Crystallization and Orientation Modulation Enable Highly Efficient Doctor-Bladed Perovskite Solar Cells
Corresponding Author: Junliang Yang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 164
Abstract
With the rapid rise in perovskite solar cells (PSCs) performance, it is imperative to develop scalable fabrication techniques to accelerate potential commercialization. However, the power conversion efficiencies (PCEs) of PSCs fabricated via scalable two-step sequential deposition lag far behind the state-of-the-art spin-coated ones. Herein, the additive methylammonium chloride (MACl) is introduced to modulate the crystallization and orientation of a two-step sequential doctor-bladed perovskite film in ambient conditions. MACl can significantly improve perovskite film quality and increase grain size and crystallinity, thus decreasing trap density and suppressing nonradiative recombination. Meanwhile, MACl also promotes the preferred face-up orientation of the (100) plane of perovskite film, which is more conducive to the transport and collection of carriers, thereby significantly improving the fill factor. As a result, a champion PCE of 23.14% and excellent long-term stability are achieved for PSCs based on the structure of ITO/SnO2/FA1-xMAxPb(I1-yBry)3/Spiro-OMeTAD/Ag. The superior PCEs of 21.20% and 17.54% are achieved for 1.03 cm2 PSC and 10.93 cm2 mini-module, respectively. These results represent substantial progress in large-scale two-step sequential deposition of high-performance PSCs for practical applications.
Highlights:
1 High quality and strongly oriented perovskite films are prepared by two step doctor blading in air.
2 Methylammonium chloride induced low dimensional intermediate phase regulates the crystallization and orientation of the perovskite.
3 Two step doctor bladed perovskite solar cells achieve a power conversion efficiency (PCE) of 23.14%, while 1.03 cm2 PSCs and 10.93 cm2 mini modules achieve PCEs of 21.20% and 17.54%, respectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu et al., Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021). https://doi.org/10.1038/s41586-021-03285-w
- J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat et al., Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021). https://doi.org/10.1038/s41586-021-03406-5
- Z. Li, B. Li, X. Wu, S.A. Sheppard, S. Zhang et al., Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376(6591), 416–420 (2022). https://doi.org/10.1126/science.abm8566
- J. Park, J. Kim, H.-S. Yun, M.J. Paik, E. Noh et al., Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730 (2023). https://doi.org/10.1038/s41586-023-05825-y
- Y. Xiao, C. Zuo, J.-X. Zhong, W.-Q. Wu, L. Shen et al., Large-area blade-coated solar cells: advances and perspectives. Adv. Energy Mater. 11(21), 2100378 (2021). https://doi.org/10.1002/aenm.202100378
- J. Chang, K. Liu, S. Lin, Y. Yuan, C. Zhou et al., Solution-processed perovskite solar cells. J. Cent. South Univ. 27, 1104–1133 (2020). https://doi.org/10.1007/s11771-020-4353-7
- N.-G. Park, K. Zhu, Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat. Rev. Mater. 5, 333–350 (2020). https://doi.org/10.1038/s41578-019-0176-2
- Y. Zhu, M. Hu, M. Xu, B. Zhang, F. Huang et al., Bilayer metal halide perovskite for efficient and stable solar cells and modules. Mater. Futur. 1(4), 042102 (2022). https://doi.org/10.1088/2752-5724/ac9248
