Humanoid Intelligent Display Platform for Audiovisual Interaction and Sound Identification
Corresponding Author: Shengjie Ling
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 221
Abstract
This study proposes a rational strategy for the design, fabrication and system integration of the humanoid intelligent display platform (HIDP) to meet the requirements of highly humanized mechanical properties and intelligence for human–machine interfaces. The platform's sandwich structure comprises a middle light-emitting layer and surface electrodes, which consists of silicon elastomer embedded with phosphor and silk fibroin ionoelastomer, respectively. Both materials are highly stretchable and resilient, endowing the HIDP with skin-like mechanical properties and applicability in various extreme environments and complex mechanical stimulations. Furthermore, by establishing the numerical correlation between the amplitude change of animal sounds and the brightness variation, the HIDP realizes audiovisual interaction and successful identification of animal species with the aid of Internet of Things (IoT) and machine learning techniques. The accuracy of species identification reaches about 100% for 200 rounds of random testing. Additionally, the HIDP can recognize animal species and their corresponding frequencies by analyzing sound characteristics, displaying real-time results with an accuracy of approximately 99% and 93%, respectively. In sum, this study offers a rational route to designing intelligent display devices for audiovisual interaction, which can expedite the application of smart display devices in human–machine interaction, soft robotics, wearable sound-vision system and medical devices for hearing-impaired patients.
Highlights:
1 A humanoid intelligent display platform (HIDP) is created using stretchable and resilient ionotronic materials, and can be applicable in extreme environments and complex mechanical stimulations.
2 HIDP links sound amplitude and brightness through machine learning for audiovisual interaction.
3 HIDP identifies and displays animal species and corresponding frequencies in real-time.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Larson, B. Peele, S. Li, S. Robinson, M. Totaro et al., Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 351, 1071–1074 (2016). https://doi.org/10.1126/science.aac5082
- H. Yin, Y. Zhu, K. Youssef, Z. Yu, Q. Pei, Structures and materials in stretchable electroluminescent devices. Adv. Mater. 34, 2106184 (2022). https://doi.org/10.1002/adma.202106184
- Z. Yang, W. Wang, J. Pan, C. Ye, Alternating current electroluminescent devices with inorganic phosphors for deformable displays. Cell Rep. Phys. Sci. 1, 100213 (2020). https://doi.org/10.1016/j.xcrp.2020.100213
- Z. Zhang, Light-emitting materials for wearable electronics. Nat. Rev. Mater. 7, 839–840 (2022). https://doi.org/10.1038/s41578-022-00502-4
- Y. Zhang, Y. Fang, J. Li, Q. Zhou, Y. Xiao et al., Dual-mode electronic skin with integrated tactile sensing and visualized injury warning. ACS Appl. Mater. Interfaces 9, 37493–37500 (2017). https://doi.org/10.1021/acsami.7b13016
- S.A. Morin, R.F. Shepherd, S.W. Kwok, A.A. Stokes, A. Nemiroski et al., Camouflage and display for soft machines. Science 337, 828–832 (2012). https://doi.org/10.1126/science.1222149
- T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa et al., Ultraflexible organic photonic skin. Sci. Adv. 2, e1501856 (2016). https://doi.org/10.1126/sciadv.1501856
- B. Lee, J.-Y. Oh, H. Cho, C.W. Joo, H. Yoon et al., Ultraflexible and transparent electroluminescent skin for real-time and super-resolution imaging of pressure distribution. Nat. Commun. 11, 663 (2020). https://doi.org/10.1038/s41467-020-14485-9
- Y. Wang, J. Ren, Z. Lv, L. Cao, S. Lin et al., Direct functionalization of natural silks through continuous force-reeling technique. Chem. Eng. J. 435, 134901 (2022). https://doi.org/10.1016/j.cej.2022.134901
- J.H. Koo, S. Jeong, H.J. Shim, D. Son, J. Kim et al., Wearable electrocardiogram monitor using carbon nanotube electronics and color-tunable organic light-emitting diodes. ACS Nano 11, 10032–10041 (2017). https://doi.org/10.1021/acsnano.7b04292
