4-Terminal Inorganic Perovskite/Organic Tandem Solar Cells Offer 22% Efficiency
Corresponding Author: Liming Ding
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 23
Abstract
After fast developing of single-junction perovskite solar cells and organic solar cells in the past 10 years, it is becoming harder and harder to improve their power conversion efficiencies. Tandem solar cells are receiving more and more attention because they have much higher theoretical efficiency than single-junction solar cells. Good device performance has been achieved for perovskite/silicon and perovskite/perovskite tandem solar cells, including 2-terminal and 4-terminal structures. However, very few studies have been done about 4-terminal inorganic perovskite/organic tandem solar cells. In this work, semi-transparent inorganic perovskite solar cells and organic solar cells are used to fabricate 4-terminal inorganic perovskite/organic tandem solar cells, achieving a power conversion efficiency of 21.25% for the tandem cells with spin-coated perovskite layer. By using drop-coating instead of spin-coating to make the inorganic perovskite films, 4-terminal tandem cells with an efficiency of 22.34% are made. The efficiency is higher than the reported 2-terminal and 4-terminal inorganic perovskite/organic tandem solar cells. In addition, equivalent 2-terminal tandem solar cells were fabricated by connecting the sub-cells in series. The stability of organic solar cells under continuous illumination is improved by using semi-transparent perovskite solar cells as filter.
Highlights:
1 4-Terminal inorganic perovskite/organic tandem solar cells were made by using semi-transparent inorganic perovskite solar cells and narrow-bandgap organic solar cells as the sub-cells, yielding a power conversion efficiency of 22.34%, which is the highest efficiency for inorganic perovskite/organic tandem solar cells.
2 Inorganic perovskite solar cells made by drop-coating (self-spreading) gave much higher power conversion efficiency than the cells made by spin-coating, enabling perovskite/organic tandem solar cells with higher efficiency.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Dong, W. Qiao, S. Xiong, J. Yang, X. Wang et al., Surface passivation and energetic modification suppress nonradiative recombination in perovskite solar cells. Nano-Micro Lett. 14, 108 (2022). https://doi.org/10.1007/s40820-022-00854-0
- L. Zhu, M. Zhang, J. Xu, C. Li, J. Yan et al., Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 21(6), 656–663 (2022). https://doi.org/10.1038/s41563-022-01244-y
- Z. Fang, Q. Zeng, C. Zuo, L. Zhang, H. Xiao et al., Perovskite-based tandem solar cells. Sci. Bull. 66(6), 621–636 (2021). https://doi.org/10.1016/j.scib.2020.11.006
- F. Fu, T. Feurer, T. Jäger, E. Avancini, B. Bissig et al., Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications. Nat. Commun. 6, 8932 (2015). https://doi.org/10.1038/ncomms9932
- Z. Zhu, K. Mao, J. Xu, Perovskite tandem solar cells with improved efficiency and stability. J. Energy Chem. 58, 219–232 (2021). https://doi.org/10.1016/j.jechem.2020.09.022
- A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel et al., Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370(6522), 1300–1309 (2020). https://doi.org/10.1126/science.abd4016
- Z. Wang, X. Zhu, S. Zuo, M. Chen, C. Zhang et al., 27%-efficiency four-terminal perovskite/silicon tandem solar cells by sandwiched gold nanomesh. Adv. Funct. Mater. 30(4), 1908298 (2020). https://doi.org/10.1002/adfm.201908298
