Functionalized Fiber-Based Strain Sensors: Pathway to Next-Generation Wearable Electronics
Corresponding Author: Yuekun Lai
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 61
Abstract
Wearable strain sensors are arousing increasing research interests in recent years on account of their potentials in motion detection, personal and public healthcare, future entertainment, man–machine interaction, artificial intelligence, and so forth. Much research has focused on fiber-based sensors due to the appealing performance of fibers, including processing flexibility, wearing comfortability, outstanding lifetime and serviceability, low-cost and large-scale capacity. Herein, we review the latest advances in functionalization and device fabrication of fiber materials toward applications in fiber-based wearable strain sensors. We describe the approaches for preparing conductive fibers such as spinning, surface modification, and structural transformation. We also introduce the fabrication and sensing mechanisms of state-of-the-art sensors and analyze their merits and demerits. The applications toward motion detection, healthcare, man–machine interaction, future entertainment, and multifunctional sensing are summarized with typical examples. We finally critically analyze tough challenges and future remarks of fiber-based strain sensors, aiming to implement them in real applications.
Highlights:
1 General principles for fiber functionalization and strain sensor fabrication are briefly reviewed.
2 Future application potentials of wearable strain sensors are summarized and evaluated.
3 Challenges and perspectives of fiber-based wearable strain sensors are critically discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Tan, Z. Dong, Y. Li, H. Zhao, X. Huang et al., A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nat. Commun. 11(1), 3530 (2020). https://doi.org/10.1038/s41467-020-17301-6
- T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Najafabadi et al., A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotech. 6(5), 296–301 (2011). https://doi.org/10.1038/nnano.2011.36
- C.M. Boutry, Y. Kaizawa, B.C. Schroeder, A. Chortos, A. Legrand et al., A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron. 1(5), 314–321 (2018). https://doi.org/10.1038/s41928-018-0071-7
- C. Pang, G.Y. Lee, T.I. Kim, S.M. Kim, H.N. Kim et al., A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Mater. 11(9), 795–801 (2012). https://doi.org/10.1038/nmat3380
- R. Yin, D. Wang, S. Zhao, Z. Lou, G. Shen, Wearable sensors-enabled human-machine interaction systems: from design to application. Adv. Funct. Mater. 31(11), 2008936 (2021). https://doi.org/10.1002/adfm.202008936
- Z. Liu, Y. Zheng, L. Jin, K. Chen, H. Zhai et al., Highly breathable and stretchable strain sensors with insensitive response to pressure and bending. Adv. Funct. Mater. 31(14), 2007622 (2021). https://doi.org/10.1002/adfm.202007622
- M. Chao, Y. Wang, D. Ma, X. Wu, W. Zhang et al., Wearable MXene nanocomposites-based strain sensor with tile-like stacked hierarchical microstructure for broad-range ultrasensitive sensing. Nano Energy 78, 105187 (2020). https://doi.org/10.1016/j.nanoen.2020.105187
- K. Wang, L. Yap, S. Gong, R. Wang, S. Wang et al., Nanowire-based soft wearable human-machine interfaces for future virtual and augmented reality applications. Adv. Funct. Mater. 31(39), 2008347 (2021). https://doi.org/10.1002/adfm.202008347
- D. Son, J. Kang, O. Vardoulis, Y. Kim, N. Matsuhisa et al., An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat. Nanotech. 13(11), 1057–1065 (2018). https://doi.org/10.1038/s41565-018-0244-6
- J. Xiong, J. Chen, P.S. Lee, Functional fibers and fabrics for soft robotics, wearables, and human-robot interface. Adv. Mater. 33(19), 2002640 (2021). https://doi.org/10.1002/adma.202002640
- C. Ning, K. Dong, R. Cheng, J. Yi, C. Ye et al., Flexible and stretchable fiber-shaped triboelectric nanogenerators for biomechanical monitoring and human-interactive sensing. Adv. Funct. Mater. 31(4), 2006679 (2021). https://doi.org/10.1002/adfm.202006679
- C. Li, S. Cong, Z. Tian, Y. Song, L. Yu et al., Flexible perovskite solar cell-driven photo-rechargeable lithium-ion capacitor for self-powered wearable strain sensors. Nano Energy 60, 247–256 (2019). https://doi.org/10.1002/adfm.202006679
- D. Maurya, S. Khaleghian, R. Sriramdas, P. Kumar, R.A. Kishore et al., 3D printed graphene-based self-powered strain sensors for smart tires in autonomous vehicles. Nat. Commun. 11(1), 5392 (2020). https://doi.org/10.1038/s41467-020-19088-y
- M. Dukic, M. Winhold, C.H. Schwalb, J.D. Adams, V. Stavrov et al., Direct-write nanoscale printing of nanogranular tunnelling strain sensors for sub-micrometre cantilevers. Nat. Commun. 7(1), 12487 (2016). https://doi.org/10.1038/ncomms12487
- A. Qiu, P. Li, Z. Yang, Y. Yao, I. Lee et al., A path beyond metal and silicon: polymer/nanomaterial composites for stretchable strain sensors. Adv. Funct. Mater. 29(17), 1806306 (2019). https://doi.org/10.1002/adfm.201806306
- S. Bauer, S. Gogonea, I. Graz, M. Kaltenbrunner, C. Keplinger et al., 25th anniversary article: a soft future: from robots and sensor skin to energy harvesters. Adv. Mater. 26(1), 149–162 (2014). https://doi.org/10.1002/adma.201303349
- M. Lin, N.G. Gutierrez, S. Xu, Soft sensors form a network. Nat. Electron. 2(8), 327–328 (2019). https://doi.org/10.1038/s41928-019-0291-5
- Y. Liu, K. He, G. Chen, W.R. Leow, X. Chen, Nature-inspired structural materials for flexible electronic devices. Chem. Rev. 117(20), 12893–12941 (2017). https://doi.org/10.1002/adma.201405027
- M.J. Cima, Next-generation wearable electronics. Nat. Biotechnol. 32(7), 642–643 (2014). https://doi.org/10.1038/nbt.2952
- M. Melzer, J.I. Mönch, D. Makarov, Y. Zabila, G.S. Bermúdez et al., Wearable magnetic field sensors for flexible electronics. Adv. Mater. 27(7), 1274–1280 (2015). https://doi.org/10.1002/adma.201405027
- X. Wang, Z. Liu, T. Zhang, Flexible sensing electronics for wearable/attachable health monitoring. Small 13(25), 1602790 (2017). https://doi.org/10.1002/smll.201602790
- S. Han, H. Peng, Q. Sun, S. Venkatesh, K.S. Chung et al., An overview of the development of flexible sensors. Adv. Mater. 29(33), 1700375 (2017). https://doi.org/10.1002/adma.201700375
- Y. Liu, C. Yiu, H. Jia, T. Wong, K. Yao et al., Thin, soft, garment-integrated triboelectric nanogenerators for energy harvesting and human machine interfaces. EcoMat 3(4), e12123 (2021). https://doi.org/10.1002/eom2.12123
- C. Sun, X. Wang, M. Auwalu, S. Cheng, W. Hu, Organic thin film transistors-based biosensors. EcoMat 3(2), e12094 (2021). https://doi.org/10.1002/eom2.12094
- X. Tao, S. Liao, Y. Wang, Polymer-assisted fully recyclable flexible sensors. EcoMat 3(2), e12083 (2021). https://doi.org/10.1002/eom2.12083
- R.S. Ganesh, H.J. Yoon, S.W. Kim, Recent trends of biocompatible triboelectric nanogenerators toward self-powered e-skin. EcoMat 2(4), e12065 (2020). https://doi.org/10.1002/eom2.12065
- A.D. Rosa, S.A. Grammatikos, Comparative life cycle assessment of cotton and other natural fibers for textile applications. Fibers 7(12), 101 (2019). https://doi.org/10.3390/fib7120101
- T. Jia, Y. Wang, Y. Dou, Y. Li, M.J. Andrade et al., Moisture sensitive smart yarns and textiles from self-balanced silk fiber muscles. Adv. Funct. Mater. 29(18), 1808241 (2019). https://doi.org/10.1002/adfm.201808241
- A. Koeppel, C. Holland, Progress and trends in artificial silk spinning: a systematic review. ACS Biomater. Sci. Eng. 3(3), 226–237 (2017). https://doi.org/10.1021/acsbiomaterials.6b00669
- Y. Li, M. Zhang, X. Hu, L. Yu, X. Fan et al., Graphdiyne-based flexible respiration sensors for monitoring human health. Nano Today 39, 101214 (2021). https://doi.org/10.1016/j.nantod.2021.101214
- A.I. Robby, G. Lee, K.D. Lee, Y.C. Jang, S.Y. Park, GSH-responsive self-healable conductive hydrogel of highly sensitive strain-pressure sensor for cancer cell detection. Nano Today 39, 101178 (2021). https://doi.org/10.1016/j.nantod.2021.101178
- S. Deng, A.V. Sumant, V. Berry, Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today 22, 14–35 (2018). https://doi.org/10.1016/j.nantod.2018.07.001
- Y. Wang, N. Zhang, Q. Wang, Y. Yu, P. Wang, Chitosan grafting via one-enzyme double catalysis: an effective approach for improving performance of wool. Carbohyd. Polym. 252, 117157 (2021). https://doi.org/10.1016/j.carbpol.2020.117157
- Z. Lou, L. Wang, K. Jiang, G. Shen, Programmable three-dimensional advanced materials based on nanostructures as building blocks for flexible sensors. Nano Today 26, 176–198 (2019). https://doi.org/10.1016/j.nantod.2019.03.002
- M. Sáez-Pérez, M. Brümmer, J. Durán-Suárez, A review of the factors affecting the properties and performance of hemp aggregate concretes. J. Build. Eng. 31, 101323 (2020). https://doi.org/10.1016/j.jobe.2020.101323
- Y. Lu, M. Tian, X. Sun, N. Pan, F. Chen et al., Highly sensitive wearable 3D piezoresistive pressure sensors based on graphene coated isotropic non-woven substrate. Compos. Part A Appl. Sci. Manuf. 117, 202–210 (2019). https://doi.org/10.1016/j.compositesa.2018.11.023
- Y. Chen, B. Xu, J. Gong, J. Wen, T. Hua et al., Design of high-performance wearable energy and sensor electronics from fiber materials. ACS Appl. Mater. Interfaces 11(2), 2120–2129 (2018). https://doi.org/10.1021/acsami.8b16167
- Y. Liu, S. Shang, S. Mo, P. Wang, H. Wang, Eco-friendly strategies for the material and fabrication of wearable sensors. Int. J. Pr. Eng. Manuf. Technol. 8, 1323–1346 (2020). https://doi.org/10.1007/s40684-020-00285-5
- J.S. Heo, J. Eom, Y.H. Kim, S.K. Park, Recent progress of textile-based wearable electronics: a comprehensive review of materials, devices, and applications. Small 14(3), 1703034 (2018). https://doi.org/10.1002/smll.201703034
- W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang et al., Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv. Mater. 26(31), 5310–5336 (2014). https://doi.org/10.1002/adma.201400633
- C. Zhu, E. Chalmers, L. Chen, Y. Wang, B.B. Xu et al., A nature-inspired, flexible substrate strategy for future wearable electronics. Small 15(35), 1902440 (2019). https://doi.org/10.1002/smll.201902440
- T. An, S. Gong, Y. Ling, D. Dong, Y. Zhao et al., Dynamically functioning and highly stretchable epidermal supercapacitor based on vertically aligned gold nanowire skins. EcoMat 2(2), e12022 (2020). https://doi.org/10.1002/eom2.12022
- B. Yang, Y. Xiong, K. Ma, S. Liu, X. Tao, Recent advances in wearable textile-based triboelectric generator systems for energy harvesting from human motion. EcoMat 2(4), e12054 (2020). https://doi.org/10.1002/eom2.12054
- Q. Tang, H. Guo, P. Yan, C. Hu, Recent progresses on paper-based triboelectric nanogenerator for portable self-powered sensing systems. EcoMat 2(4), e12060 (2020). https://doi.org/10.1002/eom2.12060
- S. Chao, H. Ouyang, D. Jiang, Y. Fan, Z. Li, Triboelectric nanogenerator based on degradable materials. EcoMat 3(1), e12072 (2021). https://doi.org/10.1002/eom2.12072
- Y.S. Choi, S. Narayan, Nylon-11 nanowires for triboelectric energy harvesting. EcoMat 2(4), e12063 (2020). https://doi.org/10.1002/eom2.12063
- B. Choi, J. Lee, H. Han, J. Woo, K. Park et al., Highly conductive fiber with waterproof and self-cleaning properties for textile electronics. ACS Appl. Mater. Interfaces 10(42), 36094–36101 (2018). https://doi.org/10.1021/acsami.8b10217
- Y. Gao, G. Yu, T. Shu, Y. Chen, W. Yang et al., 3D-Printed coaxial fibers for integrated wearable sensor skin. Adv. Mater. Technol. 4(10), 1900504 (2019). https://doi.org/10.1002/admt.201900504
- H. Hong, J. Hu, X. Yan, UV curable conductive ink for the fabrication of textile-based conductive circuits and wearable UHF RFID tags. ACS Appl. Mater. Interfaces 11(30), 27318–27326 (2019). https://doi.org/10.1021/acsami.9b06432
- M.S. Sadi, M. Yang, L. Luo, D. Cheng, G. Cai et al., Direct screen printing of single-faced conductive cotton fabrics for strain sensing, electrical heating and color changing. Cellulose 26(10), 6179–6188 (2019). https://doi.org/10.1007/s10570-019-02526-6
- Y. Zhang, W. Zhang, G. Ye, Q. Tan, Y. Zhao et al., Core-sheath stretchable conductive fibers for safe underwater wearable electronics. Adv. Mater. Technol. 5(1), 1900880 (2020). https://doi.org/10.1002/admt.201900880
- T. Liu, Z. He, H. Liu, J. Yang, S. Zhang et al., Heat-resistant and high-performance solid-state supercapacitors based on poly(para-phenylene terephthalamide) fibers via polymer-assisted metal deposition. ACS Appl. Mater. Interfaces 13(15), 18100–18109 (2021). https://doi.org/10.1021/acsami.1c02304