- X. Shi, Y. Zuo, P. Zhai, J. Shen, Y. Yang et al., Large-area display textiles integrated with functional systems. Nature 591, 240–245 (2021). https://doi.org/10.1038/s41586-021-03295-8
- Y. Wu, S.S. Mechael, C. Lerma, R.S. Carmichael, T.B. Carmichael, Stretchable ultrasheer fabrics as semitransparent electrodes for wearable light-emitting e-textiles with changeable display patterns. Matter 2, 882–895 (2020). https://doi.org/10.1016/j.matt.2020.01.017
- C. Dai, Y. Wang, Y. Shan, C. Ye, Z. Lv et al., Cytoskeleton-inspired hydrogel ionotronics for tactile perception and electroluminescent display in complex mechanical environments. Mater. Horiz. 10, 136–148 (2023). https://doi.org/10.1039/D2MH01034H
- Y. Lee, J.W. Chung, G.H. Lee, H. Kang, J.-Y. Kim et al., Standalone real-time health monitoring patch based on a stretchable organic optoelectronic system. Sci. Adv. 7, eabg9180 (2021). https://doi.org/10.1126/sciadv.abg9180
- A. Robinson, A. Aziz, Q. Liu, Z. Suo, S.P. Lacour, Hybrid stretchable circuits on silicone substrate. J. Appl. Phys. 115, 143511 (2014). https://doi.org/10.1063/1.4871279
- S.-I. Park, Y. Xiong, R.-H. Kim, P. Elvikis, M. Meitl et al., Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 325, 977–981 (2009). https://doi.org/10.1126/science.1175690
- T. Kim, H. Lee, W. Jo, T.-S. Kim, S. Yoo, Realizing stretchable oleds: a hybrid platform based on rigid island arrays on a stress-relieving bilayer structure. Adv. Mater. Technol. 5, 2000494 (2020). https://doi.org/10.1002/admt.202000494
- J. Liang, L. Li, X. Niu, Z. Yu, Q. Pei, Elastomeric polymer light-emitting devices and displays. Nat. Photon. 7, 817–824 (2013). https://doi.org/10.1038/nphoton.2013.242
- J. Wang, C. Yan, K.J. Chee, P.S. Lee, Highly stretchable and self-deformable alternating current electroluminescent devices. Adv. Mater. 27, 2876–2882 (2015). https://doi.org/10.1002/adma.201405486
- C.H. Yang, B. Chen, J. Zhou, Y.M. Chen, Z. Suo, Electroluminescence of giant stretchability. Adv. Mater. 28, 4480–4484 (2016). https://doi.org/10.1002/adma.201504031
- F. Stauffer, K. Tybrandt, Bright stretchable alternating current electroluminescent displays based on high permittivity composites. Adv. Mater. 28, 7200–7203 (2016). https://doi.org/10.1002/adma.201602083
- Z. Yu, X. Niu, Z. Liu, Q. Pei, Intrinsically stretchable polymer light-emitting devices using carbon nanotube-polymer composite electrodes. Adv. Mater. 23, 3989–3994 (2011). https://doi.org/10.1002/adma.201101986
- X. Wang, J. Sun, L. Dong, C. Lv, K. Zhang et al., Stretchable and transparent electroluminescent device driven by triboelectric nanogenerator. Nano Energy 58, 410–418 (2019). https://doi.org/10.1016/j.nanoen.2019.01.058
- H. Shin, B.K. Sharma, S.W. Lee, J.-B. Lee, M. Choi et al., Stretchable electroluminescent display enabled by graphene-based hybrid electrode. ACS Appl. Mater. Interfaces 11, 14222–14228 (2019). https://doi.org/10.1021/acsami.8b22135
- J. Ge, H.-B. Yao, X. Wang, Y.-D. Ye, J.-L. Wang et al., Stretchable conductors based on silver nanowires: improved performance through a binary network design. Angew. Chem. Int. Ed. 52, 1654–1659 (2013). https://doi.org/10.1002/anie.201209596
- S. Choi, S.I. Han, D. Jung, H.J. Hwang, C. Lim et al., Highly conductive, stretchable and biocompatible ag–au core–sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 13, 1048–1056 (2018). https://doi.org/10.1038/s41565-018-0226-8
- B. You, Y. Kim, B.-K. Ju, J.-W. Kim, Highly stretchable and waterproof electroluminescence device based on superstable stretchable transparent electrode. ACS Appl. Mater. Interfaces 9, 5486–5494 (2017). https://doi.org/10.1021/acsami.6b14535
- L. Cai, S. Zhang, Y. Zhang, J. Li, J. Miao et al., Direct printing for additive patterning of silver nanowires for stretchable sensor and display applications. Adv. Mater. Technol. 3, 1700232 (2018). https://doi.org/10.1002/admt.201700232
- Y. Chen, Y. Wu, S.S. Mechael, T.B. Carmichael, Heterogeneous surface orientation of solution-deposited gold films enables retention of conductivity with high strain—a new strategy for stretchable electronics. Chem. Mater. 31, 1920–1927 (2019). https://doi.org/10.1021/acs.chemmater.8b04487
