the solar cell efficiency of 21.74%. Adv. Energy Mater. 11(25), 2101069 (2021). https://doi.org/10.1002/aenm.202101069
- N. Ghimire, R.S. Bobba, A. Gurung, K.M. Reza, M.A.R. Laskar et al., Mitigating open-circuit voltage loss in Pb–Sn low-bandgap perovskite solar cells via additive engineering. ACS Appl. Energy Mater. 4(2), 1731–1742 (2021). https://doi.org/10.1021/acsaem.0c02895
- T. Jiang, X. Xu, Z. Lan, Z. Chen, X. Chen et al., Efficient MA-free Pb-Sn alloyed low-bandgap perovskite solar cells via surface passivation. Nano Energy 101, 107596 (2022). https://doi.org/10.1016/j.nanoen.2022.107596
- K.W. Yeom, D.K. Lee, N.G. Park, Hard and soft acid and base (HSAB) engineering for efficient and stable sn-pb perovskite solar cells. Adv. Energy Mater. 12(48), 2202496 (2022). https://doi.org/10.1002/aenm.202202496
- H. Hu, J. Zhang, Y. Huang, D. Wang, D. Li et al., Small molecule passivation leading to efficient hole transport layer-free Sn–Pb mixed perovskite solar cells with high open-circuit voltage. Solar RRL 6, 2200721 (2022). https://doi.org/10.1002/solr.202200721
- J. Yuan, Y. Jiang, T. He, G. Shi, Z. Fan et al., Two-dimensional perovskite capping layer for stable and efficient tin-lead perovskite solar cells. Sci. China Chem. 62, 629–636 (2019). https://doi.org/10.1007/s11426-018-9436-1
- L. Pan, H. Li, B. Chang, L. Yin, Crystallization and defect regulation in Sn–Pb perovskite solar cells via optimized anti-solvent passivation strategy. Solar RRL 6(10), 2200398 (2022). https://doi.org/10.1002/solr.202200398
- X. Liu, Z. Yang, C.-C. Chueh, A. Rajagopal, S.T. Williams et al., Improved efficiency and stability of Pb–Sn binary perovskite solar cells by Cs substitution. J. Mater. Chem. A 4(46), 17939–17945 (2016). https://doi.org/10.1039/C6TA07712A
- S. Hu, K. Otsuka, R. Murdey, T. Nakamura, M.A. Truong et al., Optimized carrier extraction at interfaces for 23.6% efficient tin–lead perovskite solar cells. Energy Environ. Sci. 15(5), 2096–2107 (2022). https://doi.org/10.1039/D2EE00288D
References
National Renewable Energy Laboratory, Best research-cell efficiencies chart [EB/OL] (2012). https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.pdf
S. Liu, Y. Guan, Y. Sheng, Y. Hu, Y. Rong et al., A review on additives for halide perovskite solar cells. Adv. Energy Mater. 10(13), 1902492 (2020). https://doi.org/10.1002/aenm.201902492
H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598(7881), 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8
A. Abate, Perovskite solar cells go lead free. Joule 1(4), 659–664 (2017). https://doi.org/10.1016/j.joule.2017.09.007
A. Babayigit, A. Ethirajan, M. Muller, B. Conings, Toxicity of organometal halide perovskite solar cells. Nat. Mater. 15(3), 247–251 (2016). https://doi.org/10.1038/nmat4572
N. Lakhdar, A. Hima, Electron transport material effect on performance of perovskite solar cells based on CH3NH3GeI3. Opt. Mater. 99, 109517 (2020). https://doi.org/10.1016/j.optmat.2019.109517
N. Ito, M.A. Kamarudin, D. Hirotani, Y. Zhang, Q. Shen et al., Mixed Sn–Ge perovskite for enhanced perovskite solar cell performance in air. J. Phys. Chem. Lett. 9(7), 1682–1688 (2018). https://doi.org/10.1021/acs.jpclett.8b00275
C.H. Ng, K. Nishimura, N. Ito, K. Hamada, D. Hirotani et al., Role of GeI2 and SnF2 additives for SnGe perovskite solar cells. Nano Energy 58, 130–137 (2019). https://doi.org/10.1016/j.nanoen.2019.01.026
Y. Jing, Y. Liu, J. Zhao, Z. Xia, Sb(3+) doping-induced triplet self-trapped excitons emission in lead-free Cs2SnCl6 nanocrystals. J. Phys. Chem. Lett. 10(23), 7439–7444 (2019). https://doi.org/10.1021/acs.jpclett.9b03035
K. Ahmad, S.M. Mobin, Recent progress and challenges in A3Sb2X9-based perovskite solar cells. ACS Omega 5(44), 28404–28412 (2020). https://doi.org/10.1021/acsomega.0c04174
P. Kumar, K. Ahmad, J. Dagar, E. Unger, S.M. Mobin, Two-step deposition approach for lead free (NH4)3Sb2I9 perovskite solar cells with enhanced open circuit voltage and performance. ChemElectroChem 8(16), 3150–3154 (2021). https://doi.org/10.1002/celc.202100957
F. Jiang, D. Yang, Y. Jiang, T. Liu, X. Zhao et al., Chlorine-incorporation-induced formation of the layered phase for antimony-based lead-free perovskite solar cells. J. Am. Chem. Soc. 140(3), 1019–1027 (2018). https://doi.org/10.1021/jacs.7b10739
T. Okano, Y. Suzuki, Gas-assisted coating of Bi-based (CH3NH3)3Bi2I9 active layer in perovskite solar cells. Mater. lett. 191, 77–79 (2017). https://doi.org/10.1016/j.matlet.2017.01.047
M. Kong, H. Hu, L. Wan, M. Chen, Y. Gan et al., Nontoxic (CH3NH3)3Bi2I9 perovskite solar cells free of hole conductors with an alternative architectural design and a solution-processable approach. RSC Adv. 7(56), 35549–35557 (2017). https://doi.org/10.1039/C7RA04924B
Z. Chen, J.J. Wang, Y. Ren, C. Yu, K. Shum, Schottky solar cells based on CsSnI3 thin-films. Appl. Phys. Lett. 101(9), 093901 (2012). https://doi.org/10.1063/1.4748888
J. Zhou, M. Hao, Y. Zhang, X. Ma, J. Dong et al., Chemo-thermal surface dedoping for high-performance tin perovskite solar cells. Matter 5(2), 683–693 (2022). https://doi.org/10.1016/j.matt.2021.12.013
W. Ke, C.C. Stoumpos, M.G. Kanatzidis, “Unleaded” perovskites: status quo and future prospects of tin-based perovskite solar cells. Adv. Mater. 31(47), e1803230 (2019). https://doi.org/10.1002/adma.201803230