- D.-K. Lee, D.-N. Jeong, T.K. Ahn, N.-G. Park, Precursor engineering for a large-area perovskite solar cell with >19% efficiency. ACS Energy Lett. 4(10), 2393–2401 (2019). https://doi.org/10.1021/acsenergylett.9b01735
- Y. Deng, C.H.V. Brackle, X. Dai, J. Zhao, B. Chen et al., Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films. Sci. Adv. 5(12), eaax7537 (2019). https://doi.org/10.1126/sciadv.aax7537
- Y. Deng, X. Zheng, Y. Bai, Q. Wang, J. Zhao et al., Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nat. Energy 3, 560–566 (2018). https://doi.org/10.1038/s41560-018-0153-9
- T. Bu, L.K. Ono, J. Li, J. Su, G. Tong et al., Modulating crystal growth of formamidinium–caesium perovskites for over 200 cm2 photovoltaic sub-modules. Nat. Energy 7, 528–536 (2022). https://doi.org/10.1038/s41560-022-01039-0
- Z. Wu, E. Bi, C. Li, L. Chen, Z. Song et al., Scalable two-step production of high-efficiency perovskite solar cells and modules. Solar RRL 7(1), 2200571 (2023). https://doi.org/10.1002/solr.202200571
- Z. Li, T.R. Klein, D.H. Kim, M. Yang, J.J. Berry et al., Scalable fabrication of perovskite solar cells. Nat. Rev. Mater. 3, 18017 (2018). https://doi.org/10.1038/natrevmats.2018.17
- Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen et al., Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377(6605), 531–534 (2022). https://doi.org/10.1126/science.abp8873
- F. Guo, W. He, S. Qiu, C. Wang, X. Liu et al., Sequential deposition of high-quality photovoltaic perovskite layers via scalable printing methods. Adv. Funct. Mater. 29(24), 1900964 (2019). https://doi.org/10.1002/adfm.201900964
- Z. Huang, X. Hu, Z. Xing, X. Meng, X. Duan et al., Stabilized and operational PbI2 precursor ink for large-scale perovskite solar cells via two-step blade-coating. J. Phys. Chem. C 124(15), 8129–8139 (2020). https://doi.org/10.1021/acs.jpcc.0c00908
- Q. Liu, Z. Ma, Y. Li, G. Yan, D. Huang et al., Heterogeneous lead iodide obtains perovskite solar cells with efficiency of 24.27%. Chem. Eng. J. 448(15), 137676 (2022). https://doi.org/10.1016/j.cej.2022.137676
- H. Li, C. Zuo, D. Angmo, H. Weerasinghe, M. Gao et al., Fully roll-to-roll processed efficient perovskite solar cells via precise control on the morphology of PbI2:CsI layer. Nano-micro Lett. 14, 79 (2022). https://doi.org/10.1007/s40820-022-00815-7
- C. Liu, L. Zuo, Ding, Self-spreading produces highly efficient perovskite solar cells. Nano Energy 90, 106509 (2021). https://doi.org/10.1016/j.nanoen.2021.106509
- C. Zuo, L. Ding, Drop-casting to make efficient perovskite solar cells under high humidity. Angew. Chem. Int. Ed. 60(20), 11242–11246 (2021). https://doi.org/10.1002/anie.202101868
- F. Matteocci, L. Vesce, F.U. Kosasih, L.A. Castriotta, S. Cacovich et al., Fabrication and morphological characterization of high-efficiency blade-coated perovskite solar modules. ACS Appl. Mater. Interfaces 11(28), 25195–25204 (2019). https://doi.org/10.1021/acsami.9b05730
- N.Y. Nia, M. Zendehdel, L. Cinà, F. Matteocci, A.D. Carlo, A crystal engineering approach for scalable perovskite solar cells and module fabrication: a full out of glove box procedure. J. Mater. Chem. A 6(2), 659–671 (2018). https://doi.org/10.1039/C7TA08038G
- X. Duan, X. Li, L. Tan, Z. Huang, J. Yang et al., Controlling crystal growth via an autonomously longitudinal scaffold for planar perovskite solar cells. Adv. Mater. 32(26), 2000617 (2020). https://doi.org/10.1002/adma.202000617