- D. Son, J. Kang, O. Vardoulis, Y. Kim, N. Matsuhisa et al., An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat. Nanotechnol. 13, 1057–1065 (2018). https://doi.org/10.1038/s41565-018-0244-6
- J.I. Lee, H. Choi, S.H. Kong, S. Park, D. Park et al., Visco-poroelastic electrochemiluminescence skin with piezo-ionic effect. Adv. Mater. 33, 2100321 (2021). https://doi.org/10.1002/adma.202100321
- C. Li, Q. He, Y. Wang, Z. Wang, Z. Wang et al., Highly robust and soft biohybrid mechanoluminescence for optical signaling and illumination. Nat. Commun. 13, 3914 (2022). https://doi.org/10.1038/s41467-022-31705-6
- D.-K. Kwon, J.-M. Myoung, Wearable and semitransparent pressure-sensitive light-emitting sensor based on electrochemiluminescence. ACS Nano 14, 8716–8723 (2020). https://doi.org/10.1021/acsnano.0c03186
- S.W. Lee, S.H. Cho, H.S. Kang, G. Kim, J.S. Kim et al., Electroluminescent pressure-sensing displays. ACS Appl. Mater. Interfaces 10, 13757–13766 (2018). https://doi.org/10.1021/acsami.8b01790
- X.Y. Wei, X. Wang, S.Y. Kuang, L. Su, H.Y. Li et al., Dynamic triboelectrification-induced electroluminescence and its use in visualized sensing. Adv. Mater. 28, 6656–6664 (2016). https://doi.org/10.1002/adma.201600604
- Y. Wang, H. Wu, L. Xu, H. Zhang, Y. Yang et al., Hierarchically patterned self-powered sensors for multifunctional tactile sensing. Sci. Adv. 6, eabb9083 (2020). https://doi.org/10.1126/sciadv.abb9083
- X. Zhou, X. Xu, Y. Zuo, M. Liao, X. Shi et al., A fiber-shaped light-emitting pressure sensor for visualized dynamic monitoring. J. Mater. Chem. C 8, 935–942 (2020). https://doi.org/10.1039/C9TC05653J
- L. Su, Z. Jiang, Z. Tian, H. Wang, H. Wang et al., Self-powered, ultrasensitive, and high-resolution visualized flexible pressure sensor based on color-tunable triboelectrification-induced electroluminescence. Nano Energy 79, 105431 (2021). https://doi.org/10.1016/j.nanoen.2020.105431
- T. Kaneko, K. Tanaka, H. Kameoka, S. Seki, presented at ICASSP 2022-2022 IEEE International Conference, iSTFTNet: Fast and lightweight mel-spectrogram vocoder incorporating inverse short-time Fourier transform, Japan, March, 2022.
- H. Zhang, L. Cao, J. Li, Y. Liu, Z. Lv et al., Dual physically crosslinked silk fibroin ionoelastomer with ultrahigh stretchability and low hysteresis. Chem. Mater. 4, 1752–1761 (2023). https://doi.org/10.1021/acs.chemmater.2c03536
- Q. Liu, S. Yang, J. Ren, S. Ling, Flame-retardant and sustainable silk ionotronic skin for fire alarm systems. ACS Mater. Lett. 2, 712–720 (2020). https://doi.org/10.1021/acsmaterialslett.0c00062
- Q. Liu, X. Li, H. Zhang, J. Ren, S. Yang et al., Intellisense silk fibroin ionotronic batteries for wildfire detection and alarm. Nano Energy 101, 107630 (2022). https://doi.org/10.1016/j.nanoen.2022.107630
- S. Yang, Q. Liu, J. Ren, S. Ling, Influence of hydrated protons on temperature and humidity responsiveness of silk fibroin hydrogel ionotronics. Giant 5, 100044 (2021). https://doi.org/10.1016/j.giant.2020.100044
- C. Dai, C. Ye, J. Ren, S. Yang, L. Cao et al., Humanoid ionotronic skin for smart object recognition and sorting. ACS Mater. Lett. 5, 189–201 (2023). https://doi.org/10.1021/acsmaterialslett.2c00783
- Y. Zhu, Y. Xia, M. Wu, W. Guo, C. Jia et al., Wearable, freezing-tolerant, and self-powered electroluminescence system for long-term cold-resistant displays. Nano Energy 98, 107309 (2022). https://doi.org/10.1016/j.nanoen.2022.107309
- J. Liu, Q. Chen, Q. Liu, B. Zhao, S. Ling et al., Intelligent silk fibroin ionotronic skin for temperature sensing. Adv. Mater. Technol. 5, 2000430 (2020). https://doi.org/10.1002/admt.202000430
- R. Long, C.Y. Hui, Fracture toughness of hydrogels: Measurement and interpretation. Soft Matter 12, 8069–8086 (2016). https://doi.org/10.1039/c6sm01694d
- Z. Chen, T. Zhang, C.-T. Chen, S. Yang, Z. Lv et al., Mechanically and electrically biocompatible hydrogel ionotronic fibers for fabricating structurally stable implants and enabling noncontact physioelectrical modulation. Mater. Horiz. 9, 1735–1749 (2022). https://doi.org/10.1039/D2MH00296E
- S. Lin, J. Liu, X. Liu, X. Zhao, Muscle-like fatigue-resistant hydrogels by mechanical training. Proc. Natl. Acad. Sci. USA 116, 10244–10249 (2019). https://doi.org/10.1073/pnas.1903019116