F. Gu, Z. Zhao, C. Wang, H. Rao, B. Zhao et al., Lead-free tin-based perovskite solar cells: Strategies toward high performance. Solar RRL 3(9), 1900213 (2019). https://doi.org/10.1002/solr.201900213
L. Liang, P. Gao, Lead-free hybrid perovskite absorbers for viable application: can we eat the cake and have it too? Adv. Sci. 5(2), 1700331 (2018). https://doi.org/10.1002/advs.201700331
T. Leijtens, R. Prasanna, A. Gold-Parker, M.F. Toney, M.D. McGehee, Mechanism of tin oxidation and stabilization by lead substitution in tin halide perovskites. ACS Energy Lett. 2(9), 2159–2165 (2017). https://doi.org/10.1021/acsenergylett.7b00636
P. Xu, S. Chen, H.-J. Xiang, X.-G. Gong, S.-H. Wei, Influence of defects and synthesis conditions on the photovoltaic performance of perovskite semiconductor CsSnI3. Chem. Mater. 26(20), 6068–6072 (2014). https://doi.org/10.1021/cm503122j
I. Chung, B. Lee, J. He, R.P. Chang, M.G. Kanatzidis, All-solid-state dye-sensitized solar cells with high efficiency. Nature 485(7399), 486–489 (2012). https://doi.org/10.1038/nature11067
M.H. Kumar, S. Dharani, W.L. Leong, P.P. Boix, R.R. Prabhakar et al., Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 26(41), 7122–7127 (2014). https://doi.org/10.1002/adma.201401991
T.M. Koh, T. Krishnamoorthy, N. Yantara, C. Shi, W.L. Leong et al., Formamidinium tin-based perovskite with low Eg for photovoltaic applications. J. Mater. Chem. A 3(29), 14996–15000 (2015). https://doi.org/10.1039/c5ta00190k
A.G. Kontos, A. Kaltzoglou, E. Siranidi, D. Palles, G.K. Angeli et al., Structural stability, vibrational properties, and photoluminescence in CsSnI3 perovskite upon the addition of SnF2. Inorg. Chem. 56(1), 84–91 (2017). https://doi.org/10.1021/acs.inorgchem.6b02318
L. Ma, F. Hao, C.C. Stoumpos, B.T. Phelan, M.R. Wasielewski et al., Carrier diffusion lengths of over 500 nm in lead-free perovskite CH3NH3SnI3 films. J. Am. Chem. Soc. 138(44), 14750–14755 (2016). https://doi.org/10.1021/jacs.6b09257
T. Handa, T. Yamada, H. Kubota, S. Ise, Y. Miyamoto et al., Photocarrier recombination and injection dynamics in long-term stable lead-Free CH3NH3SnI3 perovskite thin films and solar cells. J. Phys. Chem. C 121(30), 16158–16165 (2017). https://doi.org/10.1021/acs.jpcc.7b06199
S. Gupta, D. Cahen, G. Hodes, How SnF2 impacts the material properties of lead-free tin perovskites. J. Phys. Chem. C 122(25), 13926–13936 (2018). https://doi.org/10.1021/acs.jpcc.8b01045
K.P. Marshall, R.I. Walton, R.A. Hatton, Tin perovskite/fullerene planar layer photovoltaics: improving the efficiency and stability of lead-free devices. J. Mater. Chem. A 3(21), 11631–11640 (2015). https://doi.org/10.1039/c5ta02950c
K.P. Marshall, M. Walker, R.I. Walton, R.A. Hatton, Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics. Nat. Energy 1(12), 16178 (2016). https://doi.org/10.1038/nenergy.2016.178
X. Liu, Y. Wang, T. Wu, X. He, X. Meng et al., Efficient and stable tin perovskite solar cells enabled by amorphous-polycrystalline structure. Nat. Commun. 11(1), 2678 (2020). https://doi.org/10.1038/s41467-020-16561-6
Z. Dai, T. Lv, J. Barbaud, W. Tang, T. Wang et al., Stable tin perovskite solar cells developed via additive engineering. Sci. China Mater. 64(11), 2645–2654 (2021). https://doi.org/10.1007/s40843-021-1670-0
J. Pascual, M. Flatken, R. Felix, G. Li, S.H. Turren-Cruz et al., Fluoride chemistry in tin halide perovskites. Angew. Chem. Int. Ed. 60(39), 21583–21591 (2021). https://doi.org/10.1002/anie.202107599
J. Zillner, H.G. Boyen, P. Schulz, J. Hanisch, N. Gauquelin et al., The role of SnF2 additive on interface formation in all lead-free FASnI3 perovskite solar cells. Adv. Funct. Mater. 32(28), 2109649 (2022). https://doi.org/10.1002/adfm.202109649
S.J. Lee, S.S. Shin, Y.C. Kim, D. Kim, T.K. Ahn et al., Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF(2)-pyrazine complex. J. Am. Chem. Soc. 138(12), 3974–3977 (2016). https://doi.org/10.1021/jacs.6b00142
W. Li, J. Li, J. Li, J. Fan, Y. Mai et al., Addictive-assisted construction of all-inorganic CsSnIBr2 mesoscopic perovskite solar cells with superior thermal stability up to 473 K. J. Mater. Chem. A 4(43), 17104–17110 (2016). https://doi.org/10.1039/c6ta08332c
Z. Zhu, C.C. Chueh, N. Li, C. Mao, A.K. Jen, Realizing efficient lead-free formamidinium tin triiodide perovskite solar cells via a sequential deposition route. Adv. Mater. 30(6), 1703800 (2018). https://doi.org/10.1002/adma.201703800
J.O. Obila, H. Lei, E.O. Ayieta, A.A. Ogacho, B.O. Aduda et al., Optoelectronic property refinement of FASnI3 films for photovoltaic application. Mater. Lett. 300, 130099 (2021). https://doi.org/10.1016/j.matlet.2021.130099
J.O. Obila, H. Lei, E.O. Ayieta, A.A. Ogacho, B.O. Aduda et al., Improving the efficiency and stability of tin-based perovskite solar cells using anilinium hypophosphite additive. New J. Chem. 45(18), 8092–8100 (2021). https://doi.org/10.1039/d1nj00602a
Z. Dai, W. Tang, T. Wang, T. Lv, X. Luo et al., Stable tin perovskite solar cells enabled by widening the time window for crystallization. Sci. China Mater. 64(8), 1849–1857 (2021). https://doi.org/10.1007/s40843-020-1581-4
T. Nakamura, S. Yakumaru, M.A. Truong, K. Kim, J. Liu et al., Sn(IV)-free tin perovskite films realized by in situ Sn(0) nanop treatment of the precursor solution. Nat. Commun. 11(1), 3008 (2020). https://doi.org/10.1038/s41467-020-16726-3
