Double Layer Composite Electrode Strategy for Efficient Perovskite Solar Cells with Excellent Reverse-Bias Stability
Corresponding Author: Chenyi Yi
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 12
Abstract
Perovskite solar cells (PSCs) have become the representatives of next generation of photovoltaics; nevertheless, their stability is insufficient for large scale deployment, particularly the reverse bias stability. Here, we propose a transparent conducting oxide (TCO) and low-cost metal composite electrode to improve the stability of PSCs without sacrificing the efficiency. The TCO can block ion migrations and chemical reactions between the metal and perovskite, while the metal greatly enhances the conductivity of the composite electrode. As a result, composite electrode-PSCs achieved a power conversion efficiency (PCE) of 23.7% (certified 23.2%) and exhibited excellent stability, maintaining 95% of the initial PCE when applying a reverse bias of 4.0 V for 60 s and over 92% of the initial PCE after 1000 h continuous light soaking. This composite electrode strategy can be extended to different combinations of TCOs and metals. It opens a new avenue for improving the stability of PSCs.
Highlights:
1 A composite electrode strategy to fabricate the perovskite solar cells (PSCs) with excellent comprehensive stabilities, particularly reverse-bias stability.
2 A record efficiency of 23.7% (certified 23.2%) for n-i-p PSCs using Cu as the electrode.
3 The strategy can be extended to the combinations of different transparent conducting oxides and low-cost metals.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photon. 8, 506–514 (2014). https://doi.org/10.1038/nphoton.2014.134
- J.P. Correa-Baena, M. Saliba, T. Buonassisi, M. Grätzel, A. Abate et al., Promises and challenges of perovskite solar cells. Science 358, 739–744 (2017). https://doi.org/10.1126/science.aam6323
- J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu et al., Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021). https://doi.org/10.1038/s41586-021-03285-w
- M. Karlsson, Z. Yi, S. Reichert, X. Luo, W. Lin et al., Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes. Nat. Commun. 12, 361 (2021). https://doi.org/10.1038/s41467-020-20582-6
- Y. Rong, Y. Hu, A. Mei, H. Tan, M.I. Saidaminov et al., Challenges for commercializing perovskite solar cells. Science 361, 1095–9203 (2018). https://doi.org/10.1126/science.aat8235
- W.J. Zhao, J. Xu, K. He, Y. Cai, Y. Han et al., A special additive enables all cations and anions passivation for stable perovskite solar cells with efficiency over 23%. Nano-Micro Lett. 13, 169 (2021). https://doi.org/10.1007/s40820-021-00688-2
- D. Lan, M.A. Green, Combatting temperature and reverse-bias challenges facing perovskite solar cells. Joule 6, 1782–1797 (2022). https://doi.org/10.1016/j.joule.2022.06.014
- Z. Ni, H. Jiao, C. Fei, H. Gu, S. Xu et al., Evolution of defects during the degradation of metal halide perovskite solar cells under reverse bias and illumination. Nat. Energy 7, 65–73 (2021). https://doi.org/10.1038/s41560-021-00949-9
- M.V. Khenkin, E.A. Katz, A. Abate, G. Bardizza, J.J. Berry et al., Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020). https://doi.org/10.1038/s41560-019-0529-5
- R. Bowring, L. Bertoluzzi, B.C. O’Regan, M.D. McGehee, Reverse bias behavior of halide perovskite solar cells. Adv. Energy Mater. 8(8), 1702365 (2018). https://doi.org/10.1002/aenm.201702365
- X. Zhang, T. Shen, D. Guo, L.M. Tang, K. Yang et al., Reviewing and understanding the stability mechanism of halide perovskite solar cells. InfoMat 2, 1034–1056 (2020). https://doi.org/10.1002/inf2.12104
- C. Boyd, R. Cheacharoen, K.A. Bush, R. Prasanna, T. Leijtens et al., Barrier design to prevent metal-induced degradation and improve thermal stability in perovskite solar cells. ACS Energy Lett. 3(7), 1772–1778 (2018). https://doi.org/10.1021/acsenergylett.8b00926