- Y. Yu, C. Yan, Z. Zheng, Polymer-assisted metal Deposition (PAMD): a full-solution strategy for flexible, stretchable, compressible, and wearable metal conductors. Adv. Mater. 26(31), 5508–5516 (2014). https://doi.org/10.1002/adma.201305558
- Y. Li, H. Zhu, F. Shen, J. Wan, X. Han et al., Highly conductive microfiber of graphene oxide templated carbonization of nanofibrillated cellulose. Adv. Funct. Mater. 24(46), 7366–7372 (2014). https://doi.org/10.1002/adfm.201402129
- X. Chen, B. Jia, B. Cai, J. Fang, Z. Chen et al., Graphenized carbon nanofiber: a novel light-trapping and conductive material to achieve an efficiency breakthrough in silicon solar cells. Adv. Mater. 27(5), 849–855 (2015). https://doi.org/10.1002/adma.201404123
- Z. Ma, Q. Huang, Q. Xu, Q. Zhuang, X. Zhao et al., Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat. Mater. 20(6), 859–868 (2021). https://doi.org/10.1038/s41563-020-00902-3
- Z. Liu, K. Chen, A. Fernando, Y. Gao, G. Li et al., Permeable graphited hemp fabrics-based, wearing-comfortable pressure sensors for monitoring human activities. Chem. Eng. J. 403, 126191 (2020). https://doi.org/10.1016/j.cej.2020.126191
- B. Fang, L. Peng, Z. Xu, C. Gao, Wet-spinning of continuous montmorillonite-graphene fibers for fire-resistant lightweight conductors. ACS Nano 9(5), 5214–5222 (2015). https://doi.org/10.1021/acsnano.5b00616
- N. He, W. Shan, J. Wang, Q. Pan, J. Qu et al., Mordant inspired wet-spinning of graphene fibers for high performance flexible supercapacitors. J. Mater. Chem. A 7(12), 6869–6876 (2019). https://doi.org/10.1039/c8ta12337c
- H.D. Jeong, S.G. Kim, G.M. Choi, M. Park, B.C. Ku et al., Theoretical and experimental investigation of the wet-spinning process for mechanically strong carbon nanotube fibers. Chem. Eng. J. 412, 128650 (2021). https://doi.org/10.1016/j.cej.2021.128650
- J.Y. Kim, W. Lee, Y.H. Kang, S.Y. Cho, K.S. Jang, Wet-spinning and post-treatment of CNT/PEDOT:PSS composites for use in organic fiber-based thermoelectric generators. Carbon 133, 293–299 (2018). https://doi.org/10.1016/j.carbon.2018.03.041
- K. Jost, D.P. Durkin, L.M. Haverhals, E.K. Brown, M. Langenstein et al., Natural fiber welded electrode yarns for knittable textile supercapacitors. Adv. Eng. Mater. 5(4), 1401286 (2015). https://doi.org/10.1002/aenm.201401286
- H. Souri, H. Banerjee, A. Jusufi, N. Radacsi, A.A. Stokes et al., Wearable and stretchable strain sensors: materials, sensing mechanisms, and applications. Adv. Intell. Sys. 2(8), 2000039 (2020). https://doi.org/10.1002/aisy.202000039
- S. Gong, L.W. Yap, Y. Zhu, B. Zhu, Y. Wang et al., A soft resistive acoustic sensor based on suspended standing nanowire membranes with point crack design. Adv. Funct. Mater. 30(25), 1910717 (2020). https://doi.org/10.1002/adfm.201910717
- S.Z. Homayounfar, T.L. Andrew, Wearable sensors for monitoring human motion: a review on mechanisms, materials, and challenges. SLAS Technol. 25(1), 9–24 (2020). https://doi.org/10.1177/2472630319891128
- X. Liao, W. Wang, L. Wang, K. Tang, Y. Zheng, Controllably enhancing stretchability of highly sensitive fiber-based strain sensors for intelligent monitoring. ACS Appl. Mater. Interfaces 11(2), 2431–2440 (2018). https://doi.org/10.1021/acsami.8b20245
- L. Chen, M. Lu, H. Yang, J.R.S. Avila, B. Shi et al., Textile-based capacitive sensor for physical rehabilitation via surface topological modification. ACS Nano 14(7), 8191–8201 (2020). https://doi.org/10.1021/acsnano.0c01643
- Y.H. Hsu, C. Chan, W. Tang, Alignment of multiple electrospun piezoelectric fiber bundles across serrated gaps at an incline: a method to generate textile strain sensors. Sci. Rep. 7(1), 15436 (2017). https://doi.org/10.1038/s41598-017-15698-7
- C. Dong, A. Leber, T.D. Gupta, R. Chandran, M. Volpi et al., High-efficiency super-elastic liquid metal based triboelectric fibers and textiles. Nat. Commun. 11(1), 3537 (2020). https://doi.org/10.1038/s41467-020-17345-8
- X. He, Y. Zi, H. Guo, H. Zheng, Y. Xi et al., A highly stretchable fiber-based triboelectric nanogenerator for self-powered wearable electronics. Adv. Funct. Mater. 27(4), 1604378 (2017). https://doi.org/10.1002/adfm.201604378
- L. Duan, D.R. D'hooge, L. Cardon, Recent progress on flexible and stretchable piezoresistive strain sensors: from design to application. Prog. Mater. Sci. 114, 100617 (2020). https://doi.org/10.1016/j.pmatsci.2019.100617
- A. Leber, B. Cholst, J. Sandt, N. Vogel, M. Kolle, Stretchable thermoplastic elastomer optical fibers for sensing of extreme deformations. Adv. Funct. Mater. 29(5), 1802629 (2019). https://doi.org/10.1002/adfm.201802629
- H. Zhao. K. Obrien, S. Li, R.F. Shepherd, Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides. Sci. Robot. 1(1), 7529 (2016). https://doi.org/10.1126/scirobotics.aai7529
- Y. Wu, R. Zhen, H. Liu, S. Liu, Z. Deng et al., Liquid metal fiber composed of a tubular channel as a high-performance strain sensor. J. Mater. Chem. C 5(47), 12483–12491 (2017). https://doi.org/10.1039/c7tc04311b
- T. Huang, P. He, R. Wang, S. Yang, J. Sun et al., Porous fibers composed of polymer nanoball decorated graphene for wearable and highly sensitive strain sensors. Adv. Funct. Mater. 29(45), 1903732 (2019). https://doi.org/10.1002/adfm.201903732
- Y. Wang, J. Hao, Z. Huang, G. Zheng, K. Dai et al., Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring. Carbon 126, 360–371 (2018). https://doi.org/10.1016/j.carbon.2017.10.034
- N. Hu, Y. Karube, M. Arai, T. Watanabe, C. Yan et al., Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor. Carbon 48(3), 680–687 (2010). https://doi.org/10.1016/j.carbon.2009.10.012
- A. Frutiger, J.T. Muth, D.M. Vogt, Y. Mengüç, A. Campo et al., Capacitive soft strain sensors via multicore-shell fiber printing. Adv. Mater. 27(15), 2440–2446 (2015). https://doi.org/10.1002/adma.201500072
- H. Wang, Z. Liu, J. Ding, X. Lepró, S. Fang et al., Downsized sheath-core conducting fibers for weavable superelastic wires, biosensors, supercapacitors, and strain sensors. Adv. Mater. 28(25), 4998–5007 (2016). https://doi.org/10.1002/adma.201600405
- C.B. Cooper, K. Arutselvan, Y. Liu, D. Armstrong, Y. Lin et al., Stretchable capacitive sensors of torsion, strain, and touch using double helix liquid metal fibers. Adv. Funct. Mater. 27(20), 1605630 (2017). https://doi.org/10.1002/adfm.201605630
- C. Choi, J.M. Lee, S.H. Kim, S.J. Kim, J. Di et al., Twistable and stretchable sandwich structured fiber for wearable sensors and supercapacitors. Nano Lett. 16(12), 7677–7684 (2016). https://doi.org/10.1021/acs.nanolett.6b03739
- W. Li, Y. Zhou, Y. Wang, Y. Li, L. Jiang et al., Highly stretchable and sensitive SBS/graphene composite fiber for strain sensors. Macromol. Mater. Eng. 305(3), 1900736 (2020). https://doi.org/10.1002/mame.201900736
- W. Li, Y. Zhou, Y. Wang, L. Jiang, J. Ma et al., Core-sheath fiber-based wearable strain sensor with high stretchability and sensitivity for detecting human motion. Adv. Electron. Mater. 7(1), 2000865 (2021). https://doi.org/10.1002/aelm.202000865
- J. Feng, X. Wang, Z. Lv, J. Qu, X. Lu et al., Multifunctional wearable strain sensor made with an elastic interwoven fabric for patients with motor dysfunction. Adv. Mater. Technol. 5(11), 2000560 (2020). https://doi.org/10.1002/admt.202000560
- L. Wu, L. Li, M. Fan, P. Tang, S. Yang et al., Strong and tough PVA/PAA hydrogel fiber with highly strain sensitivity enabled by coating MWCNTs. Compos. Part A 138, 106050 (2020). https://doi.org/10.1016/j.compositesa.2020.106050
- S. Seyedin, P. Zhang, M. Naebe, S. Qin, J. Chen et al., Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications. Mater. Horiz. 6(2), 219–249 (2019). https://doi.org/10.1039/c8mh01062e
- M. Amjadi, K.U. Kyung, I. Park, M. Sitti, Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26(11), 1678–1698 (2016). https://doi.org/10.1002/adfm.201504755
- H. Souri, D. Bhattacharyya, Highly sensitive, stretchable and wearable strain sensors using fragmented conductive cotton fabric. J. Mater. Chem. C 6(39), 10524–10531 (2018). https://doi.org/10.1039/c8tc03702g
- C.C. Vu, J. Kim, Highly sensitive e-textile strain sensors enhanced by geometrical treatment for human monitoring. Sensors 20(8), 2383 (2020). https://doi.org/10.3390/s20082383
- C. Wang, X. Li, E. Gao, M. Jian, K. Xia et al., Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv. Mater. 28(31), 6640–6648 (2016). https://doi.org/10.1002/adma.201601572
- H. Zhao, Y. Zhang, P.D. Bradford, Q. Zhou, Q. Jia et al., Carbon nanotube yarn strain sensors. Nanotechnology 21(30), 305502 (2010). https://doi.org/10.1088/0957-4484/21/30/305502
- Y. Lu, J. Jiang, S. Yoon, K.S. Kim, J.H. Kim et al., High-performance stretchable conductive composite fibers from surface-modified silver nanowires and thermoplastic polyurethane by wet spinning. ACS Appl. Mater. Interfaces 10(2), 2093–2104 (2018). https://doi.org/10.1021/acsami.7b16022
- Y. Zhao, D. Dong, S. Gong, L. Brassart, Y. Wang et al., A moss-inspired electroless gold-coating strategy toward stretchable fiber conductors by dry spinning. Adv. Electron. Mater. 5(1), 1800462 (2019). https://doi.org/10.1002/aelm.201800462
- S. Ryu, P. Lee, J.B. Chou, R. Xu, R. Zhao et al., Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano 5(1), 1800462 (2019). https://doi.org/10.1021/acsnano.5b00599
- S. Seyedin, J.M. Razal, P.C. Innis, A. Jeiranikhameneh, S. Beirne et al., Knitted strain sensor textiles of highly conductive all-polymeric fibers. ACS Appl. Mater. Interfaces 7(38), 21150–21158 (2015). https://doi.org/10.1021/acsami.5b04892
- J. Zhou, X. Xu, Y. Xin, G. Lubineau, Coaxial thermoplastic elastomer-wrapped carbon nanotube fibers for deformable and wearable strain sensors. Adv. Funct. Mater. 28(16), 1705591 (2018). https://doi.org/10.1002/adfm.201705591
- Z. He, G. Zhou, J.H. Byun, S.K. Lee, M.K. Um et al., Highly stretchable multi-walled carbon nanotube/thermoplastic polyurethane composite fibers for ultrasensitive, wearable strain sensors. Nanoscale 11(13), 5884–5890 (2019). https://doi.org/10.1039/c9nr01005j
- Z. Tang, S. Jia, F. Wang, C. Bian, Y. Chen et al., Highly stretchable core-sheath fibers via wet-spinning for wearable strain sensors. ACS Appl. Mater. Interfaces 10(7), 6624–6635 (2018). https://doi.org/10.1021/acsami.7b18677
- F. Liu, Y. Dong, R. Shi, E. Wang, Q. Ni et al., Continuous graphene fibers prepared by liquid crystal spinning as strain sensors for monitoring vital signs. Mater. Today Commun. 24, 100909 (2020). https://doi.org/10.1016/j.mtcomm.2020.100909
- S. Yu, X. Wang, H. Xiang, L. Zhu, M. Tebyetekerwa et al., Superior piezoresistive strain sensing behaviors of carbon nanotubes in one-dimensional polymer fiber structure. Carbon 140, 1–9 (2018). https://doi.org/10.1016/j.carbon.2018.08.028
- Z. He, J.H. Byun, G. Zhou, B.J. Park, T.H. Kim et al., Effect of MWCNT content on the mechanical and strain-sensing performance of thermoplastic polyurethane composite fibers. Carbon 146, 701–708 (2019). https://doi.org/10.1016/j.carbon.2019.02.060
- G. Yu, J. Li, W. Pan, X. He, Y. Zhang et al., Electromagnetic functionalized ultrafine polymer/γ-Fe2O3 fibers prepared by magnetic-mechanical spinning and their application as strain sensors with ultrahigh stretchability. Compos. Sci. Technol. 139, 1–7 (2017). https://doi.org/10.1016/j.compscitech.2016.12.005
- Y. Shang, X. He, Y. Li, L. Zhang, Z. Li et al., Super-stretchable spring-like carbon nanotube ropes. Adv. Mater. 24(21), 2896–2900 (2012). https://doi.org/10.1002/adma.201200576
- L. Wang, Y. Chen, L. Lin, H. Wang, X. Huang et al., Highly stretchable, anti-corrosive and wearable strain sensors based on the PDMS/CNTs decorated elastomer nanofiber composite. Chem. Eng. J. 362, 89–98 (2019). https://doi.org/10.1016/j.cej.2019.01.014
- B. Sun, Y. Long, S. Liu, Y. Huang, J. Ma et al., Fabrication of curled conducting polymer microfibrous arrays via a novel electrospinning method for stretchable strain sensors. Nanoscale 5(15), 7041–7045 (2013). https://doi.org/10.1039/c3nr01832f
- J. Zheng, X. Yan, M. Li, G. Yu, H. Zhang et al., Electrospun aligned fibrous arrays and twisted ropes: fabrication, mechanical and electrical properties, and application in strain sensors. Nanoscale Res. Lett. 10(1), 475 (2015). https://doi.org/10.1186/s11671-015-1184-9
- Q. Liu, M. Zhang, L. Huang, Y. Li, J. Chen et al., High-quality graphene ribbons prepared from graphene oxide hydrogels and their application for strain sensors. ACS Nano 9(12), 12320–12326 (2015). https://doi.org/10.1021/acsnano.5b05609