Q. Tai, X. Guo, G. Tang, P. You, T.W. Ng et al., Antioxidant grain passivation for air-stable tin-based perovskite solar cells. Angew. Chem. Int. Ed. 58(3), 806–810 (2019). https://doi.org/10.1002/anie.201811539
T. Wang, Q. Tai, X. Guo, J. Cao, C.-K. Liu et al., Highly air-stable tin-based perovskite solar cells through grain-surface protection by gallic acid. ACS Energy Lett. 5(6), 1741–1749 (2020). https://doi.org/10.1021/acsenergylett.0c00526
H. Ban, T. Zhang, X. Gong, Q. Sun, X.-L. Zhang et al., Fully inorganic CsSnI3 mesoporous perovskite solar cells with high efficiency and stability via coadditive engineering. Solar RRL 5(7), 2100069 (2021). https://doi.org/10.1002/solr.202100069
T.B. Song, T. Yokoyama, C.C. Stoumpos, J. Logsdon, D.H. Cao et al., Importance of reducing vapor atmosphere in the fabrication of tin-based perovskite solar cells. J. Am. Chem. Soc. 139(2), 836–842 (2017). https://doi.org/10.1021/jacs.6b10734
T.-B. Song, T. Yokoyama, S. Aramaki, M.G. Kanatzidis, Performance enhancement of lead-free tin-based perovskite solar cells with reducing atmosphere-assisted dispersible additive. ACS Energy Lett. 2(4), 897–903 (2017). https://doi.org/10.1021/acsenergylett.7b00171
M.E. Kayesh, T.H. Chowdhury, K. Matsuishi, R. Kaneko, S. Kazaoui et al., Enhanced photovoltaic performance of FASnI3-based perovskite solar cells with hydrazinium chloride coadditive. ACS Energy Lett. 3(7), 1584–1589 (2018). https://doi.org/10.1021/acsenergylett.8b00645
D. Wu, P. Jia, W. Bi, Y. Tang, J. Zhang et al., Enhanced performance of tin halide perovskite solar cells by addition of hydrazine monohydrobromide. Org. Electron. 82, 105728 (2020). https://doi.org/10.1016/j.orgel.2020.105728
F. Li, H. Fan, J. Zhang, J.-H. Huang, P. Wang et al., Trihydrazine dihydriodide-assisted fabrication of efficient formamidinium tin iodide perovskite solar cells. Solar RRL 3(9), 1900285 (2019). https://doi.org/10.1002/solr.201900285
C. Wang, F. Gu, Z. Zhao, H. Rao, Y. Qiu et al., Self-repairing tin-based perovskite solar cells with a breakthrough efficiency over 11%. Adv. Mater. 32(31), e1907623 (2020). https://doi.org/10.1002/adma.201907623
C. Wang, Y. Zhang, F. Gu, Z. Zhao, H. Li et al., Illumination durability and high-efficiency Sn-based perovskite solar cell under coordinated control of phenylhydrazine and halogen ions. Matter 4(2), 709–721 (2021). https://doi.org/10.1016/j.matt.2020.11.012
X. Meng, T. Wu, X. Liu, X. He, T. Noda et al., Highly reproducible and efficient FASnI3 perovskite solar cells fabricated with volatilizable reducing solvent. J. Phys. Chem. Lett. 11(8), 2965–2971 (2020). https://doi.org/10.1021/acs.jpclett.0c00923
F. Hu, C.-H. Chen, Y.-H. Lou, T.-Y. Teng, Y.-R. Shi et al., A vertical antioxidant strategy for high performance wide band gap tin perovskite photovoltaics. J. Mater. Chem. A 11(9), 4579–4586 (2023). https://doi.org/10.1039/D2TA09363D
J. Cao, Q. Tai, P. You, G. Tang, T. Wang et al., Enhanced performance of tin-based perovskite solar cells induced by an ammonium hypophosphite additive. J. Mater. Chem. A 7(46), 26580–26585 (2019). https://doi.org/10.1039/c9ta08679j
H. Mohammadian-Sarcheshmeh, M. Mazloum-Ardakani, M. Rameez, S. Shahbazi, E.W.-G. Diau, Application of a natural antioxidant as an efficient strategy to decrease the oxidation in Sn-based perovskites. J. Alloys Compd. 846, 156351 (2020). https://doi.org/10.1016/j.jallcom.2020.156351
J. Gong, X. Li, W. Huang, P. Guo, T.J. Marks et al., Suppressed oxidation and photodarkening of hybrid tin iodide perovskite achieved with reductive organic small molecule. ACS Appl. Energy Mater. 4(5), 4704–4710 (2021). https://doi.org/10.1021/acsaem.1c00316
F. Gu, S. Ye, Z. Zhao, H. Rao, Z. Liu et al., Improving performance of lead-free formamidinium tin triiodide perovskite solar cells by tin source purification. Solar RRL 2(10), 1800136 (2018). https://doi.org/10.1002/solr.201800136
T. Zhang, H. Li, H. Ban, Q. Sun, Y. Shen et al., Efficient CsSnI3-based inorganic perovskite solar cells based on a mesoscopic metal oxide framework via incorporating a donor element. J. Mater. Chem. A 8(7), 4118–4124 (2020). https://doi.org/10.1039/c9ta11794f
E. Jokar, C.-H. Chien, A. Fathi, M. Rameez, Y.-H. Chang et al., Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells. Energy Environ. Sci. 11(9), 2353–2362 (2018). https://doi.org/10.1039/c8ee00956b
M.A. Kamarudin, D. Hirotani, Z. Wang, K. Hamada, K. Nishimura et al., Suppression of charge carrier recombination in lead-free tin halide perovskite via lewis base post-treatment. J. Phys. Chem. Lett. 10(17), 5277–5283 (2019). https://doi.org/10.1021/acs.jpclett.9b02024
X. Liu, T. Wu, J.-Y. Chen, X. Meng, X. He et al., Templated growth of FASnI3 crystals for efficient tin perovskite solar cells. Energy Environ. Sci. 13(9), 2896–2902 (2020). https://doi.org/10.1039/d0ee01845g
Y. Huang, Y. Jiang, S. Zou, Z. Zhang, J. Jin et al., Substitution of ethylammonium halides enabling lead-free tin-based perovskite solar cells with enhanced efficiency and stability. ACS Appl. Mater. Interfaces 15(12), 15775–15784 (2023). https://doi.org/10.1021/acsami.3c00299
C. Ran, W. Gao, J. Li, J. Xi, L. Li et al., Conjugated organic cations enable efficient self-healing FASnI3 solar cells. Joule 3(12), 3072–3087 (2019). https://doi.org/10.1016/j.joule.2019.08.023