- Y. Kato, L.K. Ono, M.V. Lee, S. Wang, S.R. Raga et al., Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes. Adv. Mater. Interfaces 2(13), 1500195 (2015). https://doi.org/10.1002/admi.201500195
- W. Tress, M. Yavari, K. Domanski, P. Yadav, B. Niesen et al., Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells. Energy Environ. Mater. 11, 151–165 (2018). https://doi.org/10.1039/c7ee02415k
- S. Xie, A. Feng, L. Wang, N. Li, X. Cheng et al., Bulk defect suppression of micrometer-thick perovskite single crystals enables stable photovoltaics. ACS Mater. Lett. 4(7), 1332–1340 (2022). https://doi.org/10.1021/acsmaterialslett.2c00317
- F. Fu, S. Pisoni, Q. Jeangros, J. Sastre-Pellicer, M. Kawecki et al., I2 vapor-induced degradation of formamidinium lead iodide based perovskite solar cells under heat-light soaking conditions. Energy Environ. Mater. 12, 3074–3088 (2019). https://doi.org/10.1039/c9ee02043h
- H. Lee, C. Lee, Analysis of ion-diffusion-induced interface degradation in inverted perovskite solar cells via restoration of the Ag electrode. Adv. Energy Mater. 8(11), 1702197 (2018). https://doi.org/10.1002/aenm.201702197
- Y. Cheng, X. Liu, Z. Guan, M. Li, Z. Zeng et al., Revealing the degradation and self-healing mechanisms in perovskite solar cells by sub-bandgap external quantum efficiency spectroscopy. Adv. Mater. 33(3), 2006170 (2021). https://doi.org/10.1002/adma.202006170
- N. Li, A. Feng, X. Guo, J. Wu, S. Xie et al., Engineering the hole extraction interface enables single-crystal MAPbI3 perovskite solar cells with efficiency exceeding 22% and superior indoor response. Adv. Energy. Mater 12(7), 2103241 (2021). https://doi.org/10.1002/aenm.202103241
- C.T. Lin, J. Ngiam, B. Xu, Y.H. Chang, T. Du et al., Enhancing the operational stability of unencapsulated perovskite solar cells through Cu-Ag bilayer electrode incorporation. J. Mater. Chem. A 8(17), 8684–8691 (2020). https://doi.org/10.1039/d0ta01606c
- G. Jeong, D. Koo, J. Seo, S. Jung, Y. Choi et al., Suppressed interdiffusion and degradation in flexible and transparent metal electrode-based perovskite solar cells with a graphene interlayer. Nano Lett. 20, 3718–3727 (2020). https://doi.org/10.1021/acs.nanolett.0c00663
- J. Zhao, X. Zheng, Y. Deng, T. Li, Y. Shao et al., Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime? Energy Environ. Mater. 9, 3650–3656 (2016). https://doi.org/10.1039/c6ee02980a
- X. Li, S. Fu, W. Zhang, S. Ke, W. Song et al., Chemical anti-corrosion strategy for stable inverted perovskite solar cells. Sci. Adv. 6(51), eabd1580 (2020). https://doi.org/10.1126/sciadv.abd1580
- Trading economics. https://tradingeconomics.com/commodities
- K.A. Bush, C.D. Bailie, Y. Chen, A.R. Bowring, W. Wang et al., Thermal and environmental stability of semi-transparent perovskite solar cells for tandems enabled by a solution-processed nanop buffer layer and sputtered ITO electrode. Adv. Mater. 28(20), 3937–3943 (2016). https://doi.org/10.1002/adma.201505279
- J. You, L. Meng, T.B. Song, T.F. Guo, Y.M. Yang et al., Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11, 75–81 (2016). https://doi.org/10.1038/nnano.2015.230
- M. Li, J. Zhou, L. Tan, Y. Liu, S. Wang et al., Brominated PEAI as multi-functional passivator for high-efficiency perovskite solar cell. Energy Environ. Mater. (2022). https://doi.org/10.1002/eem2.12360
- S. Zhu, X. Yao, Q. Ren, C. Zheng, S. Li et al., Transparent electrode for monolithic perovskite/silicon-heterojunction two-terminal tandem solar cells. Nano Energy 45, 280–286 (2018). https://doi.org/10.1016/j.nanoen.2017.12.043
- Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
- C. Zhang, S. Liang, W. Liu, F.T. Eickemeyer, X. Cai et al., Ti1-graphene single-atom material for improved energy level alignment in perovskite solar cells. Nat. Energy 6, 1154–1163 (2021). https://doi.org/10.1038/s41560-021-00944-0
- M. Jeong, I.W. Choi, E.M. Go, Y. Cho, M. Kim et al., Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 369, 1615–1620 (2020). https://doi.org/10.1126/science.abb7167