- J.R. Quijano, P. Pötschke, H. Brünig, G. Heinrich, Strain sensing, electrical and mechanical properties of polycarbonate/multiwall carbon nanotube monofilament fibers fabricated by melt spinning. Polymer 82, 181–189 (2016). https://doi.org/10.1016/j.polymer.2015.11.030
- M. Zhang, C. Wang, Q. Wang, M. Jian, Y. Zhang, Sheath-core graphite/silk fiber made by dry-meyer-rod-coating for wearable strain sensors. ACS Appl. Mater. Interfaces 8(32), 20894–20899 (2016). https://doi.org/10.1021/acsami.6b06984
- Y. Li, P. Huang, W. Zhu, S. Fu, N. Hu et al., Flexible wire-shaped strain sensor from cotton thread for human health and motion detection. Sci. Rep. 7(1), 45013 (2017). https://doi.org/10.1038/srep45013
- B. Liang, Z. Lin, W. Chen, Z. He, J. Zhong et al., Ultra-stretchable and highly sensitive strain sensor based on gradient structure carbon nanotubes. Nanoscale 10(28), 13599–13606 (2018). https://doi.org/10.1039/c8nr02528b
- L. Zhu, X. Zhou, Y. Liu, Q. Fu, Highly sensitive, ultrastretchable strain sensors prepared by pumping hybrid fillers of carbon nanotubes/cellulose nanocrystal into electrospun polyurethane membranes. ACS Appl. Mater. Interfaces 11(13), 12968–12977 (2019). https://doi.org/10.1021/acsami.9b00136
- S. Chen, Z. Lou, D. Chen, K. Jiang, G. Shen, Polymer-enhanced highly stretchable conductive fiber strain sensor used for electronic data gloves. Adv. Mater. Technol. 1(7), 1600136 (2016). https://doi.org/10.1002/admt.201600136
- X. Liao, Q. Liao, Z. Zhang, X. Yan, Q. Liang et al., A highly stretchable ZnO@fiber-based multifunctional nanosensor for strain/temperature/UV detection. Adv. Funct. Mater. 26(18), 3074–3081 (2016). https://doi.org/10.1002/adfm.201505223
- Z. Liu, D. Qi, G. Hu, H. Wang, Y. Jiang et al., Surface strain redistribution on structured microfibers to enhance sensitivity of fiber-shaped stretchable strain sensors. Adv. Mater. 30(5), 1704229 (2018). https://doi.org/10.1002/adma.201704229
- P. Li, Y. Zhang, Z. Zheng, Polymer-assisted metal deposition (PAMD) for flexible and wearable electronics: principle, materials, printing, and devices. Adv. Mater. 31(37), 1902987 (2019). https://doi.org/10.1002/adma.201902987
- R. Guo, Y. Yu, J. Zeng, X. Liu, X. Zhou et al., Biomimicking topographic elastomeric petals (e-petals) for omnidirectional stretchable and printable electronics. Adv. Sci. 2(3), 1400021 (2015). https://doi.org/10.1002/advs.201400021
- C. Zhu, X. Guan, X. Wang, Y. Li, E. Chalmers et al., Mussel-inspired flexible, durable, and conductive fibers manufacturing for finger-monitoring sensors. Adv. Mater. Interfaces 6(1), 1801547 (2019). https://doi.org/10.1002/admi.201801547
- J. Eom, R. Jaisutti, H. Lee, W. Lee, J. Heo et al., Highly sensitive textile strain sensors and wireless user-interface devices using all-polymeric conducting fibers. ACS Appl. Mater. Interfaces 9(11), 10190–10197 (2017). https://doi.org/10.1021/acsami.7b01771
- X. Wu, Y. Han, X. Zhang, C. Lu, Highly sensitive, stretchable, and wash-durable strain sensor based on ultrathin conductive layer@polyurethane yarn for tiny motion monitoring. ACS Appl. Mater. Interfaces 8(15), 9936–9945 (2016). https://doi.org/10.1021/acsami.6b01174
- Y. Cheng, R. Wang, J. Sun, L. Gao, A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv. Mater. 27(45), 7365–7371 (2015). https://doi.org/10.1002/adma.201503558
- J. Zhong, Q. Zhong, Q. Hu, N. Wu, W. Li et al., Stretchable self-powered fiber-based strain sensor. Adv. Funct. Mater. 25(12), 1798–1803 (2015). https://doi.org/10.1002/adfm.201404087
- J. Lee, S. Shin, S. Lee, J. Song, S. Kang et al., Highly sensitive multifilament fiber strain sensors with ultrabroad sensing range for textile electronics. ACS Nano 12(5), 4259–4268 (2018). https://doi.org/10.1021/acsnano.7b07795
- X. Wang, Y. Qiu, W. Cao, P. Hu, Highly stretchable and conductive core-sheath chemical vapor deposition graphene fibers and their applications in safe strain sensors. Chem. Mater. 27(20), 6969–6975 (2015). https://doi.org/10.1021/acs.chemmater.5b02098
- X. Li, H. Hu, T. Hua, B. Xu, S. Jiang, Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors. Nano Res. 11(11), 5799–5811 (2018). https://doi.org/10.1007/s12274-018-2043-7
- X. Li, P. Sun, L. Fan, M. Zhu, K. Wang et al., Multifunctional graphene woven fabrics. Sci. Rep. 2, 395 (2012). https://doi.org/10.1038/srep00395
- X. Liu, C. Tang, X. Du, S. Xiong, S. Xi et al., A highly sensitive graphene woven fabric strain sensor for wearable wireless musical instruments. Mater. Horiz. 4(3), 477–486 (2017). https://doi.org/10.1039/c7mh00104e
- T. Lee, W. Lee, S.W. Kim, J.J. Kim, B.S. Kim, Flexible textile strain wireless sensor functionalized with hybrid carbon nanomaterials supported ZnO nanowires with controlled aspect ratio. Adv. Funct. Mater. 26(34), 6206–6214 (2016). https://doi.org/10.1002/adfm.201601237
- N. Karim, S. Afroj, S. Tan, P. He, A. Fernando et al., Scalable production of graphene-based wearable e-textiles. ACS Nano 11(12), 12266–12275 (2017). https://doi.org/10.1021/acsnano.7b05921
- S. He, B. Xin, Z. Chen, Y. Liu, Flexible and highly conductive Ag/G-coated cotton fabric based on graphene dipping and silver magnetron sputtering. Cellulose 25(6), 3691–3701 (2018). https://doi.org/10.1007/s10570-018-1821-4
- J. Ren, C. Wang, X. Zhang, T. Carey, K. Chen et al., Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide. Carbon 111, 622–630 (2017). https://doi.org/10.1016/j.carbon.2016.10.045
- Y. Fu, Y. Li, Y. Liu, P. Huang, N. Hu et al., High-performance structural flexible strain sensors based on graphene-coated glass fabric/silicone composite. ACS Appl. Mater. Interfaces 10(41), 35503–35509 (2018). https://doi.org/10.1021/acsami.8b09424
- L. Xu, Z. Liu, H. Zhai, X. Chen, R. Sun et al., Moisture-resilient graphene-dyed wool fabric for strain sensing. ACS Appl. Mater. Interfaces 12(11), 13265–13274 (2020). https://doi.org/10.1021/acsami.9b20964
- Z. Yang, Y. Pang, X.L. Han, Y. Yang, J. Ling et al., Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano 12(9), 9134–9141 (2018). https://doi.org/10.1021/acsnano.8b03391
- G. Cai, M. Yang, Z. Xu, J. Liu, B. Tang et al., Flexible and wearable strain sensing fabrics. Chem. Eng. J. 325, 396–403 (2017). https://doi.org/10.1016/j.cej.2017.05.091
- M.S. Sadi, J. Pan, A. Xu, D. Cheng, G. Cai et al., Direct dip-coating of carbon nanotubes onto polydopamine-templated cotton fabrics for wearable applications. Cellulose 26(12), 7569–7579 (2019). https://doi.org/10.1007/s10570-019-02628-1
- C. Zhang, G. Zhou, W. Rao, L. Fan, W. Xu et al., A simple method of fabricating nickel-coated cotton fabrics for wearable strain sensor. Cellulose 25(8), 4859–4870 (2018). https://doi.org/10.1007/s10570-018-1893-1
- H. Liu, Q. Li, Y. Bu, N. Zhang, C. Wang et al., Stretchable conductive nonwoven fabrics with self-cleaning capability for tunable wearable strain sensor. Nano Energy 66, 104143 (2019). https://doi.org/10.1016/j.nanoen.2019.104143
- J. Hu, X. Zhang, G. Li, X. Yang, X. Ding, Electrical properties of PPy-coated conductive fabrics for human joint motion monitoring. Autex Res. J. 16(1), 7–12 (2016). https://doi.org/10.1515/aut-2015-0048
- S.Y. Cho, Y.S. Yun, S. Lee, D. Jang, K.Y. Park et al., Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein. Nat. Commun. 6, 7145 (2015). https://doi.org/10.1038/ncomms8145
- M. Zhang, C. Wang, H. Wang, M. Jian, X. Hao et al., Carbonized cotton fabric for high-performance wearable strain sensors. Adv. Funct. Mater. 27(2), 1604795 (2017). https://doi.org/10.1002/adfm.201604795
- C. Wang, K. Xia, M. Jian, H. Wang, M. Zhang et al., Carbonized silk georgette as an ultrasensitive wearable strain sensor for full-range human activity monitoring. J. Mater. Chem. C 5(30), 7604–7611 (2017). https://doi.org/10.1039/c7tc01962a
- S. Chen, Y. Song, D. Ding, Z. Ling, F. Xu, Flexible and anisotropic strain sensor based on carbonized crepe paper with aligned cellulose fibers. Adv. Funct. Mater. 28(42), 1802547 (2018). https://doi.org/10.1002/adfm.201802547
- C. Wang, M. Zhang, K. Xia, X. Gong, H. Wang et al., Intrinsically stretchable and conductive textile by a scalable process for elastic wearable electronics. ACS Appl. Mater. Interfaces 9(15), 13331–13338 (2017). https://doi.org/10.1021/acsami.7b02985
- S. Jang, J. Kim, D.W. Kim, J.W. Kim, S. Chun et al., Carbon-based, ultraelastic, hierarchically coated fiber strain sensors with crack-controllable beads. ACS Appl. Mater. Interfaces 11(16), 15079–15087 (2019). https://doi.org/10.1021/acsami.9b03204
- W.S. Lee, D. Kim, B. Park, H. Joh, H.K. Woo et al., Multiaxial and transparent strain sensors based on synergetically reinforced and orthogonally cracked hetero-nanocrystal solids. Adv. Funct. Mater. 29(4), 1806714 (2019). https://doi.org/10.1002/adfm.201806714
- J. Wu, Z. Ma, Z. Hao, J.T. Zhang, P. Sun et al., Sheath-core fiber strain sensors driven by in-situ crack and elastic effects in graphite nanoplate composites. ACS Appl. Nano Mater. 2(2), 750–759 (2019). https://doi.org/10.1021/acsanm.8b01926
- J. Ryu, J. Kim, J. Oh, S. Lim, J.Y. Sim et al., Intrinsically stretchable multi-functional fiber with energy harvesting and strain sensing capability. Nano Energy 55, 348–353 (2019). https://doi.org/10.1016/j.nanoen.2018.10.071
- Y. Wang, L. Wang, T. Yang, X. Li, X. Zang et al., Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv. Funct. Mater. 24(29), 4666–4670 (2014). https://doi.org/10.1002/adfm.201400379
- X. Li, R. Zhang, W. Yu, K. Wang, J. Wei et al., Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci. Rep. 2, 870 (2012). https://doi.org/10.1038/srep00870
- B. Yin, Y. Wen, T. Hong, Z. Xie, G. Yuan et al., Highly stretchable, ultrasensitive, and wearable strain sensors based on facilely prepared reduced graphene oxide woven fabrics in an ethanol flame. ACS Appl. Mater. Interfaces 9(37), 32054–32064 (2017). https://doi.org/10.1021/acsami.7b09652
- F. Guo, X. Cui, K. Wang, J. Wei, Stretchable and compressible strain sensors based on carbon nanotube meshes. Nanoscale 8(46), 19352–19358 (2016). https://doi.org/10.1039/c6nr06804a
- Z. Liu, Z. Li, H. Zhai, L. Jin, K. Chen et al., A highly sensitive stretchable strain sensor based on multi-functionalized fabric for respiration monitoring and identification. Chem. Eng. J. 426, 130869 (2021). https://doi.org/10.1016/j.cej.2021.130869
- J.J. Park, W.J. Hyun, S.C. Mun, Y.T. Park, O.O. Park, Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring. ACS Appl. Mater. Interfaces 7(11), 6317–6324 (2015). https://doi.org/10.1021/acsami.5b00695
- M. Li, H. Li, W. Zhong, Q. Zhao, D. Wang, Stretchable conductive polypyrrole/polyurethane (PPy/PU) strain sensor with netlike microcracks for human breath detection. ACS Appl. Mater. Interfaces 6(2), 1313–1319 (2014). https://doi.org/10.1021/am4053305
- K.H. Kim, N.S. Jang, S.H. Ha, J.H. Cho, J.M. Kim, Highly sensitive and stretchable resistive strain sensors based on microstructured metal nanowire/elastomer composite films. Small 14(14), 1704232 (2018). https://doi.org/10.1002/smll.201704232
- H. Song, J. Zhang, D. Chen, K. Wang, S. Niu et al., Superfast and high-sensitivity printable strain sensors with bioinspired micron-scale cracks. Nanoscale 9(3), 1166–1173 (2017). https://doi.org/10.1039/c6nr07333f
- X. Liao, Z. Zhang, Z. Kang, F. Gao, Q. Liao et al., Ultrasensitive and stretchable resistive strain sensors designed for wearable electronics. Mater. Horiz. 4(3), 502–510 (2017). https://doi.org/10.1039/c7mh00071e
- A. Lekawa-Raus, K.K. Koziol, A.H. Windle, Piezoresistive effect in carbon nanotube fibers. ACS Nano 8(11), 11214–11224 (2014). https://doi.org/10.1021/nn503596f
- Q. Liao, M. Mohr, X. Zhang, Z. Zhang, Y. Zhang et al., Carbon fiber-ZnO nanowire hybrid structures for flexible and adaptable strain sensors. Nanoscale 5(24), 12350–12355 (2013). https://doi.org/10.1039/c3nr03536k
- J.H. Pu, X.J. Zha, M. Zhao, S. Li, R.Y. Bao et al., 2D end-to-end carbon nanotube conductive networks in polymer nanocomposites: a conceptual design to dramatically enhance the sensitivities of strain sensors. Nanoscale 10(5), 2191–2198 (2018). https://doi.org/10.1039/c7nr08077h
- M. Hempel, D. Nezich, J. Kong, M. Hofmann, A novel class of strain gauges based on layered percolative films of 2D materials. Nano Lett. 12(11), 5714–5718 (2012). https://doi.org/10.1021/nl302959a
- J. Ma, P. Wang, H. Chen, S. Bao, W. Chen et al., Highly sensitive and large-range strain sensor with a self-compensated two-order structure for human motion detection. ACS Appl. Mater. Interfaces 11(8), 8527–8536 (2019). https://doi.org/10.1021/nl302959a