P. Li, H. Dong, J. Xu, J. Chen, B. Jiao et al., Ligand orientation-induced lattice robustness for highly efficient and stable tin-based perovskite solar cells. ACS Energy Lett. 5(7), 2327–2334 (2020). https://doi.org/10.1021/acsenergylett.0c00960
H. Dong, P. Li, J. Dai, F. Yuan, R. Xu et al., High efficient and stable tin-based perovskite solar cells via short-chain ligand modification. Org. Electron. 96, 106198 (2021). https://doi.org/10.1016/j.orgel.2021.106198
X. Meng, Y. Wang, J. Lin, X. Liu, X. He et al., Surface-controlled oriented growth of FASnI3 crystals for efficient lead-free perovskite solar cells. Joule 4(4), 902–912 (2020). https://doi.org/10.1016/j.joule.2020.03.007
J. Wang, C. Yang, H. Chen, M. Lv, T. Liu et al., Oriented attachment of tin halide perovskites for photovoltaic applications. ACS Energy Lett. 8(3), 1590–1596 (2023). https://doi.org/10.1021/acsenergylett.2c02776
B. Ma, J. Chen, M. Wang, X. Xu, J. Qian et al., Passivating charged defects with 1,6-hexamethylenediamine to realize efficient and stable tin-based perovskite solar cells. J. Phys. Chem. C 124(30), 16289–16299 (2020). https://doi.org/10.1021/acs.jpcc.0c03401
Q. Fu, X. Tang, D. Li, L. Huang, S. Xiao et al., An efficient and stable tin-based perovskite solar cell passivated by aminoguanidine hydrochloride. J. Mater. Chem. C 8(23), 7786–7792 (2020). https://doi.org/10.1039/d0tc01464h
C. Liu, J. Tu, X. Hu, Z. Huang, X. Meng et al., Enhanced hole transportation for inverted tin-based perovskite solar cells with high performance and stability. Adv. Funct. Mater. 29(18), 1808059 (2019). https://doi.org/10.1002/adfm.201808059
B. Chang, B. Li, Z. Wang, H. Li, L. Wang et al., Efficient bulk defect suppression strategy in FASnI3 perovskite for photovoltaic performance enhancement. Adv. Funct. Mater. 32(12), 2107710 (2021). https://doi.org/10.1002/adfm.202107710
X. Meng, Y. Li, Y. Qu, H. Chen, N. Jiang et al., Crystallization kinetics modulation of FASnI3 films with pre-nucleation clusters for efficient lead-free perovskite solar cells. Angew. Chem. Int. Ed. 60(7), 3693–3698 (2021). https://doi.org/10.1002/anie.202012280
M.E. Kayesh, K. Matsuishi, R. Kaneko, S. Kazaoui, J.-J. Lee et al., Coadditive engineering with 5-ammonium valeric acid iodide for efficient and stable Sn perovskite solar cells. ACS Energy Lett. 4(1), 278–284 (2018). https://doi.org/10.1021/acsenergylett.8b02216
T.H. Chowdhury, R. Kaneko, T. Kaneko, K. Sodeyama, J.-J. Lee et al., Electronic defect passivation of FASnI3 films by simultaneous hydrogen-bonding and chlorine co-ordination for highly efficient and stable perovskite solar cells. Chem. Eng. J. 431, 133745 (2022). https://doi.org/10.1016/j.cej.2021.133745
X. Meng, J. Lin, X. Liu, X. He, Y. Wang et al., Highly stable and efficient FASnI3-based perovskite solar cells by introducing hydrogen bonding. Adv. Mater. 31(42), e1903721 (2019). https://doi.org/10.1002/adma.201903721
G. Liu, C. Liu, Z. Lin, J. Yang, Z. Huang et al., Regulated crystallization of efficient and stable tin-based perovskite solar cells via a self-sealing polymer. ACS Appl. Mater. Interfaces 12(12), 14049–14056 (2020). https://doi.org/10.1021/acsami.0c01311
B. Li, H. Di, B. Chang, R. Yin, L. Fu et al., Efficient passivation strategy on Sn related defects for high performance all-inorganic CsSnI3 perovskite solar cells. Adv. Funct. Mater. 31(11), 2007447 (2021). https://doi.org/10.1002/adfm.202007447
X. Cao, J. Li, H. Dong, P. Li, Q. Fan et al., Stability improvement of tin-based halide perovskite by precursor-solution regulation with dual-functional reagents. Adv. Funct. Mater. 31(40), 2104344 (2021). https://doi.org/10.1002/adfm.202104344
P. Li, H. Dong, J. Li, X. Cao, J. Xi et al., Synergistic trifluoroacetamide regulating crystal orientation and energy alignment for tin-based perovskite solar cells. Org. Electron. 113, 106707 (2023). https://doi.org/10.1016/j.orgel.2022.106707
X. Cao, P. Li, X. Zhu, H. Li, R. Xu et al., Non-fullerene agent enables efficient and stable tin-based perovskite solar cells. Solar RRL (2023). https://doi.org/10.1002/solr.202300268
X. He, T. Wu, X. Liu, Y. Wang, X. Meng et al., Highly efficient tin perovskite solar cells achieved in a wide oxygen concentration range. J. Mater. Chem. A 8(5), 2760–2768 (2020). https://doi.org/10.1039/c9ta13159k
T. Wu, X. Liu, X. He, Y. Wang, X. Meng et al., Efficient and stable tin-based perovskite solar cells by introducing π-conjugated Lewis base. Sci. China Chem. 63(1), 107–115 (2019). https://doi.org/10.1007/s11426-019-9653-8
J. Yang, W. Sheng, S. Xiao, G. Liu, Z. Lin et al., Directional crystallization by floating self-assembly for efficient and stable tin-based perovskite solar cells. Chem. Mater. 33(12), 4362–4372 (2021). https://doi.org/10.1021/acs.chemmater.0c04906
N. Sun, W. Gao, H. Dong, X. Liu, L. Chao et al., Bi-linkable reductive cation as molecular glue for one year stable Sn-based perovskite solar cells. ACS Appl. Energy Mater. 5(4), 4008–4016 (2022). https://doi.org/10.1021/acsaem.1c03767
B. Chang, B. Li, L. Pan, H. Li, L. Wang et al., Polyethylene glycol polymer scaffold induced intermolecular interactions for crystallization regulation and defect passivation in FASnI3 films. ACS Appl. Energy Mater. 4(4), 3622–3632 (2021). https://doi.org/10.1021/acsaem.1c00009
J. Choi, S.J. Yang, S.G. Han, W. Sung, D. Yoo et al., Defect-stabilized tin-based perovskite solar cells enabled by multifunctional molecular additives. Chem. Mater. 35(3), 1148–1158 (2023). https://doi.org/10.1021/acs.chemmater.2c03141