- Y. Chen, Z. Ying, X. Li, X. Wang, J. Wu et al., Self-sacrifice alkali acetate seed layer for efficient four-terminal perovskite/silicon tandem solar cells. Nano Energy 100, 107529 (2022). https://doi.org/10.1016/j.nanoen.2022.107529
- P. Zhao, L. Feng, Z. Lin, J. Wang, J. Su et al., Theoretical analysis of two-terminal and four-terminal perovskite/copper indium gallium selenide tandem solar cells. Solar RRL 3(11), 1900303 (2019). https://doi.org/10.1002/solr.201900303
- S. Zuo, S. Chu, P. An, H. Hu, Z. Yin et al., Solvent coordination engineering for high-quality hybrid organic-inorganic perovskite films. J. Mater. Sci. 56(16), 9903–9913 (2021). https://doi.org/10.1007/s10853-021-05870-w
- K. Xiao, R. Lin, Q. Han, Y. Hou, Z. Qin et al., All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy 5(11), 870–880 (2020). https://doi.org/10.1038/s41560-020-00705-5
- S. Yoon, H.U. Ha, H.-J. Seok, H.-K. Kim, D.-W. Kang, Highly efficient and reliable semitransparent perovskite solar cells via top electrode engineering. Adv. Funct. Mater. 32(27), 2111760 (2022). https://doi.org/10.1002/adfm.202111760
- D. Zhao, C. Wang, Z. Song, Y. Yu, C. Chen et al., Four-terminal all-perovskite tandem solar cells achieving power conversion efficiencies exceeding 23%. ACS Energy Lett. 3(2), 305–306 (2018). https://doi.org/10.1021/acsenergylett.7b01287
- K.O. Brinkmann, T. Becker, F. Zimmermann, C. Kreusel, T. Gahlmann et al., Perovskite-organic tandem solar cells with indium oxide interconnect. Nature 604(7905), 280–286 (2022). https://doi.org/10.1038/s41586-022-04455-0
- Y.-M. Xie, Q. Xue, Q. Yao, S. Xie, T. Niu et al., Monolithic perovskite/organic tandem solar cells: Developments, prospects, and challenges. Nano Select. 2(7), 1266–1276 (2021). https://doi.org/10.1002/nano.202000287
- Q. Zeng, L. Liu, Z. Xiao, F. Liu, Y. Hua et al., A two-terminal all-inorganic perovskite/organic tandem solar cell. Sci. Bull. 64(13), 885–887 (2019). https://doi.org/10.1016/j.scib.2019.05.015
- K. Lang, Q. Guo, Z. He, Y. Bai, J. Yao et al., High performance tandem solar cells with inorganic perovskite and organic conjugated molecules to realize complementary absorption. J. Phys. Chem. Lett. 11(22), 9596–9604 (2020). https://doi.org/10.1021/acs.jpclett.0c02794
- H. Aqoma, I.F. Imran, F.T.A. Wibowo, N.V. Krishna, W. Lee et al., High-efficiency solution-processed two-terminal hybrid tandem solar cells using spectrally matched inorganic and organic photoactive materials. Adv. Energy Mater. 10(37), 2001188 (2020). https://doi.org/10.1002/aenm.202001188
- S. Xie, R. Xia, Z. Chen, J. Tian, L. Yan et al., Efficient monolithic perovskite/organic tandem solar cells and their efficiency potential. Nano Energy 78, 105238 (2020). https://doi.org/10.1016/j.nanoen.2020.105238
- X. Chen, Z. Jia, Z. Chen, T. Jiang, L. Bai et al., Efficient and reproducible monolithic perovskite/organic tandem solar cells with low-loss interconnecting layers. Joule 4(7), 1594–1606 (2020). https://doi.org/10.1016/j.joule.2020.06.006
- P. Wang, W. Li, O.J. Sandberg, C. Guo, R. Sun et al., Tuning of the interconnecting layer for monolithic perovskite/organic tandem solar cells with record efficiency exceeding 21%. Nano Lett. 21(18), 7845–7854 (2021). https://doi.org/10.1021/acs.nanolett.1c02897
- X. Gu, X. Lai, Y. Zhang, T. Wang, W. L. Tan et al., Organic solar cell with efficiency over 20% and Voc exceeding 2.1 V enabled by tandem with all-inorganic perovskite and thermal annealing-free process. Adv. Sci. 9(28), 2270178 (2022). https://doi.org/10.1002/advs.202270178