- C. Yan, J. Wang, W. Kang, M. Cui, X. Wang et al., Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors. Adv. Mater. 26(13), 2022–2027 (2014). https://doi.org/10.1002/adma.201304742
- X. Xiao, L. Yuan, J. Zhong, T. Ding, Y. Liu et al., High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films. Adv. Mater. 23(45), 5440–5444 (2011). https://doi.org/10.1002/adma.201103406
- M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8(5), 5154–5163 (2014). https://doi.org/10.1021/nn501204t
- J. Zhao, G.Y. Zhang, D.X. Shi, Review of graphene-based strain sensors. Chinese Phys. B 22(5), 057701 (2013). https://doi.org/10.1088/1674-1056/22/5/057701
- S. Zhu, J.H. So, R. Mays, S. Desai, W.R. Barnes et al., Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core. Adv. Funct. Mater. 23(18), 2308–2314 (2013). https://doi.org/10.1002/adfm.201202405
- F. Xu, Y. Zhu, Highly conductive and stretchable silver nanowire conductors. Adv. Mater. 24(37), 5117–5122 (2012). https://doi.org/10.1002/adma.201201886
- L. Chen, M. Lu, H. Yang, J.R.S. Avila, B. Shi et al., Textile based capacitive sensor for physical rehabilitation via surface topological modification. ACS Nano 14(7), 8191–8201 (2020). https://doi.org/10.1021/acsnano.0c01643
- Z. Li, M. Zhu, J. Shen, Q. Qiu, J. Yu et al., All-fiber structured electronic skin with high elasticity and breathability. Adv. Funct. Mater. 30(6), 1908411 (2019). https://doi.org/10.1002/adfm.201908411
- Z. Zhao, Q. Huang, C. Yan, Y. Liu, X. Zeng et al., Machine-washable and breathable pressure sensors based on triboelectric nanogenerators enabled by textile technologies. Nano Energy 70, 104528 (2020). https://doi.org/10.1016/j.nanoen.2020.104528
- W. Zhong, C. Liu, C. Xiang, Y. Jin, M. Li et al., Continuously producible ultrasensitive wearable strain sensor assembled with three-dimensional interpenetrating Ag nanowires/polyolefin elastomer nanofibrous composite yarn. ACS Appl. Mater. Interfaces 9(48), 42058–42066 (2017). https://doi.org/10.1021/acsami.7b11431
- C. Zhu, R. Li, X. Chen, E. Chalmers, X. Liu et al., Ultraelastic yarns from curcumin-assisted ELD toward wearable human-machine interface textiles. Adv. Sci. 7(23), 2002009 (2020). https://doi.org/10.1002/advs.202002009
- J. Pan, M. Yang, L. Luo, A. Xu, B. Tang et al., Stretchable and highly sensitive braided composite yarn@polydopamine@polypyrrole for wearable applications. ACS Appl. Mater. Interfaces 11(7), 7338–7348 (2019). https://doi.org/10.1021/acsami.8b18823
- X. Liu, D. Liu, J.H. Lee, Q. Zheng, X. Du et al., Spider-web-inspired stretchable graphene woven fabric for highly sensitive, transparent, wearable strain sensors. ACS Appl. Mater. Interfaces 11(2), 2282–2294 (2018). https://doi.org/10.1021/acsami.8b18312
- S. Wang, H. Ning, N. Hu, Y. Liu, F. Liu et al., Environmentally-friendly and multifunctional graphene-silk fabric strain sensor for human-motion detection. Adv. Mater. Interfaces 7(1), 1901507 (2020). https://doi.org/10.1002/admi.201901507
- S. Chen, S. Liu, P. Wang, H. Liu, L. Liu, Highly stretchable fiber-shaped e-textiles for strain/pressure sensing, full-range human motions detection, health monitoring, and 2D force mapping. J. Mater. Sci. 53(4), 2995–3005 (2018). https://doi.org/10.1007/s10853-017-1644-y
- D.H. Ho, S. Cheon, P. Hong, J.H. Park, J.W. Suk et al., Multifunctional smart textronics with blow-spun nonwoven fabrics. Adv. Funct. Mater. 29(24), 1900025 (2019). https://doi.org/10.1002/adfm.201900025
- S. Park, S. Ahn, J. Sun, D. Bhatia, D. Choi et al., Highly bendable and rotational textile structure with prestrained conductive sewing pattern for human joint monitoring. Adv. Funct. Mater. 29(10), 1808369 (2019). https://doi.org/10.1002/adfm.201808369
- J. Park, S. Park, S. Ahn, Y. Cho, J.J. Park et al., Wearable strain sensor using conductive yarn sewed on clothing for human respiratory monitoring. IEEE Sens. J. 20(21), 12628–12636 (2020). https://doi.org/10.1109/jsen.2020.3000923
- M. Tian, R. Zhao, L. Qu, Z. Chen, S. Chen et al., Stretchable and designable textile pattern strain sensors based on graphene decorated conductive nylon filaments. Macromol. Mater. Eng. 304(10), 1900244 (2019). https://doi.org/10.1002/mame.201900244
- M. Park, J. Im, M. Shin, Y. Min, J. Park et al., Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotech. 7(12), 803–809 (2012). https://doi.org/10.1038/nnano.2012.206
- D. Du, P. Li, J. Ouyang, Graphene coated nonwoven fabrics as wearable sensors. J. Mater. Chem. C 4(15), 3224–3230 (2016). https://doi.org/10.1039/c6tc00350h
- J. Ge, L. Sun, F.R. Zhang, Y. Zhang, L.A. Shi et al., A stretchable electronic fabric artificial skin with pressure-, lateral strain-, and flexion-sensitive properties. Adv. Mater. 28(4), 722–728 (2016). https://doi.org/10.1002/adma.201504239
- W. Root, T. Wright, B. Caven, T. Bechtold, T. Pham, Flexible textile strain sensor based on copper-coated lyocell type cellulose fabric. Polymers 11(5), 784 (2019). https://doi.org/10.3390/polym11050784
- K. Kim, G. Song, C. Park, K.S. Yun, Multifunctional woven structure operating as triboelectric energy harvester, capacitive tactile sensor array, and piezoresistive strain sensor array. Sensors 17(11), 2582 (2017). https://doi.org/10.3390/s17112582
- J. Foroughi, G.M. Spinks, S. Aziz, A. Mirabedini, A. Jeiranikhameneh et al., Knitted carbon-nanotube-sheath/spandex-core elastomeric yarns for artificial muscles and strain sensing. ACS Nano 10(10), 9129–9135 (2016). https://doi.org/10.1021/acsnano.6b04125
- Y. Huang, S.V. Kershaw, Z. Wang, Z. Pei, J. Liu et al., Highly integrated supercapacitor-sensor systems via material and geometry design. Small 12(25), 3393–3399 (2016). https://doi.org/10.1002/smll.201601041
- S. Yang, C. Li, X. Chen, Y. Zhao, H. Zhang et al., Facile fabrication of high-performance pen ink-decorated textile strain sensors for human motion detection. ACS Appl. Mater. Interfaces 12(17), 19874–19881 (2020). https://doi.org/10.1021/acsami.9b22534
- J. Xie, H. Long, M. Miao, High sensitivity knitted fabric strain sensors. Smart Mater. Struct. 25(10), 105008 (2016). https://doi.org/10.1088/0964-1726/25/10/105008
- O. Atalay, W.R. Kennon, M.D. Husain, Textile-based weft knitted strain sensors: effect of fabric parameters on sensor properties. Sensors 13(8), 11114–11127 (2013). https://doi.org/10.3390/s130811114
- Y. Yang, L. Shi, Z. Cao, R. Wang, J. Sun, Strain sensors with a high sensitivity and a wide sensing range based on a Ti3C2Tx (MXene) nanoparticle-nanosheet hybrid network. Adv. Funct. Mater. 29(14), 1807882 (2019). https://doi.org/10.1002/adfm.201807882
- S. Duan, Z. Wang, L. Zhang, J. Liu, C. Li, A highly stretchable, sensitive, and transparent strain sensor based on binary hybrid network consisting of hierarchical multiscale metal nanowires. Adv. Mater. Technol. 3(6), 1800020 (2018). https://doi.org/10.1002/admt.201800020
- J.H. Lee, J. Kim, D. Liu, F. Guo, X. Shen et al., Highly aligned, anisotropic carbon nanofiber films for multidirectional strain sensors with exceptional selectivity. Adv. Funct. Mater. 29(29), 1901623 (2019). https://doi.org/10.1002/adfm.201901623
- B. Wang, K. Yang, H. Cheng, T. Ye, C. Wang, A hydrophobic conductive strip with outstanding one-dimensional stretchability for wearable heater and strain sensor. Chem. Eng. J. 404, 126393 (2020). https://doi.org/10.1016/j.cej.2020.126393
- N. Gogurla, B. Roy, J.Y. Park, S. Kim, Skin-contact actuated single-electrode protein triboelectric nanogenerator and strain sensor for biomechanical energy harvesting and motion sensing. Nano Energy 62, 674–681 (2019). https://doi.org/10.1016/j.nanoen.2019.05.082
- S.L. Zhang, Y.C. Lai, X. He, R. Liu, Y. Zi et al., Auxetic foam-based contact-mode triboelectric nanogenerator with highly sensitive self-powered strain sensing capabilities to monitor human body movement. Adv. Funct. Mater. 27(25), 1606695 (2017). https://doi.org/10.1002/adfm.201606695
- S. Huang, B. Zhang, Z. Shao, L. He, Q. Zhang et al., Ultraminiaturized stretchable strain sensors based on single silicon nanowires for imperceptible electronic skins. Nano Lett. 20(4), 2478–2485 (2020). https://doi.org/10.1021/acs.nanolett.9b05217
- O. Atalay, A. Atalay, J. Gafford, H. Wang, R. Wood et al., A highly stretchable capacitive-based strain sensor based on metal deposition and laser rastering. Adv. Mater. Technol. 2(9), 1700081 (2017). https://doi.org/10.1002/admt.201700081
- Y. Cai, J. Shen, G. Ge, Y. Zhang, W. Jin et al., Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 12(1), 56–62 (2018). https://doi.org/10.1021/acsnano.7b06251
- Y. Wang, Y. Wang, Y. Yang, Graphene-polymer nanocomposite-based redox-induced electricity for flexible self-powered strain sensors. Adv. Eng. Mater. 8(22), 1800961 (2018). https://doi.org/10.1002/aenm.201800961
- L. Pan, G. Liu, W. Shi, J. Shang, W.R. Leow et al., Mechano-regulated metal-organic framework nanofilm for ultrasensitive and anti-jamming strain sensing. Nat. Commun. 9(1), 3813 (2018). https://doi.org/10.1038/s41467-018-06079-3
- J. Lee, S.J. Ihle, G.S. Pellegrino, H. Kim, J. Yea et al., Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain. Nat. Electron. 4(4), 291–301 (2021). https://doi.org/10.1038/s41928-021-00557-1
- H. Wu, Q. Liu, W. Du, C. Li, G. Shi, Transparent polymeric strain sensors for monitoring vital signs and beyond. ACS Appl. Mater. Interfaces 10(4), 3895–3901 (2018). https://doi.org/10.1021/acsami.7b19014
- S. Niu, N. Matsuhisa, L. Beker, J. Li, S. Wang et al., A wireless body area sensor network based on stretchable passive tags. Nat. Electron. 2(8), 361–368 (2019). https://doi.org/10.1038/s41928-019-0286-2
- R. Lin, H.J. Kim, S. Achavananthadith, S.A. Kurt, S.C. Tan et al., Wireless battery-free body sensor networks using near-field-enabled clothing. Nat. Commun. 11(1), 444 (2020). https://doi.org/10.1038/s41467-020-14311-2
- Y.J. Yun, J. Ju, J.H. Lee, S.H. Moon, S.J. Park et al., Highly elastic graphene-based electronics toward electronic skin. Adv. Funct. Mater. 27(33), 1701513 (2017). https://doi.org/10.1002/adfm.201701513
- Y. Zhang, Y. Huang, X. Sun, Y. Zhao, X. Guo et al., Static and dynamic human arm/hand gesture capturing and recognition via multiinformation fusion of flexible strain sensors. IEEE Sens. J. 20(12), 6450–6459 (2020). https://doi.org/10.1109/JSEN.2020.2965580
- S. Choi, K. Yoon, S. Lee, H.J. Lee, J. Lee et al., Conductive hierarchical hairy fibers for highly sensitive, stretchable, and water-resistant multimodal gesture-distinguishable sensor. VR applications. Adv. Funct. Mater. 29(50), 1905808 (2019). https://doi.org/10.1002/adfm.201905808
- M. Zhu, Z. Sun, Z. Zhang, Q. Shi, T. He et al., Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications. Sci. Adv. 6(19), eaaz8693 (2020). https://doi.org/10.1126/sciadv.aaz8693
- O.A. Araromi, M.A. Graule, K.L. Dorsey, S. Castellanos, J.R. Foster et al., Ultra-sensitive and resilient compliant strain gauges for soft machines. Nature 587(7833), 219–224 (2020). https://doi.org/10.1038/s41586-020-2892-6
- S. Takamatsu, T. Lonjaret, E. Ismailova, A. Masuda, T. Itoh et al., Wearable keyboard using conducting polymer electrodes on textiles. Adv. Mater. 28(22), 4485–4488 (2016). https://doi.org/10.1002/adma.201504249
- S.M. Jeong, Y. Kang, T. Lim, S. Ju, Hydrophobic microfiber strain sensor operating stably in sweat and water environment. Adv. Mater. Interfaces 5(24), 1801376 (2018). https://doi.org/10.1002/admi.201801376
- Y. Zhao, M. Ren, Y. Shang, J. Li, S. Wang et al., Ultra-sensitive and durable strain sensor with sandwich structure and excellent anti-interference ability for wearable electronic skins. Compos. Sci. Technol. 200, 108448 (2020). https://doi.org/10.1016/j.compscitech.2020.108448
- M. Nankali, N.M. Nouri, N.G. Malek, M. Amjadi, Dynamic thermoelectromechanical characterization of carbon nanotube nanocomposite strain sensors. Sens. Actuat. A Phys. 332, 113122 (2021). https://doi.org/10.1016/j.sna.2021.113122
- M. Nankali, N.M. Nouri, M. Navidbakhsh, N.G. Malek, M.A. Amindehghan et al., Highly stretchable and sensitive strain sensors based on carbon nanotube–elastomer nanocomposites: the effect of environmental factors on strain sensing performance. J. Mater. Chem. C 8(18), 6185–6195 (2020). https://doi.org/10.1039/d0tc00373e
- L. Lu, B. Yang, J. Liu, Flexible multifunctional graphite nanosheet/electrospun-polyamide 66 nanocomposite sensor for ECG, strain, temperature and gas measurements. Chem. Eng. J. 400, 125928 (2020) https://doi.org/10.1016/j.cej.2020.125928.