L. Rao, X. Meng, S. Xiao, Z. Xing, Q. Fu et al., Wearable tin-based perovskite solar cells achieved by a crystallographic size effect. Angew. Chem. Int. Ed. 60(26), 14693–14700 (2021). https://doi.org/10.1002/anie.202104201
M. Hu, R. Nie, H. Kim, J. Wu, S. Chen et al., Regulating the surface passivation and residual strain in pure tin perovskite films. ACS Energy Lett. 6(10), 3555–3562 (2021). https://doi.org/10.1021/acsenergylett.1c01575
Z. Lin, C. Liu, G. Liu, J. Yang, X. Duan et al., Preparation of efficient inverted tin-based perovskite solar cells via the bidentate coordination effect of 8-hydroxyquinoline. Chem. Commun. 56(28), 4007–4010 (2020). https://doi.org/10.1039/d0cc01106a
J. Liu, S. Wang, W. Zhu, Z. Tang, L. Ding et al., Highly symmetric Lewis base coordinated with Sn2+ for reducing voltage loss and retarding oxidation in tin-halide perovskite solar cells. Chem. Eng. J. 453, 139975 (2023). https://doi.org/10.1016/j.cej.2022.139975
Z. Zhu, Q. Mi, Substituted thiourea as versatile ligands for crystallization control and surface passivation of tin-based perovskite. Cell Rep. Phys. Sci. 3(1), 100690 (2022). https://doi.org/10.1016/j.xcrp.2021.100690
J. Qiu, Y. Xia, Y. Chen, W. Huang, Management of crystallization kinetics for efficient and stable low-dimensional ruddlesden-popper (LDRP) lead-free perovskite solar cells. Adv. Sci. 6(1), 1800793 (2019). https://doi.org/10.1002/advs.201800793
R. Xu, H. Dong, P. Li, X. Cao, H. Li et al., Formamidine acetate induces regulation of crystallization and stabilization in Sn-based perovskite solar cells. ACS Appl. Mater. Interfaces 13(28), 33218–33225 (2021). https://doi.org/10.1021/acsami.1c05097
S. Wang, H. Yao, W. Zhu, C. Wu, Z. Tang et al., Stabilization of perovskite lattice and suppression of Sn2+/Sn4+ oxidation via formamidine acetate for high efficiency tin perovskite solar cells. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202215041
G. Li, Z. Su, M. Li, F. Yang, M.H. Aldamasy et al., Ionic liquid stabilizing high-efficiency tin halide perovskite solar cells. Adv. Energy Mater. 11(32), 2101539 (2021). https://doi.org/10.1002/aenm.202101539
Z. Lin, Y. Su, R. Dai, G. Liu, J. Yang et al., Ionic liquid-induced ostwald ripening effect for efficient and stable tin-based perovskite solar cells. ACS Appl. Mater. Interfaces 13(13), 15420–15428 (2021). https://doi.org/10.1021/acsami.1c01408
J. Chen, C. Tian, C. Sun, P. Yang, W. Feng et al., Chlorofullerene C60Cl6 enables efficient and stable tin-based perovskite solar cells. Energy Environ. Mater. (2022). https://doi.org/10.1002/eem2.12529
D.B. Mitzi, Templating and structural engineering in organic–inorganic perovskites. J. Chem. Soc. Dalton T. 1, 1–12 (2001). https://doi.org/10.1039/b007070j
D.H. Cao, C.C. Stoumpos, O.K. Farha, J.T. Hupp, M.G. Kanatzidis, 2D homologous perovskites as light-absorbing materials for solar cell applications. J Am. Chem. Soc. 137(24), 7843–7850 (2015). https://doi.org/10.1021/jacs.5b03796
A.R.B.M. Yusoff, M.K. Nazeeruddin, Low-dimensional perovskites: from synthesis to stability in perovskite solar cells. Adv. Energy Mater. 8(26), 1702073 (2018). https://doi.org/10.1002/aenm.201702073
Y. Lin, Y. Bai, Y. Fang, Q. Wang, Y. Deng et al., Suppressed ion migration in low-dimensional perovskites. ACS Energy Lett. 2(7), 1571–1572 (2017). https://doi.org/10.1021/acsenergylett.7b00442
W. Peng, J. Yin, K.T. Ho, O. Ouellette, M. De Bastiani et al., Ultralow self-doping in two-dimensional hybrid perovskite single crystals. Nano Lett. 17(8), 4759–4767 (2017). https://doi.org/10.1021/acs.nanolett.7b01475
C.C. Stoumpos, L. Mao, C.D. Malliakas, M.G. Kanatzidis, Structure-band gap relationships in hexagonal polytypes and low-dimensional structures of hybrid tin iodide perovskites. Inorg. Chem. 56(1), 56–73 (2017). https://doi.org/10.1021/acs.inorgchem.6b02764
L. Ma, J. Dai, X.C. Zeng, Two-dimensional single-layer organic–inorganic hybrid perovskite semiconductors. Adv. Energy Mater. 7(7), 1601731 (2016). https://doi.org/10.1002/aenm.201601731
M. Pandey, K.W. Jacobsen, K.S. Thygesen, Band gap tuning and defect tolerance of atomically thin two-dimensional organic-inorganic halide perovskites. J. Phys. Chem. Lett. 7(21), 4346–4352 (2016). https://doi.org/10.1021/acs.jpclett.6b01998
L. Mao, W. Ke, L. Pedesseau, Y. Wu, C. Katan et al., Hybrid dion-jacobson 2D lead iodide perovskites. J. Am. Chem. Soc. 140(10), 3775–3783 (2018). https://doi.org/10.1021/jacs.8b00542
D.H. Cao, C.C. Stoumpos, T. Yokoyama, J.L. Logsdon, T.-B. Song et al., Thin films and solar cells based on semiconducting two-dimensional ruddlesden–popper (CH3(CH2)3NH3)2(CH3NH3)n−1SnnI3n+1 perovskites. ACS Energy Lett. 2(5), 982–990 (2017). https://doi.org/10.1021/acsenergylett.7b00202
Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang et al., Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance. J. Am. Chem. Soc. 139(19), 6693–6699 (2017). https://doi.org/10.1021/jacs.7b01815
S. Shao, J. Liu, G. Portale, H.-H. Fang, G.R. Blake et al., Highly reproducible Sn-based hybrid perovskite solar cells with 9% efficiency. Adv. Energy Mater. 8(4), 1702019 (2018). https://doi.org/10.1002/aenm.201702019
S. Sandhu, R. Singh, K. Yoo, M. Kumar, J.-J. Lee, Effect of binary additives in mixed 2D/3D Sn-based perovskite solar cells. J. Power Sources 491, 229574 (2021). https://doi.org/10.1016/j.jpowsour.2021.229574