- W. Chen, D. Li, X. Chen, H. Chen, S. Liu et al., Surface reconstruction for stable monolithic all-inorganic perovskite/organic tandem solar cells with over 21% efficiency. Adv. Funct. Mater. 32(5), 2109321 (2022). https://doi.org/10.1002/adfm.202109321
- Y. Ding, Q. Guo, Y. Geng, Z. Dai, Z. Wang et al., A low-cost hole transport layer enables CsPbI2Br single-junction and tandem perovskite solar cells with record efficiencies of 17.8% and 21.4%. Nano Today 46, 101586 (2022). https://doi.org/10.1016/j.nantod.2022.101586
- W. Chen, J. Zhang, G. Xu, R. Xue, Y. Li et al., A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency. Adv. Mater. 30(21), e1800855 (2018). https://doi.org/10.1002/adma.201800855
- J. Xu, J. Cui, S. Yang, Y. Han, X. Guo et al., Unraveling passivation mechanism of imidazolium-based ionic liquids on inorganic perovskite to achieve near-record-efficiency CsPbI2Br solar cells. Nano-Micro Lett. 14, 7 (2021). https://doi.org/10.1007/s40820-021-00763-8
- S. Fu, X. Li, L. Wan, W. Zhang, W. Song et al., Effective surface treatment for high-performance inverted CsPbI2Br perovskite solar cells with efficiency of 15.92%. Nano-Micro Lett. 12, 170 (2020). https://doi.org/10.1007/s40820-020-00509-y
- X. Meng, K. Jin, Z. Xiao, L. Ding, Side chain engineering on D18 polymers yields 18.74% power conversion efficiency. J. Semicond. 42(10), 100501 (2021). https://doi.org/10.1088/1674-4926/42/10/100501
- K. Jiang, Q. Wei, J.Y.L. Lai, Z. Peng, H.K. Kim et al., Alkyl chain tuning of small molecule acceptors for efficient organic solar cells. Joule 3(12), 3020–3033 (2019). https://doi.org/10.1016/j.joule.2019.09.010
- C. Zuo, A.D. Scully, D. Vak, W. Tan, X. Jiao et al., Self-assembled 2D perovskite layers for efficient printable solar cells. Adv. Energy Mater. 9(4), 1803258 (2019). https://doi.org/10.1002/aenm.201803258
- C. Zuo, A.D. Scully, W.L. Tan, F. Zheng, K.P. Ghiggino et al., Crystallisation control of drop-cast quasi-2D/3D perovskite layers for efficient solar cells. Commun. Mater. 1, 33 (2020). https://doi.org/10.1038/s43246-020-0036-z
- C. Zuo, A.D. Scully, M. Gao, Drop-casting method to screen ruddlesden-popper perovskite formulations for use in solar cells. ACS Appl. Mater. Interfaces 13(47), 56217–56225 (2021). https://doi.org/10.1021/acsami.1c17475
- C. Zuo, L. Ding, Drop-casting to make efficient perovskite solar cells under high humidity. Angew. Chem. Int. Ed. 60(20), 11242–11246 (2021). https://doi.org/10.1002/anie.202101868
- H. Xiao, C. Zuo, F. Liu, L. Ding, Drop-coating produces efficient CsPbI2Br solar cells. J. Semicond. 42(5), 050502 (2021). https://doi.org/10.1088/1674-4926/42/5/050502
- L. Liu, C. Zuo, L. Ding, Self-spreading produces highly efficient perovskite solar cells. Nano Energy 90, 106509 (2021). https://doi.org/10.1016/j.nanoen.2021.106509
- L. Zhang, C. Zuo, L. Ding, Efficient MAPbI3 solar cells made via drop-coating at room temperature. J. Semicond. 42(7), 072201 (2021). https://doi.org/10.1088/1674-4926/42/7/072201
References
W. Dong, W. Qiao, S. Xiong, J. Yang, X. Wang et al., Surface passivation and energetic modification suppress nonradiative recombination in perovskite solar cells. Nano-Micro Lett. 14, 108 (2022). https://doi.org/10.1007/s40820-022-00854-0
L. Zhu, M. Zhang, J. Xu, C. Li, J. Yan et al., Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 21(6), 656–663 (2022). https://doi.org/10.1038/s41563-022-01244-y
Z. Fang, Q. Zeng, C. Zuo, L. Zhang, H. Xiao et al., Perovskite-based tandem solar cells. Sci. Bull. 66(6), 621–636 (2021). https://doi.org/10.1016/j.scib.2020.11.006
F. Fu, T. Feurer, T. Jäger, E. Avancini, B. Bissig et al., Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications. Nat. Commun. 6, 8932 (2015). https://doi.org/10.1038/ncomms9932