- C. Wang, K. Xia, M. Zhang, M. Jian, Y. Zhang, An all-silk-derived dual-mode e-skin for simultaneous temperature–pressure detection. ACS Appl. Mater. Interfaces 9(45), 39484–39492 (2017). https://doi.org/10.1021/acsami.7b13356
References
C. Tan, Z. Dong, Y. Li, H. Zhao, X. Huang et al., A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nat. Commun. 11(1), 3530 (2020). https://doi.org/10.1038/s41467-020-17301-6
T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Najafabadi et al., A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotech. 6(5), 296–301 (2011). https://doi.org/10.1038/nnano.2011.36
C.M. Boutry, Y. Kaizawa, B.C. Schroeder, A. Chortos, A. Legrand et al., A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron. 1(5), 314–321 (2018). https://doi.org/10.1038/s41928-018-0071-7
C. Pang, G.Y. Lee, T.I. Kim, S.M. Kim, H.N. Kim et al., A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Mater. 11(9), 795–801 (2012). https://doi.org/10.1038/nmat3380
R. Yin, D. Wang, S. Zhao, Z. Lou, G. Shen, Wearable sensors-enabled human-machine interaction systems: from design to application. Adv. Funct. Mater. 31(11), 2008936 (2021). https://doi.org/10.1002/adfm.202008936
Z. Liu, Y. Zheng, L. Jin, K. Chen, H. Zhai et al., Highly breathable and stretchable strain sensors with insensitive response to pressure and bending. Adv. Funct. Mater. 31(14), 2007622 (2021). https://doi.org/10.1002/adfm.202007622
M. Chao, Y. Wang, D. Ma, X. Wu, W. Zhang et al., Wearable MXene nanocomposites-based strain sensor with tile-like stacked hierarchical microstructure for broad-range ultrasensitive sensing. Nano Energy 78, 105187 (2020). https://doi.org/10.1016/j.nanoen.2020.105187
K. Wang, L. Yap, S. Gong, R. Wang, S. Wang et al., Nanowire-based soft wearable human-machine interfaces for future virtual and augmented reality applications. Adv. Funct. Mater. 31(39), 2008347 (2021). https://doi.org/10.1002/adfm.202008347
D. Son, J. Kang, O. Vardoulis, Y. Kim, N. Matsuhisa et al., An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat. Nanotech. 13(11), 1057–1065 (2018). https://doi.org/10.1038/s41565-018-0244-6
J. Xiong, J. Chen, P.S. Lee, Functional fibers and fabrics for soft robotics, wearables, and human-robot interface. Adv. Mater. 33(19), 2002640 (2021). https://doi.org/10.1002/adma.202002640
C. Ning, K. Dong, R. Cheng, J. Yi, C. Ye et al., Flexible and stretchable fiber-shaped triboelectric nanogenerators for biomechanical monitoring and human-interactive sensing. Adv. Funct. Mater. 31(4), 2006679 (2021). https://doi.org/10.1002/adfm.202006679
C. Li, S. Cong, Z. Tian, Y. Song, L. Yu et al., Flexible perovskite solar cell-driven photo-rechargeable lithium-ion capacitor for self-powered wearable strain sensors. Nano Energy 60, 247–256 (2019). https://doi.org/10.1002/adfm.202006679
D. Maurya, S. Khaleghian, R. Sriramdas, P. Kumar, R.A. Kishore et al., 3D printed graphene-based self-powered strain sensors for smart tires in autonomous vehicles. Nat. Commun. 11(1), 5392 (2020). https://doi.org/10.1038/s41467-020-19088-y
M. Dukic, M. Winhold, C.H. Schwalb, J.D. Adams, V. Stavrov et al., Direct-write nanoscale printing of nanogranular tunnelling strain sensors for sub-micrometre cantilevers. Nat. Commun. 7(1), 12487 (2016). https://doi.org/10.1038/ncomms12487
A. Qiu, P. Li, Z. Yang, Y. Yao, I. Lee et al., A path beyond metal and silicon: polymer/nanomaterial composites for stretchable strain sensors. Adv. Funct. Mater. 29(17), 1806306 (2019). https://doi.org/10.1002/adfm.201806306
S. Bauer, S. Gogonea, I. Graz, M. Kaltenbrunner, C. Keplinger et al., 25th anniversary article: a soft future: from robots and sensor skin to energy harvesters. Adv. Mater. 26(1), 149–162 (2014). https://doi.org/10.1002/adma.201303349
M. Lin, N.G. Gutierrez, S. Xu, Soft sensors form a network. Nat. Electron. 2(8), 327–328 (2019). https://doi.org/10.1038/s41928-019-0291-5
Y. Liu, K. He, G. Chen, W.R. Leow, X. Chen, Nature-inspired structural materials for flexible electronic devices. Chem. Rev. 117(20), 12893–12941 (2017). https://doi.org/10.1002/adma.201405027
M.J. Cima, Next-generation wearable electronics. Nat. Biotechnol. 32(7), 642–643 (2014). https://doi.org/10.1038/nbt.2952
M. Melzer, J.I. Mönch, D. Makarov, Y. Zabila, G.S. Bermúdez et al., Wearable magnetic field sensors for flexible electronics. Adv. Mater. 27(7), 1274–1280 (2015). https://doi.org/10.1002/adma.201405027
X. Wang, Z. Liu, T. Zhang, Flexible sensing electronics for wearable/attachable health monitoring. Small 13(25), 1602790 (2017). https://doi.org/10.1002/smll.201602790
S. Han, H. Peng, Q. Sun, S. Venkatesh, K.S. Chung et al., An overview of the development of flexible sensors. Adv. Mater. 29(33), 1700375 (2017). https://doi.org/10.1002/adma.201700375
Y. Liu, C. Yiu, H. Jia, T. Wong, K. Yao et al., Thin, soft, garment-integrated triboelectric nanogenerators for energy harvesting and human machine interfaces. EcoMat 3(4), e12123 (2021). https://doi.org/10.1002/eom2.12123
C. Sun, X. Wang, M. Auwalu, S. Cheng, W. Hu, Organic thin film transistors-based biosensors. EcoMat 3(2), e12094 (2021). https://doi.org/10.1002/eom2.12094
X. Tao, S. Liao, Y. Wang, Polymer-assisted fully recyclable flexible sensors. EcoMat 3(2), e12083 (2021). https://doi.org/10.1002/eom2.12083
R.S. Ganesh, H.J. Yoon, S.W. Kim, Recent trends of biocompatible triboelectric nanogenerators toward self-powered e-skin. EcoMat 2(4), e12065 (2020). https://doi.org/10.1002/eom2.12065
A.D. Rosa, S.A. Grammatikos, Comparative life cycle assessment of cotton and other natural fibers for textile applications. Fibers 7(12), 101 (2019). https://doi.org/10.3390/fib7120101
T. Jia, Y. Wang, Y. Dou, Y. Li, M.J. Andrade et al., Moisture sensitive smart yarns and textiles from self-balanced silk fiber muscles. Adv. Funct. Mater. 29(18), 1808241 (2019). https://doi.org/10.1002/adfm.201808241
A. Koeppel, C. Holland, Progress and trends in artificial silk spinning: a systematic review. ACS Biomater. Sci. Eng. 3(3), 226–237 (2017). https://doi.org/10.1021/acsbiomaterials.6b00669
Y. Li, M. Zhang, X. Hu, L. Yu, X. Fan et al., Graphdiyne-based flexible respiration sensors for monitoring human health. Nano Today 39, 101214 (2021). https://doi.org/10.1016/j.nantod.2021.101214
A.I. Robby, G. Lee, K.D. Lee, Y.C. Jang, S.Y. Park, GSH-responsive self-healable conductive hydrogel of highly sensitive strain-pressure sensor for cancer cell detection. Nano Today 39, 101178 (2021). https://doi.org/10.1016/j.nantod.2021.101178
S. Deng, A.V. Sumant, V. Berry, Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today 22, 14–35 (2018). https://doi.org/10.1016/j.nantod.2018.07.001
Y. Wang, N. Zhang, Q. Wang, Y. Yu, P. Wang, Chitosan grafting via one-enzyme double catalysis: an effective approach for improving performance of wool. Carbohyd. Polym. 252, 117157 (2021). https://doi.org/10.1016/j.carbpol.2020.117157
Z. Lou, L. Wang, K. Jiang, G. Shen, Programmable three-dimensional advanced materials based on nanostructures as building blocks for flexible sensors. Nano Today 26, 176–198 (2019). https://doi.org/10.1016/j.nantod.2019.03.002
M. Sáez-Pérez, M. Brümmer, J. Durán-Suárez, A review of the factors affecting the properties and performance of hemp aggregate concretes. J. Build. Eng. 31, 101323 (2020). https://doi.org/10.1016/j.jobe.2020.101323
Y. Lu, M. Tian, X. Sun, N. Pan, F. Chen et al., Highly sensitive wearable 3D piezoresistive pressure sensors based on graphene coated isotropic non-woven substrate. Compos. Part A Appl. Sci. Manuf. 117, 202–210 (2019). https://doi.org/10.1016/j.compositesa.2018.11.023
Y. Chen, B. Xu, J. Gong, J. Wen, T. Hua et al., Design of high-performance wearable energy and sensor electronics from fiber materials. ACS Appl. Mater. Interfaces 11(2), 2120–2129 (2018). https://doi.org/10.1021/acsami.8b16167
Y. Liu, S. Shang, S. Mo, P. Wang, H. Wang, Eco-friendly strategies for the material and fabrication of wearable sensors. Int. J. Pr. Eng. Manuf. Technol. 8, 1323–1346 (2020). https://doi.org/10.1007/s40684-020-00285-5
J.S. Heo, J. Eom, Y.H. Kim, S.K. Park, Recent progress of textile-based wearable electronics: a comprehensive review of materials, devices, and applications. Small 14(3), 1703034 (2018). https://doi.org/10.1002/smll.201703034
W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang et al., Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv. Mater. 26(31), 5310–5336 (2014). https://doi.org/10.1002/adma.201400633
C. Zhu, E. Chalmers, L. Chen, Y. Wang, B.B. Xu et al., A nature-inspired, flexible substrate strategy for future wearable electronics. Small 15(35), 1902440 (2019). https://doi.org/10.1002/smll.201902440
T. An, S. Gong, Y. Ling, D. Dong, Y. Zhao et al., Dynamically functioning and highly stretchable epidermal supercapacitor based on vertically aligned gold nanowire skins. EcoMat 2(2), e12022 (2020). https://doi.org/10.1002/eom2.12022
B. Yang, Y. Xiong, K. Ma, S. Liu, X. Tao, Recent advances in wearable textile-based triboelectric generator systems for energy harvesting from human motion. EcoMat 2(4), e12054 (2020). https://doi.org/10.1002/eom2.12054
Q. Tang, H. Guo, P. Yan, C. Hu, Recent progresses on paper-based triboelectric nanogenerator for portable self-powered sensing systems. EcoMat 2(4), e12060 (2020). https://doi.org/10.1002/eom2.12060
S. Chao, H. Ouyang, D. Jiang, Y. Fan, Z. Li, Triboelectric nanogenerator based on degradable materials. EcoMat 3(1), e12072 (2021). https://doi.org/10.1002/eom2.12072
Y.S. Choi, S. Narayan, Nylon-11 nanowires for triboelectric energy harvesting. EcoMat 2(4), e12063 (2020). https://doi.org/10.1002/eom2.12063
B. Choi, J. Lee, H. Han, J. Woo, K. Park et al., Highly conductive fiber with waterproof and self-cleaning properties for textile electronics. ACS Appl. Mater. Interfaces 10(42), 36094–36101 (2018). https://doi.org/10.1021/acsami.8b10217
Y. Gao, G. Yu, T. Shu, Y. Chen, W. Yang et al., 3D-Printed coaxial fibers for integrated wearable sensor skin. Adv. Mater. Technol. 4(10), 1900504 (2019). https://doi.org/10.1002/admt.201900504
H. Hong, J. Hu, X. Yan, UV curable conductive ink for the fabrication of textile-based conductive circuits and wearable UHF RFID tags. ACS Appl. Mater. Interfaces 11(30), 27318–27326 (2019). https://doi.org/10.1021/acsami.9b06432
M.S. Sadi, M. Yang, L. Luo, D. Cheng, G. Cai et al., Direct screen printing of single-faced conductive cotton fabrics for strain sensing, electrical heating and color changing. Cellulose 26(10), 6179–6188 (2019). https://doi.org/10.1007/s10570-019-02526-6
Y. Zhang, W. Zhang, G. Ye, Q. Tan, Y. Zhao et al., Core-sheath stretchable conductive fibers for safe underwater wearable electronics. Adv. Mater. Technol. 5(1), 1900880 (2020). https://doi.org/10.1002/admt.201900880
T. Liu, Z. He, H. Liu, J. Yang, S. Zhang et al., Heat-resistant and high-performance solid-state supercapacitors based on poly(para-phenylene terephthalamide) fibers via polymer-assisted metal deposition. ACS Appl. Mater. Interfaces 13(15), 18100–18109 (2021). https://doi.org/10.1021/acsami.1c02304
Y. Yu, C. Yan, Z. Zheng, Polymer-assisted metal Deposition (PAMD): a full-solution strategy for flexible, stretchable, compressible, and wearable metal conductors. Adv. Mater. 26(31), 5508–5516 (2014). https://doi.org/10.1002/adma.201305558
Y. Li, H. Zhu, F. Shen, J. Wan, X. Han et al., Highly conductive microfiber of graphene oxide templated carbonization of nanofibrillated cellulose. Adv. Funct. Mater. 24(46), 7366–7372 (2014). https://doi.org/10.1002/adfm.201402129
X. Chen, B. Jia, B. Cai, J. Fang, Z. Chen et al., Graphenized carbon nanofiber: a novel light-trapping and conductive material to achieve an efficiency breakthrough in silicon solar cells. Adv. Mater. 27(5), 849–855 (2015). https://doi.org/10.1002/adma.201404123