- F.H. Silver, J.W. Freeman, D. DeVore, Viscoelastic properties of human skin and processed dermis. Skin Res. Technol. 7, 18–23 (2001). https://doi.org/10.1034/j.1600-0846.2001.007001018.x
- J. Ankersen, A.E. Birkbeck, R.D. Thomson, P. Vanezis, Puncture resistance and tensile strength of skin simulants. Proc. Inst. Mech. Eng. Part H 213, 493–501 (1999). https://doi.org/10.1243/0954411991535103
- H. Oxlund, J. Manschot, A. Viidik, The role of elastin in the mechanical properties of skin. J. Biomech. 21, 213–218 (1988). https://doi.org/10.1016/0021-9290(88)90172-8
- J. Liu, J. Wang, Z. Zhang, F. Molina-Lopez, G.-J.N. Wang et al., Fully stretchable active-matrix organic light-emitting electrochemical cell array. Nat. Commun. 11, 3362 (2020). https://doi.org/10.1038/s41467-020-17084-w
- C.-C. Jao, J.-R. Chang, C.-Y. Ya, W.-C. Chen, C.-J. Cho et al., Novel stretchable light-emitting diodes based on conjugated-rod block elastic-coil copolymers. Polym. Int. 70, 426–431 (2021). https://doi.org/10.1002/pi.6023
- J.-H. Kim, J.-W. Park, Intrinsically stretchable organic light-emitting diodes. Sci. Adv. 7, eabd9715 (2021). https://doi.org/10.1126/sciadv.abd9715
- J. Liang, L. Li, K. Tong, Z. Ren, W. Hu et al., Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 8, 1590–1600 (2014). https://doi.org/10.1021/nn405887k
- M.S. White, M. Kaltenbrunner, E.D. Głowacki, K. Gutnichenko, G. Kettlgruber et al., Ultrathin, highly flexible and stretchable pleds. Nat. Photon. 7, 811–816 (2013). https://doi.org/10.1038/nphoton.2013.188
- T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida et al., Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8, 494–499 (2009). https://doi.org/10.1038/nmat2459
- P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong et al., Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 24, 3326–3332 (2012). https://doi.org/10.1002/adma.201200359
- Y. Lin, W. Yuan, C. Ding, S. Chen, W. Su et al., Facile and efficient patterning method for silver nanowires and its application to stretchable electroluminescent displays. ACS Appl. Mater. Interfaces 12, 24074–24085 (2020). https://doi.org/10.1021/acsami.9b21755
- B.S. Kim, H. Kwon, H.J. Kwon, J.B. Pyo, J. Oh et al., Buckling instability control of 1d nanowire networks for a large-area stretchable and transparent electrode. Adv. Funct. Mater. 30, 1910214 (2020). https://doi.org/10.1002/adfm.201910214
- E. Ducrot, Y. Chen, M. Bulters, R.P. Sijbesma, C. Creton, Toughening elastomers with sacrificial bonds and watching them break. Science 344, 186–189 (2014). https://doi.org/10.1126/science.1248494
- J.-Y. Sun, X. Zhao, W.R.K. Illeperuma, O. Chaudhuri, K.H. Oh et al., Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012). https://doi.org/10.1038/nature11409
- G.D. Genesky, C. Cohen, Toughness and fracture energy of pdms bimodal and trimodal networks with widely separated precursor molar masses. Polymer 51, 4152–4159 (2010). https://doi.org/10.1016/j.polymer.2010.06.054
- Y. Jia, Z. Zhou, H. Jiang, Z. Liu, Characterization of fracture toughness and damage zone of double network hydrogels. J. Mech. Phys. Solids 169, 105090 (2022). https://doi.org/10.1016/j.jmps.2022.105090
- E. Zhang, R. Bai, X.P. Morelle, Z. Suo, Fatigue fracture of nearly elastic hydrogels. Soft Matter 14, 3563–3571 (2018). https://doi.org/10.1039/C8SM00460A
- R. Bai, Q. Yang, J. Tang, X.P. Morelle, J. Vlassak et al., Fatigue fracture of tough hydrogels. Extreme Mech. Lett. 15, 91–96 (2017). https://doi.org/10.1016/j.eml.2017.07.002
- J. Wang, P.S. Lee, Progress and prospects in stretchable electroluminescent devices. Nanophotonics 6, 435–451 (2017). https://doi.org/10.1515/nanoph-2016-0002
- C. Keplinger, J.-Y. Sun, C.C. Foo, P. Rothemund, G.M. Whitesides et al., Stretchable, transparent, ionic conductors. Science 341, 984–987 (2013). https://doi.org/10.1126/science.1240228
- D. Vij, Handbook of Electroluminescent Materials (CRC Press, London, 2004)
- K. He, X. Zhang, S. Ren, J. Sun, presented at Computer Vision–ECCV 2016: 14th European Conference, Identity mappings in deep residual networks, Amsterdam, The Netherlands, October, 2016.