- Y. Peng, F. Zeng, Y. Cheng, C. Wang, K. Huang et al., Fully Doctor-bladed efficient perovskite solar cells in ambient condition via composition engineering. Org. Electron. 83, 105736 (2020). https://doi.org/10.1016/j.orgel.2020.105736
- J. Zhang, T. Bu, J. Li, H. Li, Y. Mo et al., Two-step sequential blade-coating of high quality perovskite layers for efficient solar cells and modules. J. Mater. Chem. A 8(17), 8447–8454 (2020). https://doi.org/10.1039/D0TA02043E
- W. Yu, J. Li, X. Gao, C. Tian, H. Zhu et al., Two-Step sequential blade-coating large-area FA-based perovskite thin film via a controlled PbI2 microstructure. Acta Phys. Chim. Sin. 39(2), 2203048 (2023). https://doi.org/10.3866/PKU.WHXB202203048
- F. Ye, J. Ma, C. Chen, H. Wang, Y. Xu et al., Roles of MACl in sequentially deposited bromine-free perovskite absorbers for efficient solar cells. Adv. Mater. 33(3), 2007126 (2021). https://doi.org/10.1002/adma.202007126
- M. Kim, G.-H. Kim, T.K. Lee, I.W. Choi, H.W. Choi et al., Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3(9), 2179–2192 (2019). https://doi.org/10.1016/j.joule.2019.06.014
- X. Zhu, H. Dong, J. Chen, J. Xu, Z. Li et al., Photoinduced cross linkable polymerization of flexible perovskite solar cells and modules by incorporating benzyl acrylate. Adv. Funct. Mater. 32(30), 2202408 (2022). https://doi.org/10.1002/adfm.202202408
- Q. Sun, B. Tuo, Z. Ren, T. Xue, Y. Zhang et al., A thiourea competitive crystallization strategy for fa-based perovskite solar cells. Adv. Funct. Mater. 32(51), 2208885 (2022). https://doi.org/10.1002/adfm.202208885
- C. Long, K. Huang, J. Chang, C. Zuo, Y. Gao et al., Creating a dual-functional 2D perovskite layer at the interface to enhance the performance of flexible perovskite solar cells. Small 17(32), 2102368 (2021). https://doi.org/10.1002/smll.202102368
- J. Huang, GIWAXS-Tools, Version [2.1.7], https://gitee.com/swordshinehjy/giwaxs-script
- D.P. McMeekin, P. Holzhey, S.O. Fürer, S.P. Harvey, L.T. Schelhas et al., Intermediate-phase engineering via dimethylammonium cation additive for stable perovskite solar cells. Nat. Mater. 22, 73–83 (2023). https://doi.org/10.1038/s41563-022-01399-8
- Q. Liang, K. Liu, M. Sun, Z. Ren, P.W.K. Fong et al., Manipulating crystallization kinetics in high-performance blade-coated perovskite solar cells via cosolvent-assisted phase transition. Adv. Mater. 34(16), 2200276 (2022). https://doi.org/10.1002/adma.202200276
- H. Li, J. Zhou, L. Tan, M. Li, C. Jiang et al., Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency. Sci. Adv. 8(28), 7422 (2022). https://doi.org/10.1126/sciadv.abo7422
- D.H. Kim, J. Park, Z. Li, M. Yang, J.-S. Park et al., 300% enhancement of carrier mobility in uniaxial-oriented perovskite films formed by topotactic-oriented attachment. Adv. Mater. 29(23), 1606831 (2017). https://doi.org/10.1002/adma.201606831
- Y. Ding, B. Ding, H. Kanda, O.J. Usiobo, T. Gallet et al., Single-crystalline TiO2 nanops for stable and efficient perovskite modules. Nat. Nanotechnol. 17, 598–605 (2022). https://doi.org/10.1038/s41565-022-01108-1
- H. Zhang, J. Cheng, F. Lin, H. He, J. Mao et al., Pinhole-free and surface-nanostructured NiOx film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility. ACS Nano 10(1), 1503–1511 (2016). https://doi.org/10.1021/acsnano.5b07043