Z. Ma, Q. Huang, Q. Xu, Q. Zhuang, X. Zhao et al., Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat. Mater. 20(6), 859–868 (2021). https://doi.org/10.1038/s41563-020-00902-3
Z. Liu, K. Chen, A. Fernando, Y. Gao, G. Li et al., Permeable graphited hemp fabrics-based, wearing-comfortable pressure sensors for monitoring human activities. Chem. Eng. J. 403, 126191 (2020). https://doi.org/10.1016/j.cej.2020.126191
B. Fang, L. Peng, Z. Xu, C. Gao, Wet-spinning of continuous montmorillonite-graphene fibers for fire-resistant lightweight conductors. ACS Nano 9(5), 5214–5222 (2015). https://doi.org/10.1021/acsnano.5b00616
N. He, W. Shan, J. Wang, Q. Pan, J. Qu et al., Mordant inspired wet-spinning of graphene fibers for high performance flexible supercapacitors. J. Mater. Chem. A 7(12), 6869–6876 (2019). https://doi.org/10.1039/c8ta12337c
H.D. Jeong, S.G. Kim, G.M. Choi, M. Park, B.C. Ku et al., Theoretical and experimental investigation of the wet-spinning process for mechanically strong carbon nanotube fibers. Chem. Eng. J. 412, 128650 (2021). https://doi.org/10.1016/j.cej.2021.128650
J.Y. Kim, W. Lee, Y.H. Kang, S.Y. Cho, K.S. Jang, Wet-spinning and post-treatment of CNT/PEDOT:PSS composites for use in organic fiber-based thermoelectric generators. Carbon 133, 293–299 (2018). https://doi.org/10.1016/j.carbon.2018.03.041
K. Jost, D.P. Durkin, L.M. Haverhals, E.K. Brown, M. Langenstein et al., Natural fiber welded electrode yarns for knittable textile supercapacitors. Adv. Eng. Mater. 5(4), 1401286 (2015). https://doi.org/10.1002/aenm.201401286
H. Souri, H. Banerjee, A. Jusufi, N. Radacsi, A.A. Stokes et al., Wearable and stretchable strain sensors: materials, sensing mechanisms, and applications. Adv. Intell. Sys. 2(8), 2000039 (2020). https://doi.org/10.1002/aisy.202000039
S. Gong, L.W. Yap, Y. Zhu, B. Zhu, Y. Wang et al., A soft resistive acoustic sensor based on suspended standing nanowire membranes with point crack design. Adv. Funct. Mater. 30(25), 1910717 (2020). https://doi.org/10.1002/adfm.201910717
S.Z. Homayounfar, T.L. Andrew, Wearable sensors for monitoring human motion: a review on mechanisms, materials, and challenges. SLAS Technol. 25(1), 9–24 (2020). https://doi.org/10.1177/2472630319891128
X. Liao, W. Wang, L. Wang, K. Tang, Y. Zheng, Controllably enhancing stretchability of highly sensitive fiber-based strain sensors for intelligent monitoring. ACS Appl. Mater. Interfaces 11(2), 2431–2440 (2018). https://doi.org/10.1021/acsami.8b20245
L. Chen, M. Lu, H. Yang, J.R.S. Avila, B. Shi et al., Textile-based capacitive sensor for physical rehabilitation via surface topological modification. ACS Nano 14(7), 8191–8201 (2020). https://doi.org/10.1021/acsnano.0c01643
Y.H. Hsu, C. Chan, W. Tang, Alignment of multiple electrospun piezoelectric fiber bundles across serrated gaps at an incline: a method to generate textile strain sensors. Sci. Rep. 7(1), 15436 (2017). https://doi.org/10.1038/s41598-017-15698-7
C. Dong, A. Leber, T.D. Gupta, R. Chandran, M. Volpi et al., High-efficiency super-elastic liquid metal based triboelectric fibers and textiles. Nat. Commun. 11(1), 3537 (2020). https://doi.org/10.1038/s41467-020-17345-8
X. He, Y. Zi, H. Guo, H. Zheng, Y. Xi et al., A highly stretchable fiber-based triboelectric nanogenerator for self-powered wearable electronics. Adv. Funct. Mater. 27(4), 1604378 (2017). https://doi.org/10.1002/adfm.201604378
L. Duan, D.R. D'hooge, L. Cardon, Recent progress on flexible and stretchable piezoresistive strain sensors: from design to application. Prog. Mater. Sci. 114, 100617 (2020). https://doi.org/10.1016/j.pmatsci.2019.100617
A. Leber, B. Cholst, J. Sandt, N. Vogel, M. Kolle, Stretchable thermoplastic elastomer optical fibers for sensing of extreme deformations. Adv. Funct. Mater. 29(5), 1802629 (2019). https://doi.org/10.1002/adfm.201802629
H. Zhao. K. Obrien, S. Li, R.F. Shepherd, Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides. Sci. Robot. 1(1), 7529 (2016). https://doi.org/10.1126/scirobotics.aai7529
Y. Wu, R. Zhen, H. Liu, S. Liu, Z. Deng et al., Liquid metal fiber composed of a tubular channel as a high-performance strain sensor. J. Mater. Chem. C 5(47), 12483–12491 (2017). https://doi.org/10.1039/c7tc04311b
T. Huang, P. He, R. Wang, S. Yang, J. Sun et al., Porous fibers composed of polymer nanoball decorated graphene for wearable and highly sensitive strain sensors. Adv. Funct. Mater. 29(45), 1903732 (2019). https://doi.org/10.1002/adfm.201903732
Y. Wang, J. Hao, Z. Huang, G. Zheng, K. Dai et al., Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring. Carbon 126, 360–371 (2018). https://doi.org/10.1016/j.carbon.2017.10.034
N. Hu, Y. Karube, M. Arai, T. Watanabe, C. Yan et al., Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor. Carbon 48(3), 680–687 (2010). https://doi.org/10.1016/j.carbon.2009.10.012
A. Frutiger, J.T. Muth, D.M. Vogt, Y. Mengüç, A. Campo et al., Capacitive soft strain sensors via multicore-shell fiber printing. Adv. Mater. 27(15), 2440–2446 (2015). https://doi.org/10.1002/adma.201500072
H. Wang, Z. Liu, J. Ding, X. Lepró, S. Fang et al., Downsized sheath-core conducting fibers for weavable superelastic wires, biosensors, supercapacitors, and strain sensors. Adv. Mater. 28(25), 4998–5007 (2016). https://doi.org/10.1002/adma.201600405
C.B. Cooper, K. Arutselvan, Y. Liu, D. Armstrong, Y. Lin et al., Stretchable capacitive sensors of torsion, strain, and touch using double helix liquid metal fibers. Adv. Funct. Mater. 27(20), 1605630 (2017). https://doi.org/10.1002/adfm.201605630
C. Choi, J.M. Lee, S.H. Kim, S.J. Kim, J. Di et al., Twistable and stretchable sandwich structured fiber for wearable sensors and supercapacitors. Nano Lett. 16(12), 7677–7684 (2016). https://doi.org/10.1021/acs.nanolett.6b03739
W. Li, Y. Zhou, Y. Wang, Y. Li, L. Jiang et al., Highly stretchable and sensitive SBS/graphene composite fiber for strain sensors. Macromol. Mater. Eng. 305(3), 1900736 (2020). https://doi.org/10.1002/mame.201900736
W. Li, Y. Zhou, Y. Wang, L. Jiang, J. Ma et al., Core-sheath fiber-based wearable strain sensor with high stretchability and sensitivity for detecting human motion. Adv. Electron. Mater. 7(1), 2000865 (2021). https://doi.org/10.1002/aelm.202000865
J. Feng, X. Wang, Z. Lv, J. Qu, X. Lu et al., Multifunctional wearable strain sensor made with an elastic interwoven fabric for patients with motor dysfunction. Adv. Mater. Technol. 5(11), 2000560 (2020). https://doi.org/10.1002/admt.202000560
L. Wu, L. Li, M. Fan, P. Tang, S. Yang et al., Strong and tough PVA/PAA hydrogel fiber with highly strain sensitivity enabled by coating MWCNTs. Compos. Part A 138, 106050 (2020). https://doi.org/10.1016/j.compositesa.2020.106050
S. Seyedin, P. Zhang, M. Naebe, S. Qin, J. Chen et al., Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications. Mater. Horiz. 6(2), 219–249 (2019). https://doi.org/10.1039/c8mh01062e
M. Amjadi, K.U. Kyung, I. Park, M. Sitti, Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26(11), 1678–1698 (2016). https://doi.org/10.1002/adfm.201504755
H. Souri, D. Bhattacharyya, Highly sensitive, stretchable and wearable strain sensors using fragmented conductive cotton fabric. J. Mater. Chem. C 6(39), 10524–10531 (2018). https://doi.org/10.1039/c8tc03702g
C.C. Vu, J. Kim, Highly sensitive e-textile strain sensors enhanced by geometrical treatment for human monitoring. Sensors 20(8), 2383 (2020). https://doi.org/10.3390/s20082383
C. Wang, X. Li, E. Gao, M. Jian, K. Xia et al., Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv. Mater. 28(31), 6640–6648 (2016). https://doi.org/10.1002/adma.201601572
H. Zhao, Y. Zhang, P.D. Bradford, Q. Zhou, Q. Jia et al., Carbon nanotube yarn strain sensors. Nanotechnology 21(30), 305502 (2010). https://doi.org/10.1088/0957-4484/21/30/305502
Y. Lu, J. Jiang, S. Yoon, K.S. Kim, J.H. Kim et al., High-performance stretchable conductive composite fibers from surface-modified silver nanowires and thermoplastic polyurethane by wet spinning. ACS Appl. Mater. Interfaces 10(2), 2093–2104 (2018). https://doi.org/10.1021/acsami.7b16022
Y. Zhao, D. Dong, S. Gong, L. Brassart, Y. Wang et al., A moss-inspired electroless gold-coating strategy toward stretchable fiber conductors by dry spinning. Adv. Electron. Mater. 5(1), 1800462 (2019). https://doi.org/10.1002/aelm.201800462
S. Ryu, P. Lee, J.B. Chou, R. Xu, R. Zhao et al., Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano 5(1), 1800462 (2019). https://doi.org/10.1021/acsnano.5b00599
S. Seyedin, J.M. Razal, P.C. Innis, A. Jeiranikhameneh, S. Beirne et al., Knitted strain sensor textiles of highly conductive all-polymeric fibers. ACS Appl. Mater. Interfaces 7(38), 21150–21158 (2015). https://doi.org/10.1021/acsami.5b04892
J. Zhou, X. Xu, Y. Xin, G. Lubineau, Coaxial thermoplastic elastomer-wrapped carbon nanotube fibers for deformable and wearable strain sensors. Adv. Funct. Mater. 28(16), 1705591 (2018). https://doi.org/10.1002/adfm.201705591
Z. He, G. Zhou, J.H. Byun, S.K. Lee, M.K. Um et al., Highly stretchable multi-walled carbon nanotube/thermoplastic polyurethane composite fibers for ultrasensitive, wearable strain sensors. Nanoscale 11(13), 5884–5890 (2019). https://doi.org/10.1039/c9nr01005j
Z. Tang, S. Jia, F. Wang, C. Bian, Y. Chen et al., Highly stretchable core-sheath fibers via wet-spinning for wearable strain sensors. ACS Appl. Mater. Interfaces 10(7), 6624–6635 (2018). https://doi.org/10.1021/acsami.7b18677
F. Liu, Y. Dong, R. Shi, E. Wang, Q. Ni et al., Continuous graphene fibers prepared by liquid crystal spinning as strain sensors for monitoring vital signs. Mater. Today Commun. 24, 100909 (2020). https://doi.org/10.1016/j.mtcomm.2020.100909
S. Yu, X. Wang, H. Xiang, L. Zhu, M. Tebyetekerwa et al., Superior piezoresistive strain sensing behaviors of carbon nanotubes in one-dimensional polymer fiber structure. Carbon 140, 1–9 (2018). https://doi.org/10.1016/j.carbon.2018.08.028
Z. He, J.H. Byun, G. Zhou, B.J. Park, T.H. Kim et al., Effect of MWCNT content on the mechanical and strain-sensing performance of thermoplastic polyurethane composite fibers. Carbon 146, 701–708 (2019). https://doi.org/10.1016/j.carbon.2019.02.060
G. Yu, J. Li, W. Pan, X. He, Y. Zhang et al., Electromagnetic functionalized ultrafine polymer/γ-Fe2O3 fibers prepared by magnetic-mechanical spinning and their application as strain sensors with ultrahigh stretchability. Compos. Sci. Technol. 139, 1–7 (2017). https://doi.org/10.1016/j.compscitech.2016.12.005
Y. Shang, X. He, Y. Li, L. Zhang, Z. Li et al., Super-stretchable spring-like carbon nanotube ropes. Adv. Mater. 24(21), 2896–2900 (2012). https://doi.org/10.1002/adma.201200576
L. Wang, Y. Chen, L. Lin, H. Wang, X. Huang et al., Highly stretchable, anti-corrosive and wearable strain sensors based on the PDMS/CNTs decorated elastomer nanofiber composite. Chem. Eng. J. 362, 89–98 (2019). https://doi.org/10.1016/j.cej.2019.01.014
B. Sun, Y. Long, S. Liu, Y. Huang, J. Ma et al., Fabrication of curled conducting polymer microfibrous arrays via a novel electrospinning method for stretchable strain sensors. Nanoscale 5(15), 7041–7045 (2013). https://doi.org/10.1039/c3nr01832f
J. Zheng, X. Yan, M. Li, G. Yu, H. Zhang et al., Electrospun aligned fibrous arrays and twisted ropes: fabrication, mechanical and electrical properties, and application in strain sensors. Nanoscale Res. Lett. 10(1), 475 (2015). https://doi.org/10.1186/s11671-015-1184-9