- A. Srivastava, S. Jain, R. Miranda, S. Patil, S. Pandya et al., Deep learning based respiratory sound analysis for detection of chronic obstructive pulmonary disease. Peer. J. Comput. Sci. 7, e369 (2021). https://doi.org/10.7717/peerj-cs.369
- M. Vatankhah-Varnosfaderani, A.N. Keith, Y. Cong, H. Liang, M. Rosenthal et al., Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration. Science 359, 1509–1513 (2018). https://doi.org/10.1126/science.aar5308
- A. Miserez, J.C. Weaver, O. Chaudhuri, Biological materials and molecular biomimetics–filling up the empty soft materials space for tissue engineering applications. J. Mater. Chem. B 3, 13–24 (2015). https://doi.org/10.1039/C4TB01267D
- Z. Wang, C. Xiang, X. Yao, P. Le Floch, J. Mendez et al., Stretchable materials of high toughness and low hysteresis. Proc. Natl. Acad. Sci. USA 116, 5967–5972 (2019). https://doi.org/10.1073/pnas.1821420116
References
C. Larson, B. Peele, S. Li, S. Robinson, M. Totaro et al., Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 351, 1071–1074 (2016). https://doi.org/10.1126/science.aac5082
H. Yin, Y. Zhu, K. Youssef, Z. Yu, Q. Pei, Structures and materials in stretchable electroluminescent devices. Adv. Mater. 34, 2106184 (2022). https://doi.org/10.1002/adma.202106184
Z. Yang, W. Wang, J. Pan, C. Ye, Alternating current electroluminescent devices with inorganic phosphors for deformable displays. Cell Rep. Phys. Sci. 1, 100213 (2020). https://doi.org/10.1016/j.xcrp.2020.100213
Z. Zhang, Light-emitting materials for wearable electronics. Nat. Rev. Mater. 7, 839–840 (2022). https://doi.org/10.1038/s41578-022-00502-4
Y. Zhang, Y. Fang, J. Li, Q. Zhou, Y. Xiao et al., Dual-mode electronic skin with integrated tactile sensing and visualized injury warning. ACS Appl. Mater. Interfaces 9, 37493–37500 (2017). https://doi.org/10.1021/acsami.7b13016
S.A. Morin, R.F. Shepherd, S.W. Kwok, A.A. Stokes, A. Nemiroski et al., Camouflage and display for soft machines. Science 337, 828–832 (2012). https://doi.org/10.1126/science.1222149
T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa et al., Ultraflexible organic photonic skin. Sci. Adv. 2, e1501856 (2016). https://doi.org/10.1126/sciadv.1501856
B. Lee, J.-Y. Oh, H. Cho, C.W. Joo, H. Yoon et al., Ultraflexible and transparent electroluminescent skin for real-time and super-resolution imaging of pressure distribution. Nat. Commun. 11, 663 (2020). https://doi.org/10.1038/s41467-020-14485-9
Y. Wang, J. Ren, Z. Lv, L. Cao, S. Lin et al., Direct functionalization of natural silks through continuous force-reeling technique. Chem. Eng. J. 435, 134901 (2022). https://doi.org/10.1016/j.cej.2022.134901
J.H. Koo, S. Jeong, H.J. Shim, D. Son, J. Kim et al., Wearable electrocardiogram monitor using carbon nanotube electronics and color-tunable organic light-emitting diodes. ACS Nano 11, 10032–10041 (2017). https://doi.org/10.1021/acsnano.7b04292
X. Shi, Y. Zuo, P. Zhai, J. Shen, Y. Yang et al., Large-area display textiles integrated with functional systems. Nature 591, 240–245 (2021). https://doi.org/10.1038/s41586-021-03295-8
Y. Wu, S.S. Mechael, C. Lerma, R.S. Carmichael, T.B. Carmichael, Stretchable ultrasheer fabrics as semitransparent electrodes for wearable light-emitting e-textiles with changeable display patterns. Matter 2, 882–895 (2020). https://doi.org/10.1016/j.matt.2020.01.017
C. Dai, Y. Wang, Y. Shan, C. Ye, Z. Lv et al., Cytoskeleton-inspired hydrogel ionotronics for tactile perception and electroluminescent display in complex mechanical environments. Mater. Horiz. 10, 136–148 (2023). https://doi.org/10.1039/D2MH01034H
Y. Lee, J.W. Chung, G.H. Lee, H. Kang, J.-Y. Kim et al., Standalone real-time health monitoring patch based on a stretchable organic optoelectronic system. Sci. Adv. 7, eabg9180 (2021). https://doi.org/10.1126/sciadv.abg9180
A. Robinson, A. Aziz, Q. Liu, Z. Suo, S.P. Lacour, Hybrid stretchable circuits on silicone substrate. J. Appl. Phys. 115, 143511 (2014). https://doi.org/10.1063/1.4871279
S.-I. Park, Y. Xiong, R.-H. Kim, P. Elvikis, M. Meitl et al., Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 325, 977–981 (2009). https://doi.org/10.1126/science.1175690
T. Kim, H. Lee, W. Jo, T.-S. Kim, S. Yoo, Realizing stretchable oleds: a hybrid platform based on rigid island arrays on a stress-relieving bilayer structure. Adv. Mater. Technol. 5, 2000494 (2020). https://doi.org/10.1002/admt.202000494
J. Liang, L. Li, X. Niu, Z. Yu, Q. Pei, Elastomeric polymer light-emitting devices and displays. Nat. Photon. 7, 817–824 (2013). https://doi.org/10.1038/nphoton.2013.242