Z. Zhu, K. Mao, J. Xu, Perovskite tandem solar cells with improved efficiency and stability. J. Energy Chem. 58, 219–232 (2021). https://doi.org/10.1016/j.jechem.2020.09.022
A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel et al., Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370(6522), 1300–1309 (2020). https://doi.org/10.1126/science.abd4016
Z. Wang, X. Zhu, S. Zuo, M. Chen, C. Zhang et al., 27%-efficiency four-terminal perovskite/silicon tandem solar cells by sandwiched gold nanomesh. Adv. Funct. Mater. 30(4), 1908298 (2020). https://doi.org/10.1002/adfm.201908298
Y. Chen, Z. Ying, X. Li, X. Wang, J. Wu et al., Self-sacrifice alkali acetate seed layer for efficient four-terminal perovskite/silicon tandem solar cells. Nano Energy 100, 107529 (2022). https://doi.org/10.1016/j.nanoen.2022.107529
P. Zhao, L. Feng, Z. Lin, J. Wang, J. Su et al., Theoretical analysis of two-terminal and four-terminal perovskite/copper indium gallium selenide tandem solar cells. Solar RRL 3(11), 1900303 (2019). https://doi.org/10.1002/solr.201900303
S. Zuo, S. Chu, P. An, H. Hu, Z. Yin et al., Solvent coordination engineering for high-quality hybrid organic-inorganic perovskite films. J. Mater. Sci. 56(16), 9903–9913 (2021). https://doi.org/10.1007/s10853-021-05870-w
K. Xiao, R. Lin, Q. Han, Y. Hou, Z. Qin et al., All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy 5(11), 870–880 (2020). https://doi.org/10.1038/s41560-020-00705-5
S. Yoon, H.U. Ha, H.-J. Seok, H.-K. Kim, D.-W. Kang, Highly efficient and reliable semitransparent perovskite solar cells via top electrode engineering. Adv. Funct. Mater. 32(27), 2111760 (2022). https://doi.org/10.1002/adfm.202111760
D. Zhao, C. Wang, Z. Song, Y. Yu, C. Chen et al., Four-terminal all-perovskite tandem solar cells achieving power conversion efficiencies exceeding 23%. ACS Energy Lett. 3(2), 305–306 (2018). https://doi.org/10.1021/acsenergylett.7b01287
K.O. Brinkmann, T. Becker, F. Zimmermann, C. Kreusel, T. Gahlmann et al., Perovskite-organic tandem solar cells with indium oxide interconnect. Nature 604(7905), 280–286 (2022). https://doi.org/10.1038/s41586-022-04455-0
Y.-M. Xie, Q. Xue, Q. Yao, S. Xie, T. Niu et al., Monolithic perovskite/organic tandem solar cells: Developments, prospects, and challenges. Nano Select. 2(7), 1266–1276 (2021). https://doi.org/10.1002/nano.202000287
Q. Zeng, L. Liu, Z. Xiao, F. Liu, Y. Hua et al., A two-terminal all-inorganic perovskite/organic tandem solar cell. Sci. Bull. 64(13), 885–887 (2019). https://doi.org/10.1016/j.scib.2019.05.015
K. Lang, Q. Guo, Z. He, Y. Bai, J. Yao et al., High performance tandem solar cells with inorganic perovskite and organic conjugated molecules to realize complementary absorption. J. Phys. Chem. Lett. 11(22), 9596–9604 (2020). https://doi.org/10.1021/acs.jpclett.0c02794
H. Aqoma, I.F. Imran, F.T.A. Wibowo, N.V. Krishna, W. Lee et al., High-efficiency solution-processed two-terminal hybrid tandem solar cells using spectrally matched inorganic and organic photoactive materials. Adv. Energy Mater. 10(37), 2001188 (2020). https://doi.org/10.1002/aenm.202001188
S. Xie, R. Xia, Z. Chen, J. Tian, L. Yan et al., Efficient monolithic perovskite/organic tandem solar cells and their efficiency potential. Nano Energy 78, 105238 (2020). https://doi.org/10.1016/j.nanoen.2020.105238
X. Chen, Z. Jia, Z. Chen, T. Jiang, L. Bai et al., Efficient and reproducible monolithic perovskite/organic tandem solar cells with low-loss interconnecting layers. Joule 4(7), 1594–1606 (2020). https://doi.org/10.1016/j.joule.2020.06.006