Q. Liu, M. Zhang, L. Huang, Y. Li, J. Chen et al., High-quality graphene ribbons prepared from graphene oxide hydrogels and their application for strain sensors. ACS Nano 9(12), 12320–12326 (2015). https://doi.org/10.1021/acsnano.5b05609
J.R. Quijano, P. Pötschke, H. Brünig, G. Heinrich, Strain sensing, electrical and mechanical properties of polycarbonate/multiwall carbon nanotube monofilament fibers fabricated by melt spinning. Polymer 82, 181–189 (2016). https://doi.org/10.1016/j.polymer.2015.11.030
M. Zhang, C. Wang, Q. Wang, M. Jian, Y. Zhang, Sheath-core graphite/silk fiber made by dry-meyer-rod-coating for wearable strain sensors. ACS Appl. Mater. Interfaces 8(32), 20894–20899 (2016). https://doi.org/10.1021/acsami.6b06984
Y. Li, P. Huang, W. Zhu, S. Fu, N. Hu et al., Flexible wire-shaped strain sensor from cotton thread for human health and motion detection. Sci. Rep. 7(1), 45013 (2017). https://doi.org/10.1038/srep45013
B. Liang, Z. Lin, W. Chen, Z. He, J. Zhong et al., Ultra-stretchable and highly sensitive strain sensor based on gradient structure carbon nanotubes. Nanoscale 10(28), 13599–13606 (2018). https://doi.org/10.1039/c8nr02528b
L. Zhu, X. Zhou, Y. Liu, Q. Fu, Highly sensitive, ultrastretchable strain sensors prepared by pumping hybrid fillers of carbon nanotubes/cellulose nanocrystal into electrospun polyurethane membranes. ACS Appl. Mater. Interfaces 11(13), 12968–12977 (2019). https://doi.org/10.1021/acsami.9b00136
S. Chen, Z. Lou, D. Chen, K. Jiang, G. Shen, Polymer-enhanced highly stretchable conductive fiber strain sensor used for electronic data gloves. Adv. Mater. Technol. 1(7), 1600136 (2016). https://doi.org/10.1002/admt.201600136
X. Liao, Q. Liao, Z. Zhang, X. Yan, Q. Liang et al., A highly stretchable ZnO@fiber-based multifunctional nanosensor for strain/temperature/UV detection. Adv. Funct. Mater. 26(18), 3074–3081 (2016). https://doi.org/10.1002/adfm.201505223
Z. Liu, D. Qi, G. Hu, H. Wang, Y. Jiang et al., Surface strain redistribution on structured microfibers to enhance sensitivity of fiber-shaped stretchable strain sensors. Adv. Mater. 30(5), 1704229 (2018). https://doi.org/10.1002/adma.201704229
P. Li, Y. Zhang, Z. Zheng, Polymer-assisted metal deposition (PAMD) for flexible and wearable electronics: principle, materials, printing, and devices. Adv. Mater. 31(37), 1902987 (2019). https://doi.org/10.1002/adma.201902987
R. Guo, Y. Yu, J. Zeng, X. Liu, X. Zhou et al., Biomimicking topographic elastomeric petals (e-petals) for omnidirectional stretchable and printable electronics. Adv. Sci. 2(3), 1400021 (2015). https://doi.org/10.1002/advs.201400021
C. Zhu, X. Guan, X. Wang, Y. Li, E. Chalmers et al., Mussel-inspired flexible, durable, and conductive fibers manufacturing for finger-monitoring sensors. Adv. Mater. Interfaces 6(1), 1801547 (2019). https://doi.org/10.1002/admi.201801547
J. Eom, R. Jaisutti, H. Lee, W. Lee, J. Heo et al., Highly sensitive textile strain sensors and wireless user-interface devices using all-polymeric conducting fibers. ACS Appl. Mater. Interfaces 9(11), 10190–10197 (2017). https://doi.org/10.1021/acsami.7b01771
X. Wu, Y. Han, X. Zhang, C. Lu, Highly sensitive, stretchable, and wash-durable strain sensor based on ultrathin conductive layer@polyurethane yarn for tiny motion monitoring. ACS Appl. Mater. Interfaces 8(15), 9936–9945 (2016). https://doi.org/10.1021/acsami.6b01174
Y. Cheng, R. Wang, J. Sun, L. Gao, A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv. Mater. 27(45), 7365–7371 (2015). https://doi.org/10.1002/adma.201503558
J. Zhong, Q. Zhong, Q. Hu, N. Wu, W. Li et al., Stretchable self-powered fiber-based strain sensor. Adv. Funct. Mater. 25(12), 1798–1803 (2015). https://doi.org/10.1002/adfm.201404087
J. Lee, S. Shin, S. Lee, J. Song, S. Kang et al., Highly sensitive multifilament fiber strain sensors with ultrabroad sensing range for textile electronics. ACS Nano 12(5), 4259–4268 (2018). https://doi.org/10.1021/acsnano.7b07795
X. Wang, Y. Qiu, W. Cao, P. Hu, Highly stretchable and conductive core-sheath chemical vapor deposition graphene fibers and their applications in safe strain sensors. Chem. Mater. 27(20), 6969–6975 (2015). https://doi.org/10.1021/acs.chemmater.5b02098
X. Li, H. Hu, T. Hua, B. Xu, S. Jiang, Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors. Nano Res. 11(11), 5799–5811 (2018). https://doi.org/10.1007/s12274-018-2043-7
X. Li, P. Sun, L. Fan, M. Zhu, K. Wang et al., Multifunctional graphene woven fabrics. Sci. Rep. 2, 395 (2012). https://doi.org/10.1038/srep00395
X. Liu, C. Tang, X. Du, S. Xiong, S. Xi et al., A highly sensitive graphene woven fabric strain sensor for wearable wireless musical instruments. Mater. Horiz. 4(3), 477–486 (2017). https://doi.org/10.1039/c7mh00104e
T. Lee, W. Lee, S.W. Kim, J.J. Kim, B.S. Kim, Flexible textile strain wireless sensor functionalized with hybrid carbon nanomaterials supported ZnO nanowires with controlled aspect ratio. Adv. Funct. Mater. 26(34), 6206–6214 (2016). https://doi.org/10.1002/adfm.201601237
N. Karim, S. Afroj, S. Tan, P. He, A. Fernando et al., Scalable production of graphene-based wearable e-textiles. ACS Nano 11(12), 12266–12275 (2017). https://doi.org/10.1021/acsnano.7b05921
S. He, B. Xin, Z. Chen, Y. Liu, Flexible and highly conductive Ag/G-coated cotton fabric based on graphene dipping and silver magnetron sputtering. Cellulose 25(6), 3691–3701 (2018). https://doi.org/10.1007/s10570-018-1821-4
J. Ren, C. Wang, X. Zhang, T. Carey, K. Chen et al., Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide. Carbon 111, 622–630 (2017). https://doi.org/10.1016/j.carbon.2016.10.045
Y. Fu, Y. Li, Y. Liu, P. Huang, N. Hu et al., High-performance structural flexible strain sensors based on graphene-coated glass fabric/silicone composite. ACS Appl. Mater. Interfaces 10(41), 35503–35509 (2018). https://doi.org/10.1021/acsami.8b09424
L. Xu, Z. Liu, H. Zhai, X. Chen, R. Sun et al., Moisture-resilient graphene-dyed wool fabric for strain sensing. ACS Appl. Mater. Interfaces 12(11), 13265–13274 (2020). https://doi.org/10.1021/acsami.9b20964
Z. Yang, Y. Pang, X.L. Han, Y. Yang, J. Ling et al., Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano 12(9), 9134–9141 (2018). https://doi.org/10.1021/acsnano.8b03391
G. Cai, M. Yang, Z. Xu, J. Liu, B. Tang et al., Flexible and wearable strain sensing fabrics. Chem. Eng. J. 325, 396–403 (2017). https://doi.org/10.1016/j.cej.2017.05.091
M.S. Sadi, J. Pan, A. Xu, D. Cheng, G. Cai et al., Direct dip-coating of carbon nanotubes onto polydopamine-templated cotton fabrics for wearable applications. Cellulose 26(12), 7569–7579 (2019). https://doi.org/10.1007/s10570-019-02628-1
C. Zhang, G. Zhou, W. Rao, L. Fan, W. Xu et al., A simple method of fabricating nickel-coated cotton fabrics for wearable strain sensor. Cellulose 25(8), 4859–4870 (2018). https://doi.org/10.1007/s10570-018-1893-1
H. Liu, Q. Li, Y. Bu, N. Zhang, C. Wang et al., Stretchable conductive nonwoven fabrics with self-cleaning capability for tunable wearable strain sensor. Nano Energy 66, 104143 (2019). https://doi.org/10.1016/j.nanoen.2019.104143
J. Hu, X. Zhang, G. Li, X. Yang, X. Ding, Electrical properties of PPy-coated conductive fabrics for human joint motion monitoring. Autex Res. J. 16(1), 7–12 (2016). https://doi.org/10.1515/aut-2015-0048
S.Y. Cho, Y.S. Yun, S. Lee, D. Jang, K.Y. Park et al., Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein. Nat. Commun. 6, 7145 (2015). https://doi.org/10.1038/ncomms8145
M. Zhang, C. Wang, H. Wang, M. Jian, X. Hao et al., Carbonized cotton fabric for high-performance wearable strain sensors. Adv. Funct. Mater. 27(2), 1604795 (2017). https://doi.org/10.1002/adfm.201604795
C. Wang, K. Xia, M. Jian, H. Wang, M. Zhang et al., Carbonized silk georgette as an ultrasensitive wearable strain sensor for full-range human activity monitoring. J. Mater. Chem. C 5(30), 7604–7611 (2017). https://doi.org/10.1039/c7tc01962a
S. Chen, Y. Song, D. Ding, Z. Ling, F. Xu, Flexible and anisotropic strain sensor based on carbonized crepe paper with aligned cellulose fibers. Adv. Funct. Mater. 28(42), 1802547 (2018). https://doi.org/10.1002/adfm.201802547
C. Wang, M. Zhang, K. Xia, X. Gong, H. Wang et al., Intrinsically stretchable and conductive textile by a scalable process for elastic wearable electronics. ACS Appl. Mater. Interfaces 9(15), 13331–13338 (2017). https://doi.org/10.1021/acsami.7b02985
S. Jang, J. Kim, D.W. Kim, J.W. Kim, S. Chun et al., Carbon-based, ultraelastic, hierarchically coated fiber strain sensors with crack-controllable beads. ACS Appl. Mater. Interfaces 11(16), 15079–15087 (2019). https://doi.org/10.1021/acsami.9b03204
W.S. Lee, D. Kim, B. Park, H. Joh, H.K. Woo et al., Multiaxial and transparent strain sensors based on synergetically reinforced and orthogonally cracked hetero-nanocrystal solids. Adv. Funct. Mater. 29(4), 1806714 (2019). https://doi.org/10.1002/adfm.201806714
J. Wu, Z. Ma, Z. Hao, J.T. Zhang, P. Sun et al., Sheath-core fiber strain sensors driven by in-situ crack and elastic effects in graphite nanoplate composites. ACS Appl. Nano Mater. 2(2), 750–759 (2019). https://doi.org/10.1021/acsanm.8b01926
J. Ryu, J. Kim, J. Oh, S. Lim, J.Y. Sim et al., Intrinsically stretchable multi-functional fiber with energy harvesting and strain sensing capability. Nano Energy 55, 348–353 (2019). https://doi.org/10.1016/j.nanoen.2018.10.071
Y. Wang, L. Wang, T. Yang, X. Li, X. Zang et al., Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv. Funct. Mater. 24(29), 4666–4670 (2014). https://doi.org/10.1002/adfm.201400379
X. Li, R. Zhang, W. Yu, K. Wang, J. Wei et al., Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci. Rep. 2, 870 (2012). https://doi.org/10.1038/srep00870
B. Yin, Y. Wen, T. Hong, Z. Xie, G. Yuan et al., Highly stretchable, ultrasensitive, and wearable strain sensors based on facilely prepared reduced graphene oxide woven fabrics in an ethanol flame. ACS Appl. Mater. Interfaces 9(37), 32054–32064 (2017). https://doi.org/10.1021/acsami.7b09652
F. Guo, X. Cui, K. Wang, J. Wei, Stretchable and compressible strain sensors based on carbon nanotube meshes. Nanoscale 8(46), 19352–19358 (2016). https://doi.org/10.1039/c6nr06804a
Z. Liu, Z. Li, H. Zhai, L. Jin, K. Chen et al., A highly sensitive stretchable strain sensor based on multi-functionalized fabric for respiration monitoring and identification. Chem. Eng. J. 426, 130869 (2021). https://doi.org/10.1016/j.cej.2021.130869
J.J. Park, W.J. Hyun, S.C. Mun, Y.T. Park, O.O. Park, Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring. ACS Appl. Mater. Interfaces 7(11), 6317–6324 (2015). https://doi.org/10.1021/acsami.5b00695
M. Li, H. Li, W. Zhong, Q. Zhao, D. Wang, Stretchable conductive polypyrrole/polyurethane (PPy/PU) strain sensor with netlike microcracks for human breath detection. ACS Appl. Mater. Interfaces 6(2), 1313–1319 (2014). https://doi.org/10.1021/am4053305
K.H. Kim, N.S. Jang, S.H. Ha, J.H. Cho, J.M. Kim, Highly sensitive and stretchable resistive strain sensors based on microstructured metal nanowire/elastomer composite films. Small 14(14), 1704232 (2018). https://doi.org/10.1002/smll.201704232
H. Song, J. Zhang, D. Chen, K. Wang, S. Niu et al., Superfast and high-sensitivity printable strain sensors with bioinspired micron-scale cracks. Nanoscale 9(3), 1166–1173 (2017). https://doi.org/10.1039/c6nr07333f
X. Liao, Z. Zhang, Z. Kang, F. Gao, Q. Liao et al., Ultrasensitive and stretchable resistive strain sensors designed for wearable electronics. Mater. Horiz. 4(3), 502–510 (2017). https://doi.org/10.1039/c7mh00071e
A. Lekawa-Raus, K.K. Koziol, A.H. Windle, Piezoresistive effect in carbon nanotube fibers. ACS Nano 8(11), 11214–11224 (2014). https://doi.org/10.1021/nn503596f