J. Wang, C. Yan, K.J. Chee, P.S. Lee, Highly stretchable and self-deformable alternating current electroluminescent devices. Adv. Mater. 27, 2876–2882 (2015). https://doi.org/10.1002/adma.201405486
C.H. Yang, B. Chen, J. Zhou, Y.M. Chen, Z. Suo, Electroluminescence of giant stretchability. Adv. Mater. 28, 4480–4484 (2016). https://doi.org/10.1002/adma.201504031
F. Stauffer, K. Tybrandt, Bright stretchable alternating current electroluminescent displays based on high permittivity composites. Adv. Mater. 28, 7200–7203 (2016). https://doi.org/10.1002/adma.201602083
Z. Yu, X. Niu, Z. Liu, Q. Pei, Intrinsically stretchable polymer light-emitting devices using carbon nanotube-polymer composite electrodes. Adv. Mater. 23, 3989–3994 (2011). https://doi.org/10.1002/adma.201101986
X. Wang, J. Sun, L. Dong, C. Lv, K. Zhang et al., Stretchable and transparent electroluminescent device driven by triboelectric nanogenerator. Nano Energy 58, 410–418 (2019). https://doi.org/10.1016/j.nanoen.2019.01.058
H. Shin, B.K. Sharma, S.W. Lee, J.-B. Lee, M. Choi et al., Stretchable electroluminescent display enabled by graphene-based hybrid electrode. ACS Appl. Mater. Interfaces 11, 14222–14228 (2019). https://doi.org/10.1021/acsami.8b22135
J. Ge, H.-B. Yao, X. Wang, Y.-D. Ye, J.-L. Wang et al., Stretchable conductors based on silver nanowires: improved performance through a binary network design. Angew. Chem. Int. Ed. 52, 1654–1659 (2013). https://doi.org/10.1002/anie.201209596
S. Choi, S.I. Han, D. Jung, H.J. Hwang, C. Lim et al., Highly conductive, stretchable and biocompatible ag–au core–sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 13, 1048–1056 (2018). https://doi.org/10.1038/s41565-018-0226-8
B. You, Y. Kim, B.-K. Ju, J.-W. Kim, Highly stretchable and waterproof electroluminescence device based on superstable stretchable transparent electrode. ACS Appl. Mater. Interfaces 9, 5486–5494 (2017). https://doi.org/10.1021/acsami.6b14535
L. Cai, S. Zhang, Y. Zhang, J. Li, J. Miao et al., Direct printing for additive patterning of silver nanowires for stretchable sensor and display applications. Adv. Mater. Technol. 3, 1700232 (2018). https://doi.org/10.1002/admt.201700232
Y. Chen, Y. Wu, S.S. Mechael, T.B. Carmichael, Heterogeneous surface orientation of solution-deposited gold films enables retention of conductivity with high strain—a new strategy for stretchable electronics. Chem. Mater. 31, 1920–1927 (2019). https://doi.org/10.1021/acs.chemmater.8b04487
D. Son, J. Kang, O. Vardoulis, Y. Kim, N. Matsuhisa et al., An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat. Nanotechnol. 13, 1057–1065 (2018). https://doi.org/10.1038/s41565-018-0244-6
J.I. Lee, H. Choi, S.H. Kong, S. Park, D. Park et al., Visco-poroelastic electrochemiluminescence skin with piezo-ionic effect. Adv. Mater. 33, 2100321 (2021). https://doi.org/10.1002/adma.202100321
C. Li, Q. He, Y. Wang, Z. Wang, Z. Wang et al., Highly robust and soft biohybrid mechanoluminescence for optical signaling and illumination. Nat. Commun. 13, 3914 (2022). https://doi.org/10.1038/s41467-022-31705-6
D.-K. Kwon, J.-M. Myoung, Wearable and semitransparent pressure-sensitive light-emitting sensor based on electrochemiluminescence. ACS Nano 14, 8716–8723 (2020). https://doi.org/10.1021/acsnano.0c03186
S.W. Lee, S.H. Cho, H.S. Kang, G. Kim, J.S. Kim et al., Electroluminescent pressure-sensing displays. ACS Appl. Mater. Interfaces 10, 13757–13766 (2018). https://doi.org/10.1021/acsami.8b01790
X.Y. Wei, X. Wang, S.Y. Kuang, L. Su, H.Y. Li et al., Dynamic triboelectrification-induced electroluminescence and its use in visualized sensing. Adv. Mater. 28, 6656–6664 (2016). https://doi.org/10.1002/adma.201600604
Y. Wang, H. Wu, L. Xu, H. Zhang, Y. Yang et al., Hierarchically patterned self-powered sensors for multifunctional tactile sensing. Sci. Adv. 6, eabb9083 (2020). https://doi.org/10.1126/sciadv.abb9083
X. Zhou, X. Xu, Y. Zuo, M. Liao, X. Shi et al., A fiber-shaped light-emitting pressure sensor for visualized dynamic monitoring. J. Mater. Chem. C 8, 935–942 (2020). https://doi.org/10.1039/C9TC05653J
L. Su, Z. Jiang, Z. Tian, H. Wang, H. Wang et al., Self-powered, ultrasensitive, and high-resolution visualized flexible pressure sensor based on color-tunable triboelectrification-induced electroluminescence. Nano Energy 79, 105431 (2021). https://doi.org/10.1016/j.nanoen.2020.105431
T. Kaneko, K. Tanaka, H. Kameoka, S. Seki, presented at ICASSP 2022-2022 IEEE International Conference, iSTFTNet: Fast and lightweight mel-spectrogram vocoder incorporating inverse short-time Fourier transform, Japan, March, 2022.