- R. Li, P. Wang, B. Chen, X. Cui, Y. Ding et al., NiOx/spiro hole transport bilayers for stable perovskite solar cells with efficiency exceeding 21%. ACS Energy Lett. 5(1), 79–86 (2019). https://doi.org/10.1021/acsenergylett.9b02112
- H. Xie, Z. Wang, Z. Chen, C. Pereyra, M. Pols et al., Decoupling the effects of defects on efficiency and stability through phosphonates in stable halide perovskite solar cells. Joule 5, 1246–1266 (2021). https://doi.org/10.1016/j.joule.2021.04.003
- Y. Cheng, C. Xie, X. Liu, G. Zhu, H.W. Li et al., High-power bifacial perovskite solar cells with shelf life of over 2000 h. Sci. Bull. 65, 607–610 (2020). https://doi.org/10.1016/j.scib.2020.02.017
- S. Wu, R. Chen, S. Zhang, B.H. Babu, Y. Yue et al., A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells. Nat. Commun. 10, 1161 (2019). https://doi.org/10.1038/s41467-019-09167-0
References
M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photon. 8, 506–514 (2014). https://doi.org/10.1038/nphoton.2014.134
J.P. Correa-Baena, M. Saliba, T. Buonassisi, M. Grätzel, A. Abate et al., Promises and challenges of perovskite solar cells. Science 358, 739–744 (2017). https://doi.org/10.1126/science.aam6323
J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu et al., Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021). https://doi.org/10.1038/s41586-021-03285-w
M. Karlsson, Z. Yi, S. Reichert, X. Luo, W. Lin et al., Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes. Nat. Commun. 12, 361 (2021). https://doi.org/10.1038/s41467-020-20582-6
Y. Rong, Y. Hu, A. Mei, H. Tan, M.I. Saidaminov et al., Challenges for commercializing perovskite solar cells. Science 361, 1095–9203 (2018). https://doi.org/10.1126/science.aat8235
W.J. Zhao, J. Xu, K. He, Y. Cai, Y. Han et al., A special additive enables all cations and anions passivation for stable perovskite solar cells with efficiency over 23%. Nano-Micro Lett. 13, 169 (2021). https://doi.org/10.1007/s40820-021-00688-2
D. Lan, M.A. Green, Combatting temperature and reverse-bias challenges facing perovskite solar cells. Joule 6, 1782–1797 (2022). https://doi.org/10.1016/j.joule.2022.06.014
Z. Ni, H. Jiao, C. Fei, H. Gu, S. Xu et al., Evolution of defects during the degradation of metal halide perovskite solar cells under reverse bias and illumination. Nat. Energy 7, 65–73 (2021). https://doi.org/10.1038/s41560-021-00949-9
M.V. Khenkin, E.A. Katz, A. Abate, G. Bardizza, J.J. Berry et al., Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020). https://doi.org/10.1038/s41560-019-0529-5
R. Bowring, L. Bertoluzzi, B.C. O’Regan, M.D. McGehee, Reverse bias behavior of halide perovskite solar cells. Adv. Energy Mater. 8(8), 1702365 (2018). https://doi.org/10.1002/aenm.201702365
X. Zhang, T. Shen, D. Guo, L.M. Tang, K. Yang et al., Reviewing and understanding the stability mechanism of halide perovskite solar cells. InfoMat 2, 1034–1056 (2020). https://doi.org/10.1002/inf2.12104
C. Boyd, R. Cheacharoen, K.A. Bush, R. Prasanna, T. Leijtens et al., Barrier design to prevent metal-induced degradation and improve thermal stability in perovskite solar cells. ACS Energy Lett. 3(7), 1772–1778 (2018). https://doi.org/10.1021/acsenergylett.8b00926
Y. Kato, L.K. Ono, M.V. Lee, S. Wang, S.R. Raga et al., Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes. Adv. Mater. Interfaces 2(13), 1500195 (2015). https://doi.org/10.1002/admi.201500195
W. Tress, M. Yavari, K. Domanski, P. Yadav, B. Niesen et al., Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells. Energy Environ. Mater. 11, 151–165 (2018). https://doi.org/10.1039/c7ee02415k
S. Xie, A. Feng, L. Wang, N. Li, X. Cheng et al., Bulk defect suppression of micrometer-thick perovskite single crystals enables stable photovoltaics. ACS Mater. Lett. 4(7), 1332–1340 (2022). https://doi.org/10.1021/acsmaterialslett.2c00317
F. Fu, S. Pisoni, Q. Jeangros, J. Sastre-Pellicer, M. Kawecki et al., I2 vapor-induced degradation of formamidinium lead iodide based perovskite solar cells under heat-light soaking conditions. Energy Environ. Mater. 12, 3074–3088 (2019). https://doi.org/10.1039/c9ee02043h