M. Li, W.-W. Zuo, Y.-G. Yang, M.H. Aldamasy, Q. Wang et al., Tin halide perovskite films made of highly oriented 2d crystals enable more efficient and stable lead-free perovskite solar cells. ACS Energy Lett. 5(6), 1923–1929 (2020). https://doi.org/10.1021/acsenergylett.0c00782
H. Yao, W. Zhu, J. Hu, C. Wu, S. Wang et al., Halogen engineering of 2D/3D tin halide perovskite for enhanced structural stability. Chem. Eng. J. 455, 140862 (2023). https://doi.org/10.1016/j.cej.2022.140862
H. Kim, Y.H. Lee, T. Lyu, J.H. Yoo, T. Park et al., Boosting the performance and stability of quasi-two-dimensional tin-based perovskite solar cells using the formamidinium thiocyanate additive. J. Mater. Chem. A 6(37), 18173–18182 (2018). https://doi.org/10.1039/c8ta05916k
I. Zimmermann, S. Aghazada, M.K. Nazeeruddin, Lead and HTM free stable two-dimensional tin perovskites with suitable band gap for solar cell applications. Angew. Chem. Int. Ed. 58(4), 1072–1076 (2019). https://doi.org/10.1002/anie.201811497
Y. Xu, K.-J. Jiang, P. Wang, W.-M. Gu, G.-H. Yu et al., Highly oriented quasi-2D layered tin halide perovskites with 2-thiopheneethylammonium iodide for efficient and stable tin perovskite solar cells. New J. Chem. 46(5), 2259–2265 (2022). https://doi.org/10.1039/d1nj05178d
B.B. Yu, Z. Chen, Y. Zhu, Y. Wang, B. Han et al., Heterogeneous 2D/3D tin-halides perovskite solar cells with certified conversion efficiency breaking 14%. Adv. Mater. 33(36), e2102055 (2021). https://doi.org/10.1002/adma.202102055
L. Ma, M.G. Ju, J. Dai, X.C. Zeng, Tin and germanium based two-dimensional ruddlesden-popper hybrid perovskites for potential lead-free photovoltaic and photoelectronic applications. Nanoscale 10(24), 11314–11319 (2018). https://doi.org/10.1039/c8nr03589j
J. Qiu, Y. Xia, Y. Zheng, W. Hui, H. Gu et al., 2D intermediate suppression for efficient ruddlesden–popper (RP) phase lead-free perovskite solar cells. ACS Energy Lett. 4(7), 1513–1520 (2019). https://doi.org/10.1021/acsenergylett.9b00954
H. Xu, Y. Jiang, T. He, S. Li, H. Wang et al., Orientation regulation of tin-based reduced-dimensional perovskites for highly efficient and stable photovoltaics. Adv. Funct. Mater. 29(47), 1807696 (2019). https://doi.org/10.1002/adfm.201807696
S. Shao, J. Dong, H. Duim, G.H. ten Brink, G.R. Blake et al., Enhancing the crystallinity and perfecting the orientation of formamidinium tin iodide for highly efficient Sn-based perovskite solar cells. Nano Energy 60, 810–816 (2019). https://doi.org/10.1016/j.nanoen.2019.04.040
F. Li, Y. Xie, Y. Hu, M. Long, Y. Zhang et al., Effects of alkyl chain length on crystal growth and oxidation process of two-dimensional tin halide perovskites. ACS Energy Lett. 5(5), 1422–1429 (2020). https://doi.org/10.1021/acsenergylett.0c00286
Z. Zhao, F. Gu, C. Wang, G. Zhan, N. Zheng et al., Orientation regulation of photoactive layer in tin-based perovskite solar cells with allylammonium cations. Solar RRL 4(10), 2000315 (2020). https://doi.org/10.1002/solr.202000315
C. Ortiz-Cervantes, P. Carmona-Monroy, D. Solis-Ibarra, Two-dimensional halide perovskites in solar cells: 2D or not 2D? Chemsuschem 12(8), 1560–1575 (2019). https://doi.org/10.1002/cssc.201802992
M. Pegu, M.P.U. Haris, S. Kazim, S. Ahmad, Understanding and harnessing the potential of layered perovskite-based absorbers for solar cells. Emergent Mater. 3(6), 751–778 (2020). https://doi.org/10.1007/s42247-020-00134-w
M. Chen, M.-G. Ju, M. Hu, Z. Dai, Y. Hu et al., Lead-free dion–jacobson tin halide perovskites for photovoltaics. ACS Energy Lett. 4(1), 276–277 (2018). https://doi.org/10.1021/acsenergylett.8b02051
V.V. Nawale, T. Sheikh, A. Nag, Dual excitonic emission in hybrid 2d layered tin iodide perovskites. J. Phys. Chem. C 124(38), 21129–21136 (2020). https://doi.org/10.1021/acs.jpcc.0c05301
P. Li, X. Liu, Y. Zhang, C. Liang, G. Chen et al., Low-dimensional dion–jacobson-phase lead-free perovskites for high-performance photovoltaics with improved stability. Angew. Chem. Int. Ed. 59(17), 6909–6914 (2020). https://doi.org/10.1002/anie.202000460
K. Chen, P. Wu, W. Yang, R. Su, D. Luo et al., Low-dimensional perovskite interlayer for highly efficient lead-free formamidinium tin iodide perovskite solar cells. Nano Energy 49, 411–418 (2018). https://doi.org/10.1016/j.nanoen.2018.05.006
M. Liao, B.B. Yu, Z. Jin, W. Chen, Y. Zhu et al., Efficient and stable FASnI3 perovskite solar cells with effective interface modulation by low-dimensional perovskite layer. Chemsuschem 12(22), 5007–5014 (2019). https://doi.org/10.1002/cssc.201902000
F. Wang, X. Jiang, H. Chen, Y. Shang, H. Liu et al., 2D-quasi-2D-3D hierarchy structure for tin perovskite solar cells with enhanced efficiency and stability. Joule 2(12), 2732–2743 (2018). https://doi.org/10.1016/j.joule.2018.09.012
E. Ruggeri, M. Anaya, K. Galkowski, G. Delport, F.U. Kosasih et al., Controlling the growth kinetics and optoelectronic properties of 2D/3D lead-tin perovskite heterojunctions. Adv. Mater. 31(51), e1905247 (2019). https://doi.org/10.1002/adma.201905247
T. Wu, D. Cui, X. Liu, X. Meng, Y. Wang et al., Efficient and stable tin perovskite solar cells enabled by graded heterostructure of light-absorbing layer. Solar RRL 4(9), 2000240 (2020). https://doi.org/10.1002/solr.202000240