P. Wang, W. Li, O.J. Sandberg, C. Guo, R. Sun et al., Tuning of the interconnecting layer for monolithic perovskite/organic tandem solar cells with record efficiency exceeding 21%. Nano Lett. 21(18), 7845–7854 (2021). https://doi.org/10.1021/acs.nanolett.1c02897
X. Gu, X. Lai, Y. Zhang, T. Wang, W. L. Tan et al., Organic solar cell with efficiency over 20% and Voc exceeding 2.1 V enabled by tandem with all-inorganic perovskite and thermal annealing-free process. Adv. Sci. 9(28), 2270178 (2022). https://doi.org/10.1002/advs.202270178
W. Chen, D. Li, X. Chen, H. Chen, S. Liu et al., Surface reconstruction for stable monolithic all-inorganic perovskite/organic tandem solar cells with over 21% efficiency. Adv. Funct. Mater. 32(5), 2109321 (2022). https://doi.org/10.1002/adfm.202109321
Y. Ding, Q. Guo, Y. Geng, Z. Dai, Z. Wang et al., A low-cost hole transport layer enables CsPbI2Br single-junction and tandem perovskite solar cells with record efficiencies of 17.8% and 21.4%. Nano Today 46, 101586 (2022). https://doi.org/10.1016/j.nantod.2022.101586
W. Chen, J. Zhang, G. Xu, R. Xue, Y. Li et al., A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency. Adv. Mater. 30(21), e1800855 (2018). https://doi.org/10.1002/adma.201800855
J. Xu, J. Cui, S. Yang, Y. Han, X. Guo et al., Unraveling passivation mechanism of imidazolium-based ionic liquids on inorganic perovskite to achieve near-record-efficiency CsPbI2Br solar cells. Nano-Micro Lett. 14, 7 (2021). https://doi.org/10.1007/s40820-021-00763-8
S. Fu, X. Li, L. Wan, W. Zhang, W. Song et al., Effective surface treatment for high-performance inverted CsPbI2Br perovskite solar cells with efficiency of 15.92%. Nano-Micro Lett. 12, 170 (2020). https://doi.org/10.1007/s40820-020-00509-y
X. Meng, K. Jin, Z. Xiao, L. Ding, Side chain engineering on D18 polymers yields 18.74% power conversion efficiency. J. Semicond. 42(10), 100501 (2021). https://doi.org/10.1088/1674-4926/42/10/100501
K. Jiang, Q. Wei, J.Y.L. Lai, Z. Peng, H.K. Kim et al., Alkyl chain tuning of small molecule acceptors for efficient organic solar cells. Joule 3(12), 3020–3033 (2019). https://doi.org/10.1016/j.joule.2019.09.010
C. Zuo, A.D. Scully, D. Vak, W. Tan, X. Jiao et al., Self-assembled 2D perovskite layers for efficient printable solar cells. Adv. Energy Mater. 9(4), 1803258 (2019). https://doi.org/10.1002/aenm.201803258
C. Zuo, A.D. Scully, W.L. Tan, F. Zheng, K.P. Ghiggino et al., Crystallisation control of drop-cast quasi-2D/3D perovskite layers for efficient solar cells. Commun. Mater. 1, 33 (2020). https://doi.org/10.1038/s43246-020-0036-z
C. Zuo, A.D. Scully, M. Gao, Drop-casting method to screen ruddlesden-popper perovskite formulations for use in solar cells. ACS Appl. Mater. Interfaces 13(47), 56217–56225 (2021). https://doi.org/10.1021/acsami.1c17475
C. Zuo, L. Ding, Drop-casting to make efficient perovskite solar cells under high humidity. Angew. Chem. Int. Ed. 60(20), 11242–11246 (2021). https://doi.org/10.1002/anie.202101868
H. Xiao, C. Zuo, F. Liu, L. Ding, Drop-coating produces efficient CsPbI2Br solar cells. J. Semicond. 42(5), 050502 (2021). https://doi.org/10.1088/1674-4926/42/5/050502
L. Liu, C. Zuo, L. Ding, Self-spreading produces highly efficient perovskite solar cells. Nano Energy 90, 106509 (2021). https://doi.org/10.1016/j.nanoen.2021.106509
L. Zhang, C. Zuo, L. Ding, Efficient MAPbI3 solar cells made via drop-coating at room temperature. J. Semicond. 42(7), 072201 (2021). https://doi.org/10.1088/1674-4926/42/7/072201