- J.W. Jung, C.-C. Chueh, A.K.-Y. Jen, High-performance semitransparent perovskite solar cells with 10% power conversion efficiency and 25% average visible transmittance based on transparent CuSCN as the hole-transporting material. Adv. Energy Mater. 5(17), 1500486 (2015). https://doi.org/10.1002/aenm.201500486
- W. Chen, Y. Wu, J. Fan, A.B. Djurišić, F. Liu et al., Understanding the doping effect on NiO: toward high-performance inverted perovskite solar cells. Adv. Energy Mater. 8(19), 1703519 (2018). https://doi.org/10.1002/aenm.201703519
- Y.-W. Jang, S. Lee, K.M. Yeom, K. Jeong, K. Choi et al., Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat. Energy 6, 63–71 (2021). https://doi.org/10.1038/s41560-020-00749-7
- S. Rühle, Tabulated values of the Shockley-Queisser limit for single junction solar cells. Sol. Energy 130, 139–147 (2016). https://doi.org/10.1016/j.solener.2016.02.015
- Y. Zhao, H. Tan, H. Yuan, Z. Yang, J.Z. Fan et al., Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nat. Commun. 9, 1607 (2018). https://doi.org/10.1038/s41467-018-04029-7
- B. Zong, D. Hu, Q. Sun, J. Deng, Z. Zhang et al., 2, 3, 4, 5, 6-Pentafluorophenylammonium bromide-based double-sided interface engineering for efficient planar heterojunction perovskite solar cells. Chem. Eng. J. 452(2), 139308 (2023). https://doi.org/10.1016/j.cej.2022.139308
- R.H. Bube, Trap density determination by space-charge-limited currents. J. Appl. Phys. 33(5), 1733–1737 (1962). https://doi.org/10.1063/1.1728818
- C. Gong, C. Zhang, Q. Zhuang, H. Li, H. Yang et al., Stabilizing buried interface via synergistic effect of fluorine and sulfonyl functional groups toward efficient and stable perovskite solar cells. Nano-micro Lett. 15, 17 (2023). https://doi.org/10.1007/s40820-022-00992-5
- W. Peng, C. Aranda, O.M. Bakr, G. Garcia-Belmonte, J. Bisquert et al., Quantification of ionic diffusion in lead halide perovskite single crystals. ACS Energy Lett. 3(7), 1477–1481 (2018). https://doi.org/10.1021/acsenergylett.8b00641
- H. Kim, S.-U. Lee, D.Y. Lee, M.J. Paik, H. Na et al., Optimal interfacial engineering with different length of alkylammonium halide for efficient and stable perovskite solar cells. Adv. Energy Mater. 9(47), 1902740 (2019). https://doi.org/10.1002/aenm.201902740
- L.A. Castriotta, M. Zendehdel, N. Yaghoobi Nia, E. Leonardi, M. Löffler et al., Reducing losses in perovskite large area solar technology: laser design optimization for highly efficient modules and minipanels. Adv. Energy Mater. 12, 2103420 (2022). https://doi.org/10.1002/aenm.202103420
- J. Zhang, X. Jiang, X. Liu, X. Guo, C. Li, Maximizing merits of undesirable δ-FAPbI3 by constructing yellow/black heterophase bilayer for efficient and stable perovskite photovoltaics. Adv. Funct. Mater. 32(44), 2204642 (2022). https://doi.org/10.1002/adfm.202204642
References
J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu et al., Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021). https://doi.org/10.1038/s41586-021-03285-w
J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat et al., Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021). https://doi.org/10.1038/s41586-021-03406-5
Z. Li, B. Li, X. Wu, S.A. Sheppard, S. Zhang et al., Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376(6591), 416–420 (2022). https://doi.org/10.1126/science.abm8566
J. Park, J. Kim, H.-S. Yun, M.J. Paik, E. Noh et al., Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730 (2023). https://doi.org/10.1038/s41586-023-05825-y