J.-T. Lin, T.-C. Chu, D.-G. Chen, Z.-X. Huang, H.-C. Chen et al., Vertical 2D/3D heterojunction of tin perovskites for highly efficient HTM-free perovskite solar cell. ACS Appl. Energy Mater. 4(3), 2041–2048 (2021). https://doi.org/10.1021/acsaem.0c02451
T. Wang, H.L. Loi, J. Cao, Z. Qin, Z. Guan et al., High open circuit voltage over 1V achieved in tin-based perovskite solar cells with a 2D/3D vertical heterojunction. Adv. Sci. 9(18), e2200242 (2022). https://doi.org/10.1002/advs.202200242
N. Pellet, P. Gao, G. Gregori, T.Y. Yang, M.K. Nazeeruddin et al., Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. 53(12), 3151–3157 (2014). https://doi.org/10.1002/anie.201309361
W. Liao, D. Zhao, Y. Yu, N. Shrestha, K. Ghimire et al., Fabrication of efficient low-bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide. J. Am. Chem. Soc. 138(38), 12360–12363 (2016). https://doi.org/10.1021/jacs.6b08337
K. Dey, B. Roose, S.D. Stranks, Optoelectronic properties of low-bandgap halide perovskites for solar cell applications. Adv. Mater. 33(40), e2102300 (2021). https://doi.org/10.1002/adma.202102300
C. Ferrara, M. Patrini, A. Pisanu, P. Quadrelli, C. Milanese et al., Wide band-gap tuning in Sn-based hybrid perovskites through cation replacement: the FA1−xMAxSnBr3 mixed system. J. Mater. Chem. A 5(19), 9391–9395 (2017). https://doi.org/10.1039/c7ta01668a
J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13(4), 1764–1769 (2013). https://doi.org/10.1021/nl400349b
G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz et al., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7(3), 982–988 (2014). https://doi.org/10.1039/c3ee43822h
D. Sabba, H.K. Mulmudi, R.R. Prabhakar, T. Krishnamoorthy, T. Baikie et al., Impact of anionic Br– substitution on open circuit voltage in lead free perovskite (CsSnI3-xBrx) solar cells. J. Phys. Chem. C 119(4), 1763–1767 (2015). https://doi.org/10.1021/jp5126624
C.M. Tsai, N. Mohanta, C.Y. Wang, Y.P. Lin, Y.W. Yang et al., Formation of stable tin perovskites Co-crystallized with three halides for carbon-based mesoscopic lead-free perovskite solar cells. Angew. Chem. Int. Ed. 56(44), 13819–13823 (2017). https://doi.org/10.1002/anie.201707037
S.J. Lee, S.S. Shin, J. Im, T.K. Ahn, J.H. Noh et al., Reducing carrier density in formamidinium tin perovskites and its beneficial effects on stability and efficiency of perovskite solar cells. ACS Energy Lett. 3(1), 46–53 (2017). https://doi.org/10.1021/acsenergylett.7b00976
B.B. Yu, M. Liao, Y. Zhu, X. Zhang, Z. Du et al., Oriented crystallization of mixed-cation tin halides for highly efficient and stable lead-free perovskite solar cells. Adv. Funct. Mater. 30(24), 2002230 (2020). https://doi.org/10.1002/adfm.202002230
J. Xiang, K. Wang, B. Xiang, X. Cui, Sn(2+)-stabilization in MASnI3 perovskites by superhalide incorporation. J. Chem. Phys. 148(12), 124111 (2018). https://doi.org/10.1063/1.5023737
M. Rameez, S. Shahbazi, P. Raghunath, M.C. Lin, C.H. Hung et al., Development of novel mixed halide/superhalide tin-based perovskites for mesoscopic carbon-based solar cells. J. Phys. Chem. Lett. 11(7), 2443–2448 (2020). https://doi.org/10.1021/acs.jpclett.0c00479
Z. Zhao, F. Gu, Y. Li, W. Sun, S. Ye et al., Mixed-organic-cation tin iodide for lead-free perovskite solar cells with an efficiency of 8.12%. Adv. Sci. 4(11), 1700204 (2017). https://doi.org/10.1002/advs.201700204
X. Liu, K. Yan, D. Tan, X. Liang, H. Zhang et al., Solvent engineering improves efficiency of lead-free tin-based hybrid perovskite solar cells beyond 9%. ACS Energy Lett. 3(11), 2701–2707 (2018). https://doi.org/10.1021/acsenergylett.8b01588
B.P. Nguyen, H.R. Jung, K.Y. Ryu, K. Kim, W. Jo, Effects of organic cations on carrier transport at the interface between perovskites and electron transport layers in (FA, MA)SnI3 solar cells. J. Phys. Chem. C 123(51), 30833–30841 (2019). https://doi.org/10.1021/acs.jpcc.9b08859
G. Kieslich, S. Sun, A.K. Cheetham, An extended tolerance factor approach for organic-inorganic perovskites. Chem. Sci. 6(6), 3430–3433 (2015). https://doi.org/10.1039/c5sc00961h
G. Giorgi, J.-I. Fujisawa, H. Segawa, K. Yamashita, Organic–inorganic hybrid lead iodide perovskite featuring zero dipole moment guanidinium cations: a theoretical analysis. J. Phys. Chem. C 119(9), 4694–4701 (2015). https://doi.org/10.1021/acs.jpcc.5b00051
E. Jokar, C.H. Chien, C.M. Tsai, A. Fathi, E.W. Diau, Robust tin-based perovskite solar cells with hybrid organic cations to attain efficiency approaching 10%. Adv. Mater. 31(2), e1804835 (2019). https://doi.org/10.1002/adma.201804835
E. Nakanishi, R. Nishikubo, A. Wakamiya, A. Saeki, How the mixed cations (guanidium, formamidinium, and phenylethylamine) in tin iodide perovskites affect their charge carrier dynamics and solar cell characteristics. J. Phys. Chem. Lett. 11(10), 4043–4051 (2020). https://doi.org/10.1021/acs.jpclett.0c00686
W. Gao, C. Ran, J. Li, H. Dong, B. Jiao et al., Robust stability of efficient lead-free formamidinium tin iodide perovskite solar cells realized by structural regulation. J. Phys. Chem. Lett. 9(24), 6999–7006 (2018). https://doi.org/10.1021/acs.jpclett.8b03194
K.P. Marshall, S. Tao, M. Walker, D.S. Cook, J. Lloyd-Hughes et al., Cs1−xRbxSnI3 light harvesting semiconductors for perovskite photovoltaics. Mater. Chem. Front. 2(8), 1515–1522 (2018). https://doi.org/10.1039/c8qm00159f