H. Zhang, L. Cao, J. Li, Y. Liu, Z. Lv et al., Dual physically crosslinked silk fibroin ionoelastomer with ultrahigh stretchability and low hysteresis. Chem. Mater. 4, 1752–1761 (2023). https://doi.org/10.1021/acs.chemmater.2c03536
Q. Liu, S. Yang, J. Ren, S. Ling, Flame-retardant and sustainable silk ionotronic skin for fire alarm systems. ACS Mater. Lett. 2, 712–720 (2020). https://doi.org/10.1021/acsmaterialslett.0c00062
Q. Liu, X. Li, H. Zhang, J. Ren, S. Yang et al., Intellisense silk fibroin ionotronic batteries for wildfire detection and alarm. Nano Energy 101, 107630 (2022). https://doi.org/10.1016/j.nanoen.2022.107630
S. Yang, Q. Liu, J. Ren, S. Ling, Influence of hydrated protons on temperature and humidity responsiveness of silk fibroin hydrogel ionotronics. Giant 5, 100044 (2021). https://doi.org/10.1016/j.giant.2020.100044
C. Dai, C. Ye, J. Ren, S. Yang, L. Cao et al., Humanoid ionotronic skin for smart object recognition and sorting. ACS Mater. Lett. 5, 189–201 (2023). https://doi.org/10.1021/acsmaterialslett.2c00783
Y. Zhu, Y. Xia, M. Wu, W. Guo, C. Jia et al., Wearable, freezing-tolerant, and self-powered electroluminescence system for long-term cold-resistant displays. Nano Energy 98, 107309 (2022). https://doi.org/10.1016/j.nanoen.2022.107309
J. Liu, Q. Chen, Q. Liu, B. Zhao, S. Ling et al., Intelligent silk fibroin ionotronic skin for temperature sensing. Adv. Mater. Technol. 5, 2000430 (2020). https://doi.org/10.1002/admt.202000430
R. Long, C.Y. Hui, Fracture toughness of hydrogels: Measurement and interpretation. Soft Matter 12, 8069–8086 (2016). https://doi.org/10.1039/c6sm01694d
Z. Chen, T. Zhang, C.-T. Chen, S. Yang, Z. Lv et al., Mechanically and electrically biocompatible hydrogel ionotronic fibers for fabricating structurally stable implants and enabling noncontact physioelectrical modulation. Mater. Horiz. 9, 1735–1749 (2022). https://doi.org/10.1039/D2MH00296E
S. Lin, J. Liu, X. Liu, X. Zhao, Muscle-like fatigue-resistant hydrogels by mechanical training. Proc. Natl. Acad. Sci. USA 116, 10244–10249 (2019). https://doi.org/10.1073/pnas.1903019116
F.H. Silver, J.W. Freeman, D. DeVore, Viscoelastic properties of human skin and processed dermis. Skin Res. Technol. 7, 18–23 (2001). https://doi.org/10.1034/j.1600-0846.2001.007001018.x
J. Ankersen, A.E. Birkbeck, R.D. Thomson, P. Vanezis, Puncture resistance and tensile strength of skin simulants. Proc. Inst. Mech. Eng. Part H 213, 493–501 (1999). https://doi.org/10.1243/0954411991535103
H. Oxlund, J. Manschot, A. Viidik, The role of elastin in the mechanical properties of skin. J. Biomech. 21, 213–218 (1988). https://doi.org/10.1016/0021-9290(88)90172-8
J. Liu, J. Wang, Z. Zhang, F. Molina-Lopez, G.-J.N. Wang et al., Fully stretchable active-matrix organic light-emitting electrochemical cell array. Nat. Commun. 11, 3362 (2020). https://doi.org/10.1038/s41467-020-17084-w
C.-C. Jao, J.-R. Chang, C.-Y. Ya, W.-C. Chen, C.-J. Cho et al., Novel stretchable light-emitting diodes based on conjugated-rod block elastic-coil copolymers. Polym. Int. 70, 426–431 (2021). https://doi.org/10.1002/pi.6023
J.-H. Kim, J.-W. Park, Intrinsically stretchable organic light-emitting diodes. Sci. Adv. 7, eabd9715 (2021). https://doi.org/10.1126/sciadv.abd9715
J. Liang, L. Li, K. Tong, Z. Ren, W. Hu et al., Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 8, 1590–1600 (2014). https://doi.org/10.1021/nn405887k
M.S. White, M. Kaltenbrunner, E.D. Głowacki, K. Gutnichenko, G. Kettlgruber et al., Ultrathin, highly flexible and stretchable pleds. Nat. Photon. 7, 811–816 (2013). https://doi.org/10.1038/nphoton.2013.188