Y. Xiao, C. Zuo, J.-X. Zhong, W.-Q. Wu, L. Shen et al., Large-area blade-coated solar cells: advances and perspectives. Adv. Energy Mater. 11(21), 2100378 (2021). https://doi.org/10.1002/aenm.202100378
J. Chang, K. Liu, S. Lin, Y. Yuan, C. Zhou et al., Solution-processed perovskite solar cells. J. Cent. South Univ. 27, 1104–1133 (2020). https://doi.org/10.1007/s11771-020-4353-7
N.-G. Park, K. Zhu, Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat. Rev. Mater. 5, 333–350 (2020). https://doi.org/10.1038/s41578-019-0176-2
Y. Zhu, M. Hu, M. Xu, B. Zhang, F. Huang et al., Bilayer metal halide perovskite for efficient and stable solar cells and modules. Mater. Futur. 1(4), 042102 (2022). https://doi.org/10.1088/2752-5724/ac9248
D.-K. Lee, D.-N. Jeong, T.K. Ahn, N.-G. Park, Precursor engineering for a large-area perovskite solar cell with >19% efficiency. ACS Energy Lett. 4(10), 2393–2401 (2019). https://doi.org/10.1021/acsenergylett.9b01735
Y. Deng, C.H.V. Brackle, X. Dai, J. Zhao, B. Chen et al., Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films. Sci. Adv. 5(12), eaax7537 (2019). https://doi.org/10.1126/sciadv.aax7537
Y. Deng, X. Zheng, Y. Bai, Q. Wang, J. Zhao et al., Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nat. Energy 3, 560–566 (2018). https://doi.org/10.1038/s41560-018-0153-9
T. Bu, L.K. Ono, J. Li, J. Su, G. Tong et al., Modulating crystal growth of formamidinium–caesium perovskites for over 200 cm2 photovoltaic sub-modules. Nat. Energy 7, 528–536 (2022). https://doi.org/10.1038/s41560-022-01039-0
Z. Wu, E. Bi, C. Li, L. Chen, Z. Song et al., Scalable two-step production of high-efficiency perovskite solar cells and modules. Solar RRL 7(1), 2200571 (2023). https://doi.org/10.1002/solr.202200571
Z. Li, T.R. Klein, D.H. Kim, M. Yang, J.J. Berry et al., Scalable fabrication of perovskite solar cells. Nat. Rev. Mater. 3, 18017 (2018). https://doi.org/10.1038/natrevmats.2018.17
Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen et al., Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377(6605), 531–534 (2022). https://doi.org/10.1126/science.abp8873
F. Guo, W. He, S. Qiu, C. Wang, X. Liu et al., Sequential deposition of high-quality photovoltaic perovskite layers via scalable printing methods. Adv. Funct. Mater. 29(24), 1900964 (2019). https://doi.org/10.1002/adfm.201900964
Z. Huang, X. Hu, Z. Xing, X. Meng, X. Duan et al., Stabilized and operational PbI2 precursor ink for large-scale perovskite solar cells via two-step blade-coating. J. Phys. Chem. C 124(15), 8129–8139 (2020). https://doi.org/10.1021/acs.jpcc.0c00908
Q. Liu, Z. Ma, Y. Li, G. Yan, D. Huang et al., Heterogeneous lead iodide obtains perovskite solar cells with efficiency of 24.27%. Chem. Eng. J. 448(15), 137676 (2022). https://doi.org/10.1016/j.cej.2022.137676
H. Li, C. Zuo, D. Angmo, H. Weerasinghe, M. Gao et al., Fully roll-to-roll processed efficient perovskite solar cells via precise control on the morphology of PbI2:CsI layer. Nano-micro Lett. 14, 79 (2022). https://doi.org/10.1007/s40820-022-00815-7
C. Liu, L. Zuo, Ding, Self-spreading produces highly efficient perovskite solar cells. Nano Energy 90, 106509 (2021). https://doi.org/10.1016/j.nanoen.2021.106509
C. Zuo, L. Ding, Drop-casting to make efficient perovskite solar cells under high humidity. Angew. Chem. Int. Ed. 60(20), 11242–11246 (2021). https://doi.org/10.1002/anie.202101868