H. Lee, C. Lee, Analysis of ion-diffusion-induced interface degradation in inverted perovskite solar cells via restoration of the Ag electrode. Adv. Energy Mater. 8(11), 1702197 (2018). https://doi.org/10.1002/aenm.201702197
Y. Cheng, X. Liu, Z. Guan, M. Li, Z. Zeng et al., Revealing the degradation and self-healing mechanisms in perovskite solar cells by sub-bandgap external quantum efficiency spectroscopy. Adv. Mater. 33(3), 2006170 (2021). https://doi.org/10.1002/adma.202006170
N. Li, A. Feng, X. Guo, J. Wu, S. Xie et al., Engineering the hole extraction interface enables single-crystal MAPbI3 perovskite solar cells with efficiency exceeding 22% and superior indoor response. Adv. Energy. Mater 12(7), 2103241 (2021). https://doi.org/10.1002/aenm.202103241
C.T. Lin, J. Ngiam, B. Xu, Y.H. Chang, T. Du et al., Enhancing the operational stability of unencapsulated perovskite solar cells through Cu-Ag bilayer electrode incorporation. J. Mater. Chem. A 8(17), 8684–8691 (2020). https://doi.org/10.1039/d0ta01606c
G. Jeong, D. Koo, J. Seo, S. Jung, Y. Choi et al., Suppressed interdiffusion and degradation in flexible and transparent metal electrode-based perovskite solar cells with a graphene interlayer. Nano Lett. 20, 3718–3727 (2020). https://doi.org/10.1021/acs.nanolett.0c00663
J. Zhao, X. Zheng, Y. Deng, T. Li, Y. Shao et al., Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime? Energy Environ. Mater. 9, 3650–3656 (2016). https://doi.org/10.1039/c6ee02980a
X. Li, S. Fu, W. Zhang, S. Ke, W. Song et al., Chemical anti-corrosion strategy for stable inverted perovskite solar cells. Sci. Adv. 6(51), eabd1580 (2020). https://doi.org/10.1126/sciadv.abd1580
Trading economics. https://tradingeconomics.com/commodities
K.A. Bush, C.D. Bailie, Y. Chen, A.R. Bowring, W. Wang et al., Thermal and environmental stability of semi-transparent perovskite solar cells for tandems enabled by a solution-processed nanop buffer layer and sputtered ITO electrode. Adv. Mater. 28(20), 3937–3943 (2016). https://doi.org/10.1002/adma.201505279
J. You, L. Meng, T.B. Song, T.F. Guo, Y.M. Yang et al., Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11, 75–81 (2016). https://doi.org/10.1038/nnano.2015.230
M. Li, J. Zhou, L. Tan, Y. Liu, S. Wang et al., Brominated PEAI as multi-functional passivator for high-efficiency perovskite solar cell. Energy Environ. Mater. (2022). https://doi.org/10.1002/eem2.12360
S. Zhu, X. Yao, Q. Ren, C. Zheng, S. Li et al., Transparent electrode for monolithic perovskite/silicon-heterojunction two-terminal tandem solar cells. Nano Energy 45, 280–286 (2018). https://doi.org/10.1016/j.nanoen.2017.12.043
Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
C. Zhang, S. Liang, W. Liu, F.T. Eickemeyer, X. Cai et al., Ti1-graphene single-atom material for improved energy level alignment in perovskite solar cells. Nat. Energy 6, 1154–1163 (2021). https://doi.org/10.1038/s41560-021-00944-0
M. Jeong, I.W. Choi, E.M. Go, Y. Cho, M. Kim et al., Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 369, 1615–1620 (2020). https://doi.org/10.1126/science.abb7167
R. Li, P. Wang, B. Chen, X. Cui, Y. Ding et al., NiOx/spiro hole transport bilayers for stable perovskite solar cells with efficiency exceeding 21%. ACS Energy Lett. 5(1), 79–86 (2019). https://doi.org/10.1021/acsenergylett.9b02112
H. Xie, Z. Wang, Z. Chen, C. Pereyra, M. Pols et al., Decoupling the effects of defects on efficiency and stability through phosphonates in stable halide perovskite solar cells. Joule 5, 1246–1266 (2021). https://doi.org/10.1016/j.joule.2021.04.003
Y. Cheng, C. Xie, X. Liu, G. Zhu, H.W. Li et al., High-power bifacial perovskite solar cells with shelf life of over 2000 h. Sci. Bull. 65, 607–610 (2020). https://doi.org/10.1016/j.scib.2020.02.017
S. Wu, R. Chen, S. Zhang, B.H. Babu, Y. Yue et al., A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells. Nat. Commun. 10, 1161 (2019). https://doi.org/10.1038/s41467-019-09167-0