D.B. Khadka, Y. Shirai, M. Yanagida, K. Miyano, Attenuating the defect activities with a rubidium additive for efficient and stable Sn-based halide perovskite solar cells. J. Mater. Chem. C 8(7), 2307–2313 (2020). https://doi.org/10.1039/c9tc06206h
Y. Yin, M. Wang, V. Malgras, Y. Yamauchi, Stable and efficient tin-based perovskite solar cell via semiconducting–insulating structure. ACS Appl. Energy Mater. 3(11), 10447–10452 (2020). https://doi.org/10.1021/acsaem.0c01422
Y. Lin, J. Liu, J. Hu, C. Ran, Y. Chen et al., In situ interfacial passivation of Sn-based perovskite films with a bi-functional ionic salt for enhanced photovoltaic performance. ACS Appl. Mater. Interfaces 13(49), 58809–58817 (2021). https://doi.org/10.1021/acsami.1c20045
E. Jokar, H.S. Chuang, C.H. Kuan, H.P. Wu, C.H. Hou et al., Slow passivation and inverted hysteresis for hybrid tin perovskite solar cells attaining 13.5% via sequential deposition. J. Phys. Chem. Lett. 12(41), 10106–10111 (2021). https://doi.org/10.1021/acs.jpclett.1c03107
B. Chen, S. Wang, X. Zhang, W. Zhu, Z. Cao et al., Reducing the interfacial voltage loss in tin halides perovskite solar cells. Chem. Eng. J. 445, 136769 (2022). https://doi.org/10.1016/j.cej.2022.136769
K. Cao, Y. Cheng, J. Chen, Y. Huang, M. Ge et al., Regulated crystallization of FASnI3 films through seeded growth process for efficient tin perovskite solar cells. ACS Appl. Mater. Interfaces 12(37), 41454–41463 (2020). https://doi.org/10.1021/acsami.0c11253
Z. Zhang, M.A. Kamarudin, A.K. Baranwal, L. Wang, G. Kapil et al., Indent-free vapor-assisted surface passivation strategy toward tin halide perovskite solar cells. ACS Appl. Mater. Interfaces 14(31), 36200–36208 (2022). https://doi.org/10.1021/acsami.2c06046
W. Hou, Y. Xiao, G. Han, C. Qin, L. Xiao et al., Dimethyl sulfoxide and bromide methylamine co-treatment inducing defect healing for effective and stable perovskite solar cells. Mater. Res. Bull. 112, 165–173 (2019). https://doi.org/10.1016/j.materresbull.2018.12.013
C. Mu, J. Pan, S. Feng, Q. Li, D. Xu, Quantitative doping of chlorine in formamidinium lead trihalide (FAPbI3−xClx) for planar heterojunction perovskite solar cells. Adv. Energy Mater. 7(6), 1601297 (2016). https://doi.org/10.1002/aenm.201601297
Z. Jin, B.-B. Yu, M. Liao, D. Liu, J. Xiu et al., Enhanced efficiency and stability in Sn-based perovskite solar cells with secondary crystallization growth. J. Energy Chem. 54, 414–421 (2021). https://doi.org/10.1016/j.jechem.2020.06.044
X. Jiang, H. Li, Q. Zhou, Q. Wei, M. Wei et al., One-step synthesis of SnI2·(DMSO)x adducts for high-performance tin perovskite solar cells. J. Am. Chem. Soc. 143(29), 10970–10976 (2021). https://doi.org/10.1021/jacs.1c03032
R.M.I. Bandara, S.M. Silva, C.C. Underwood, K.I. Jayawardena, R.A. Sporea et al., Progress of Pb-Sn mixed perovskites for photovoltaics: A review. Energy Environ. Mater. 5(2), 370–400 (2022). https://doi.org/10.1002/eem2.12211
T. Leijtens, K.A. Bush, R. Prasanna, M.D. McGehee, Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3(10), 828–838 (2018). https://doi.org/10.1038/s41560-018-0190-4
Q. Chen, J. Luo, R. He, H. Lai, S. Ren et al., Unveiling roles of tin fluoride additives in high-efficiency low-bandgap mixed tin-lead perovskite solar cells. Adv. Energy Mater. 11(29), 2101045 (2021). https://doi.org/10.1002/aenm.202101045
G. Kapil, T. Bessho, T. Maekawa, A.K. Baranwal, Y. Zhang et al., Tin-lead perovskite fabricated via ethylenediamine interlayer guides to the solar cell efficiency of 21.74%. Adv. Energy Mater. 11(25), 2101069 (2021). https://doi.org/10.1002/aenm.202101069
N. Ghimire, R.S. Bobba, A. Gurung, K.M. Reza, M.A.R. Laskar et al., Mitigating open-circuit voltage loss in Pb–Sn low-bandgap perovskite solar cells via additive engineering. ACS Appl. Energy Mater. 4(2), 1731–1742 (2021). https://doi.org/10.1021/acsaem.0c02895
T. Jiang, X. Xu, Z. Lan, Z. Chen, X. Chen et al., Efficient MA-free Pb-Sn alloyed low-bandgap perovskite solar cells via surface passivation. Nano Energy 101, 107596 (2022). https://doi.org/10.1016/j.nanoen.2022.107596
K.W. Yeom, D.K. Lee, N.G. Park, Hard and soft acid and base (HSAB) engineering for efficient and stable sn-pb perovskite solar cells. Adv. Energy Mater. 12(48), 2202496 (2022). https://doi.org/10.1002/aenm.202202496
H. Hu, J. Zhang, Y. Huang, D. Wang, D. Li et al., Small molecule passivation leading to efficient hole transport layer-free Sn–Pb mixed perovskite solar cells with high open-circuit voltage. Solar RRL 6, 2200721 (2022). https://doi.org/10.1002/solr.202200721
J. Yuan, Y. Jiang, T. He, G. Shi, Z. Fan et al., Two-dimensional perovskite capping layer for stable and efficient tin-lead perovskite solar cells. Sci. China Chem. 62, 629–636 (2019). https://doi.org/10.1007/s11426-018-9436-1
L. Pan, H. Li, B. Chang, L. Yin, Crystallization and defect regulation in Sn–Pb perovskite solar cells via optimized anti-solvent passivation strategy. Solar RRL 6(10), 2200398 (2022). https://doi.org/10.1002/solr.202200398
X. Liu, Z. Yang, C.-C. Chueh, A. Rajagopal, S.T. Williams et al., Improved efficiency and stability of Pb–Sn binary perovskite solar cells by Cs substitution. J. Mater. Chem. A 4(46), 17939–17945 (2016). https://doi.org/10.1039/C6TA07712A
S. Hu, K. Otsuka, R. Murdey, T. Nakamura, M.A. Truong et al., Optimized carrier extraction at interfaces for 23.6% efficient tin–lead perovskite solar cells. Energy Environ. Sci. 15(5), 2096–2107 (2022). https://doi.org/10.1039/D2EE00288D