F. Matteocci, L. Vesce, F.U. Kosasih, L.A. Castriotta, S. Cacovich et al., Fabrication and morphological characterization of high-efficiency blade-coated perovskite solar modules. ACS Appl. Mater. Interfaces 11(28), 25195–25204 (2019). https://doi.org/10.1021/acsami.9b05730
N.Y. Nia, M. Zendehdel, L. Cinà, F. Matteocci, A.D. Carlo, A crystal engineering approach for scalable perovskite solar cells and module fabrication: a full out of glove box procedure. J. Mater. Chem. A 6(2), 659–671 (2018). https://doi.org/10.1039/C7TA08038G
X. Duan, X. Li, L. Tan, Z. Huang, J. Yang et al., Controlling crystal growth via an autonomously longitudinal scaffold for planar perovskite solar cells. Adv. Mater. 32(26), 2000617 (2020). https://doi.org/10.1002/adma.202000617
Y. Peng, F. Zeng, Y. Cheng, C. Wang, K. Huang et al., Fully Doctor-bladed efficient perovskite solar cells in ambient condition via composition engineering. Org. Electron. 83, 105736 (2020). https://doi.org/10.1016/j.orgel.2020.105736
J. Zhang, T. Bu, J. Li, H. Li, Y. Mo et al., Two-step sequential blade-coating of high quality perovskite layers for efficient solar cells and modules. J. Mater. Chem. A 8(17), 8447–8454 (2020). https://doi.org/10.1039/D0TA02043E
W. Yu, J. Li, X. Gao, C. Tian, H. Zhu et al., Two-Step sequential blade-coating large-area FA-based perovskite thin film via a controlled PbI2 microstructure. Acta Phys. Chim. Sin. 39(2), 2203048 (2023). https://doi.org/10.3866/PKU.WHXB202203048
F. Ye, J. Ma, C. Chen, H. Wang, Y. Xu et al., Roles of MACl in sequentially deposited bromine-free perovskite absorbers for efficient solar cells. Adv. Mater. 33(3), 2007126 (2021). https://doi.org/10.1002/adma.202007126
M. Kim, G.-H. Kim, T.K. Lee, I.W. Choi, H.W. Choi et al., Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3(9), 2179–2192 (2019). https://doi.org/10.1016/j.joule.2019.06.014
X. Zhu, H. Dong, J. Chen, J. Xu, Z. Li et al., Photoinduced cross linkable polymerization of flexible perovskite solar cells and modules by incorporating benzyl acrylate. Adv. Funct. Mater. 32(30), 2202408 (2022). https://doi.org/10.1002/adfm.202202408
Q. Sun, B. Tuo, Z. Ren, T. Xue, Y. Zhang et al., A thiourea competitive crystallization strategy for fa-based perovskite solar cells. Adv. Funct. Mater. 32(51), 2208885 (2022). https://doi.org/10.1002/adfm.202208885
C. Long, K. Huang, J. Chang, C. Zuo, Y. Gao et al., Creating a dual-functional 2D perovskite layer at the interface to enhance the performance of flexible perovskite solar cells. Small 17(32), 2102368 (2021). https://doi.org/10.1002/smll.202102368
J. Huang, GIWAXS-Tools, Version [2.1.7], https://gitee.com/swordshinehjy/giwaxs-script
D.P. McMeekin, P. Holzhey, S.O. Fürer, S.P. Harvey, L.T. Schelhas et al., Intermediate-phase engineering via dimethylammonium cation additive for stable perovskite solar cells. Nat. Mater. 22, 73–83 (2023). https://doi.org/10.1038/s41563-022-01399-8
Q. Liang, K. Liu, M. Sun, Z. Ren, P.W.K. Fong et al., Manipulating crystallization kinetics in high-performance blade-coated perovskite solar cells via cosolvent-assisted phase transition. Adv. Mater. 34(16), 2200276 (2022). https://doi.org/10.1002/adma.202200276
H. Li, J. Zhou, L. Tan, M. Li, C. Jiang et al., Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency. Sci. Adv. 8(28), 7422 (2022). https://doi.org/10.1126/sciadv.abo7422