T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida et al., Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8, 494–499 (2009). https://doi.org/10.1038/nmat2459
P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong et al., Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 24, 3326–3332 (2012). https://doi.org/10.1002/adma.201200359
Y. Lin, W. Yuan, C. Ding, S. Chen, W. Su et al., Facile and efficient patterning method for silver nanowires and its application to stretchable electroluminescent displays. ACS Appl. Mater. Interfaces 12, 24074–24085 (2020). https://doi.org/10.1021/acsami.9b21755
B.S. Kim, H. Kwon, H.J. Kwon, J.B. Pyo, J. Oh et al., Buckling instability control of 1d nanowire networks for a large-area stretchable and transparent electrode. Adv. Funct. Mater. 30, 1910214 (2020). https://doi.org/10.1002/adfm.201910214
E. Ducrot, Y. Chen, M. Bulters, R.P. Sijbesma, C. Creton, Toughening elastomers with sacrificial bonds and watching them break. Science 344, 186–189 (2014). https://doi.org/10.1126/science.1248494
J.-Y. Sun, X. Zhao, W.R.K. Illeperuma, O. Chaudhuri, K.H. Oh et al., Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012). https://doi.org/10.1038/nature11409
G.D. Genesky, C. Cohen, Toughness and fracture energy of pdms bimodal and trimodal networks with widely separated precursor molar masses. Polymer 51, 4152–4159 (2010). https://doi.org/10.1016/j.polymer.2010.06.054
Y. Jia, Z. Zhou, H. Jiang, Z. Liu, Characterization of fracture toughness and damage zone of double network hydrogels. J. Mech. Phys. Solids 169, 105090 (2022). https://doi.org/10.1016/j.jmps.2022.105090
E. Zhang, R. Bai, X.P. Morelle, Z. Suo, Fatigue fracture of nearly elastic hydrogels. Soft Matter 14, 3563–3571 (2018). https://doi.org/10.1039/C8SM00460A
R. Bai, Q. Yang, J. Tang, X.P. Morelle, J. Vlassak et al., Fatigue fracture of tough hydrogels. Extreme Mech. Lett. 15, 91–96 (2017). https://doi.org/10.1016/j.eml.2017.07.002
J. Wang, P.S. Lee, Progress and prospects in stretchable electroluminescent devices. Nanophotonics 6, 435–451 (2017). https://doi.org/10.1515/nanoph-2016-0002
C. Keplinger, J.-Y. Sun, C.C. Foo, P. Rothemund, G.M. Whitesides et al., Stretchable, transparent, ionic conductors. Science 341, 984–987 (2013). https://doi.org/10.1126/science.1240228
D. Vij, Handbook of Electroluminescent Materials (CRC Press, London, 2004)
K. He, X. Zhang, S. Ren, J. Sun, presented at Computer Vision–ECCV 2016: 14th European Conference, Identity mappings in deep residual networks, Amsterdam, The Netherlands, October, 2016.
A. Srivastava, S. Jain, R. Miranda, S. Patil, S. Pandya et al., Deep learning based respiratory sound analysis for detection of chronic obstructive pulmonary disease. Peer. J. Comput. Sci. 7, e369 (2021). https://doi.org/10.7717/peerj-cs.369
M. Vatankhah-Varnosfaderani, A.N. Keith, Y. Cong, H. Liang, M. Rosenthal et al., Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration. Science 359, 1509–1513 (2018). https://doi.org/10.1126/science.aar5308
A. Miserez, J.C. Weaver, O. Chaudhuri, Biological materials and molecular biomimetics–filling up the empty soft materials space for tissue engineering applications. J. Mater. Chem. B 3, 13–24 (2015). https://doi.org/10.1039/C4TB01267D
Z. Wang, C. Xiang, X. Yao, P. Le Floch, J. Mendez et al., Stretchable materials of high toughness and low hysteresis. Proc. Natl. Acad. Sci. USA 116, 5967–5972 (2019). https://doi.org/10.1073/pnas.1821420116