D.H. Kim, J. Park, Z. Li, M. Yang, J.-S. Park et al., 300% enhancement of carrier mobility in uniaxial-oriented perovskite films formed by topotactic-oriented attachment. Adv. Mater. 29(23), 1606831 (2017). https://doi.org/10.1002/adma.201606831
Y. Ding, B. Ding, H. Kanda, O.J. Usiobo, T. Gallet et al., Single-crystalline TiO2 nanops for stable and efficient perovskite modules. Nat. Nanotechnol. 17, 598–605 (2022). https://doi.org/10.1038/s41565-022-01108-1
H. Zhang, J. Cheng, F. Lin, H. He, J. Mao et al., Pinhole-free and surface-nanostructured NiOx film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility. ACS Nano 10(1), 1503–1511 (2016). https://doi.org/10.1021/acsnano.5b07043
J.W. Jung, C.-C. Chueh, A.K.-Y. Jen, High-performance semitransparent perovskite solar cells with 10% power conversion efficiency and 25% average visible transmittance based on transparent CuSCN as the hole-transporting material. Adv. Energy Mater. 5(17), 1500486 (2015). https://doi.org/10.1002/aenm.201500486
W. Chen, Y. Wu, J. Fan, A.B. Djurišić, F. Liu et al., Understanding the doping effect on NiO: toward high-performance inverted perovskite solar cells. Adv. Energy Mater. 8(19), 1703519 (2018). https://doi.org/10.1002/aenm.201703519
Y.-W. Jang, S. Lee, K.M. Yeom, K. Jeong, K. Choi et al., Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat. Energy 6, 63–71 (2021). https://doi.org/10.1038/s41560-020-00749-7
S. Rühle, Tabulated values of the Shockley-Queisser limit for single junction solar cells. Sol. Energy 130, 139–147 (2016). https://doi.org/10.1016/j.solener.2016.02.015
Y. Zhao, H. Tan, H. Yuan, Z. Yang, J.Z. Fan et al., Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nat. Commun. 9, 1607 (2018). https://doi.org/10.1038/s41467-018-04029-7
B. Zong, D. Hu, Q. Sun, J. Deng, Z. Zhang et al., 2, 3, 4, 5, 6-Pentafluorophenylammonium bromide-based double-sided interface engineering for efficient planar heterojunction perovskite solar cells. Chem. Eng. J. 452(2), 139308 (2023). https://doi.org/10.1016/j.cej.2022.139308
R.H. Bube, Trap density determination by space-charge-limited currents. J. Appl. Phys. 33(5), 1733–1737 (1962). https://doi.org/10.1063/1.1728818
C. Gong, C. Zhang, Q. Zhuang, H. Li, H. Yang et al., Stabilizing buried interface via synergistic effect of fluorine and sulfonyl functional groups toward efficient and stable perovskite solar cells. Nano-micro Lett. 15, 17 (2023). https://doi.org/10.1007/s40820-022-00992-5
W. Peng, C. Aranda, O.M. Bakr, G. Garcia-Belmonte, J. Bisquert et al., Quantification of ionic diffusion in lead halide perovskite single crystals. ACS Energy Lett. 3(7), 1477–1481 (2018). https://doi.org/10.1021/acsenergylett.8b00641
H. Kim, S.-U. Lee, D.Y. Lee, M.J. Paik, H. Na et al., Optimal interfacial engineering with different length of alkylammonium halide for efficient and stable perovskite solar cells. Adv. Energy Mater. 9(47), 1902740 (2019). https://doi.org/10.1002/aenm.201902740
L.A. Castriotta, M. Zendehdel, N. Yaghoobi Nia, E. Leonardi, M. Löffler et al., Reducing losses in perovskite large area solar technology: laser design optimization for highly efficient modules and minipanels. Adv. Energy Mater. 12, 2103420 (2022). https://doi.org/10.1002/aenm.202103420
J. Zhang, X. Jiang, X. Liu, X. Guo, C. Li, Maximizing merits of undesirable δ-FAPbI3 by constructing yellow/black heterophase bilayer for efficient and stable perovskite photovoltaics. Adv. Funct. Mater. 32(44), 2204642 (2022). https://doi.org/10.1002/adfm.202204642