Q. Liao, M. Mohr, X. Zhang, Z. Zhang, Y. Zhang et al., Carbon fiber-ZnO nanowire hybrid structures for flexible and adaptable strain sensors. Nanoscale 5(24), 12350–12355 (2013). https://doi.org/10.1039/c3nr03536k
J.H. Pu, X.J. Zha, M. Zhao, S. Li, R.Y. Bao et al., 2D end-to-end carbon nanotube conductive networks in polymer nanocomposites: a conceptual design to dramatically enhance the sensitivities of strain sensors. Nanoscale 10(5), 2191–2198 (2018). https://doi.org/10.1039/c7nr08077h
M. Hempel, D. Nezich, J. Kong, M. Hofmann, A novel class of strain gauges based on layered percolative films of 2D materials. Nano Lett. 12(11), 5714–5718 (2012). https://doi.org/10.1021/nl302959a
J. Ma, P. Wang, H. Chen, S. Bao, W. Chen et al., Highly sensitive and large-range strain sensor with a self-compensated two-order structure for human motion detection. ACS Appl. Mater. Interfaces 11(8), 8527–8536 (2019). https://doi.org/10.1021/nl302959a
C. Yan, J. Wang, W. Kang, M. Cui, X. Wang et al., Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors. Adv. Mater. 26(13), 2022–2027 (2014). https://doi.org/10.1002/adma.201304742
X. Xiao, L. Yuan, J. Zhong, T. Ding, Y. Liu et al., High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films. Adv. Mater. 23(45), 5440–5444 (2011). https://doi.org/10.1002/adma.201103406
M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8(5), 5154–5163 (2014). https://doi.org/10.1021/nn501204t
J. Zhao, G.Y. Zhang, D.X. Shi, Review of graphene-based strain sensors. Chinese Phys. B 22(5), 057701 (2013). https://doi.org/10.1088/1674-1056/22/5/057701
S. Zhu, J.H. So, R. Mays, S. Desai, W.R. Barnes et al., Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core. Adv. Funct. Mater. 23(18), 2308–2314 (2013). https://doi.org/10.1002/adfm.201202405
F. Xu, Y. Zhu, Highly conductive and stretchable silver nanowire conductors. Adv. Mater. 24(37), 5117–5122 (2012). https://doi.org/10.1002/adma.201201886
L. Chen, M. Lu, H. Yang, J.R.S. Avila, B. Shi et al., Textile based capacitive sensor for physical rehabilitation via surface topological modification. ACS Nano 14(7), 8191–8201 (2020). https://doi.org/10.1021/acsnano.0c01643
Z. Li, M. Zhu, J. Shen, Q. Qiu, J. Yu et al., All-fiber structured electronic skin with high elasticity and breathability. Adv. Funct. Mater. 30(6), 1908411 (2019). https://doi.org/10.1002/adfm.201908411
Z. Zhao, Q. Huang, C. Yan, Y. Liu, X. Zeng et al., Machine-washable and breathable pressure sensors based on triboelectric nanogenerators enabled by textile technologies. Nano Energy 70, 104528 (2020). https://doi.org/10.1016/j.nanoen.2020.104528
W. Zhong, C. Liu, C. Xiang, Y. Jin, M. Li et al., Continuously producible ultrasensitive wearable strain sensor assembled with three-dimensional interpenetrating Ag nanowires/polyolefin elastomer nanofibrous composite yarn. ACS Appl. Mater. Interfaces 9(48), 42058–42066 (2017). https://doi.org/10.1021/acsami.7b11431
C. Zhu, R. Li, X. Chen, E. Chalmers, X. Liu et al., Ultraelastic yarns from curcumin-assisted ELD toward wearable human-machine interface textiles. Adv. Sci. 7(23), 2002009 (2020). https://doi.org/10.1002/advs.202002009
J. Pan, M. Yang, L. Luo, A. Xu, B. Tang et al., Stretchable and highly sensitive braided composite yarn@polydopamine@polypyrrole for wearable applications. ACS Appl. Mater. Interfaces 11(7), 7338–7348 (2019). https://doi.org/10.1021/acsami.8b18823
X. Liu, D. Liu, J.H. Lee, Q. Zheng, X. Du et al., Spider-web-inspired stretchable graphene woven fabric for highly sensitive, transparent, wearable strain sensors. ACS Appl. Mater. Interfaces 11(2), 2282–2294 (2018). https://doi.org/10.1021/acsami.8b18312
S. Wang, H. Ning, N. Hu, Y. Liu, F. Liu et al., Environmentally-friendly and multifunctional graphene-silk fabric strain sensor for human-motion detection. Adv. Mater. Interfaces 7(1), 1901507 (2020). https://doi.org/10.1002/admi.201901507
S. Chen, S. Liu, P. Wang, H. Liu, L. Liu, Highly stretchable fiber-shaped e-textiles for strain/pressure sensing, full-range human motions detection, health monitoring, and 2D force mapping. J. Mater. Sci. 53(4), 2995–3005 (2018). https://doi.org/10.1007/s10853-017-1644-y
D.H. Ho, S. Cheon, P. Hong, J.H. Park, J.W. Suk et al., Multifunctional smart textronics with blow-spun nonwoven fabrics. Adv. Funct. Mater. 29(24), 1900025 (2019). https://doi.org/10.1002/adfm.201900025
S. Park, S. Ahn, J. Sun, D. Bhatia, D. Choi et al., Highly bendable and rotational textile structure with prestrained conductive sewing pattern for human joint monitoring. Adv. Funct. Mater. 29(10), 1808369 (2019). https://doi.org/10.1002/adfm.201808369
J. Park, S. Park, S. Ahn, Y. Cho, J.J. Park et al., Wearable strain sensor using conductive yarn sewed on clothing for human respiratory monitoring. IEEE Sens. J. 20(21), 12628–12636 (2020). https://doi.org/10.1109/jsen.2020.3000923
M. Tian, R. Zhao, L. Qu, Z. Chen, S. Chen et al., Stretchable and designable textile pattern strain sensors based on graphene decorated conductive nylon filaments. Macromol. Mater. Eng. 304(10), 1900244 (2019). https://doi.org/10.1002/mame.201900244
M. Park, J. Im, M. Shin, Y. Min, J. Park et al., Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotech. 7(12), 803–809 (2012). https://doi.org/10.1038/nnano.2012.206
D. Du, P. Li, J. Ouyang, Graphene coated nonwoven fabrics as wearable sensors. J. Mater. Chem. C 4(15), 3224–3230 (2016). https://doi.org/10.1039/c6tc00350h
J. Ge, L. Sun, F.R. Zhang, Y. Zhang, L.A. Shi et al., A stretchable electronic fabric artificial skin with pressure-, lateral strain-, and flexion-sensitive properties. Adv. Mater. 28(4), 722–728 (2016). https://doi.org/10.1002/adma.201504239
W. Root, T. Wright, B. Caven, T. Bechtold, T. Pham, Flexible textile strain sensor based on copper-coated lyocell type cellulose fabric. Polymers 11(5), 784 (2019). https://doi.org/10.3390/polym11050784
K. Kim, G. Song, C. Park, K.S. Yun, Multifunctional woven structure operating as triboelectric energy harvester, capacitive tactile sensor array, and piezoresistive strain sensor array. Sensors 17(11), 2582 (2017). https://doi.org/10.3390/s17112582
J. Foroughi, G.M. Spinks, S. Aziz, A. Mirabedini, A. Jeiranikhameneh et al., Knitted carbon-nanotube-sheath/spandex-core elastomeric yarns for artificial muscles and strain sensing. ACS Nano 10(10), 9129–9135 (2016). https://doi.org/10.1021/acsnano.6b04125
Y. Huang, S.V. Kershaw, Z. Wang, Z. Pei, J. Liu et al., Highly integrated supercapacitor-sensor systems via material and geometry design. Small 12(25), 3393–3399 (2016). https://doi.org/10.1002/smll.201601041
S. Yang, C. Li, X. Chen, Y. Zhao, H. Zhang et al., Facile fabrication of high-performance pen ink-decorated textile strain sensors for human motion detection. ACS Appl. Mater. Interfaces 12(17), 19874–19881 (2020). https://doi.org/10.1021/acsami.9b22534
J. Xie, H. Long, M. Miao, High sensitivity knitted fabric strain sensors. Smart Mater. Struct. 25(10), 105008 (2016). https://doi.org/10.1088/0964-1726/25/10/105008
O. Atalay, W.R. Kennon, M.D. Husain, Textile-based weft knitted strain sensors: effect of fabric parameters on sensor properties. Sensors 13(8), 11114–11127 (2013). https://doi.org/10.3390/s130811114
Y. Yang, L. Shi, Z. Cao, R. Wang, J. Sun, Strain sensors with a high sensitivity and a wide sensing range based on a Ti3C2Tx (MXene) nanoparticle-nanosheet hybrid network. Adv. Funct. Mater. 29(14), 1807882 (2019). https://doi.org/10.1002/adfm.201807882
S. Duan, Z. Wang, L. Zhang, J. Liu, C. Li, A highly stretchable, sensitive, and transparent strain sensor based on binary hybrid network consisting of hierarchical multiscale metal nanowires. Adv. Mater. Technol. 3(6), 1800020 (2018). https://doi.org/10.1002/admt.201800020
J.H. Lee, J. Kim, D. Liu, F. Guo, X. Shen et al., Highly aligned, anisotropic carbon nanofiber films for multidirectional strain sensors with exceptional selectivity. Adv. Funct. Mater. 29(29), 1901623 (2019). https://doi.org/10.1002/adfm.201901623
B. Wang, K. Yang, H. Cheng, T. Ye, C. Wang, A hydrophobic conductive strip with outstanding one-dimensional stretchability for wearable heater and strain sensor. Chem. Eng. J. 404, 126393 (2020). https://doi.org/10.1016/j.cej.2020.126393
N. Gogurla, B. Roy, J.Y. Park, S. Kim, Skin-contact actuated single-electrode protein triboelectric nanogenerator and strain sensor for biomechanical energy harvesting and motion sensing. Nano Energy 62, 674–681 (2019). https://doi.org/10.1016/j.nanoen.2019.05.082
S.L. Zhang, Y.C. Lai, X. He, R. Liu, Y. Zi et al., Auxetic foam-based contact-mode triboelectric nanogenerator with highly sensitive self-powered strain sensing capabilities to monitor human body movement. Adv. Funct. Mater. 27(25), 1606695 (2017). https://doi.org/10.1002/adfm.201606695
S. Huang, B. Zhang, Z. Shao, L. He, Q. Zhang et al., Ultraminiaturized stretchable strain sensors based on single silicon nanowires for imperceptible electronic skins. Nano Lett. 20(4), 2478–2485 (2020). https://doi.org/10.1021/acs.nanolett.9b05217
O. Atalay, A. Atalay, J. Gafford, H. Wang, R. Wood et al., A highly stretchable capacitive-based strain sensor based on metal deposition and laser rastering. Adv. Mater. Technol. 2(9), 1700081 (2017). https://doi.org/10.1002/admt.201700081
Y. Cai, J. Shen, G. Ge, Y. Zhang, W. Jin et al., Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 12(1), 56–62 (2018). https://doi.org/10.1021/acsnano.7b06251
Y. Wang, Y. Wang, Y. Yang, Graphene-polymer nanocomposite-based redox-induced electricity for flexible self-powered strain sensors. Adv. Eng. Mater. 8(22), 1800961 (2018). https://doi.org/10.1002/aenm.201800961
L. Pan, G. Liu, W. Shi, J. Shang, W.R. Leow et al., Mechano-regulated metal-organic framework nanofilm for ultrasensitive and anti-jamming strain sensing. Nat. Commun. 9(1), 3813 (2018). https://doi.org/10.1038/s41467-018-06079-3
J. Lee, S.J. Ihle, G.S. Pellegrino, H. Kim, J. Yea et al., Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain. Nat. Electron. 4(4), 291–301 (2021). https://doi.org/10.1038/s41928-021-00557-1
H. Wu, Q. Liu, W. Du, C. Li, G. Shi, Transparent polymeric strain sensors for monitoring vital signs and beyond. ACS Appl. Mater. Interfaces 10(4), 3895–3901 (2018). https://doi.org/10.1021/acsami.7b19014
S. Niu, N. Matsuhisa, L. Beker, J. Li, S. Wang et al., A wireless body area sensor network based on stretchable passive tags. Nat. Electron. 2(8), 361–368 (2019). https://doi.org/10.1038/s41928-019-0286-2
R. Lin, H.J. Kim, S. Achavananthadith, S.A. Kurt, S.C. Tan et al., Wireless battery-free body sensor networks using near-field-enabled clothing. Nat. Commun. 11(1), 444 (2020). https://doi.org/10.1038/s41467-020-14311-2
Y.J. Yun, J. Ju, J.H. Lee, S.H. Moon, S.J. Park et al., Highly elastic graphene-based electronics toward electronic skin. Adv. Funct. Mater. 27(33), 1701513 (2017). https://doi.org/10.1002/adfm.201701513
Y. Zhang, Y. Huang, X. Sun, Y. Zhao, X. Guo et al., Static and dynamic human arm/hand gesture capturing and recognition via multiinformation fusion of flexible strain sensors. IEEE Sens. J. 20(12), 6450–6459 (2020). https://doi.org/10.1109/JSEN.2020.2965580
S. Choi, K. Yoon, S. Lee, H.J. Lee, J. Lee et al., Conductive hierarchical hairy fibers for highly sensitive, stretchable, and water-resistant multimodal gesture-distinguishable sensor. VR applications. Adv. Funct. Mater. 29(50), 1905808 (2019). https://doi.org/10.1002/adfm.201905808
M. Zhu, Z. Sun, Z. Zhang, Q. Shi, T. He et al., Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications. Sci. Adv. 6(19), eaaz8693 (2020). https://doi.org/10.1126/sciadv.aaz8693
O.A. Araromi, M.A. Graule, K.L. Dorsey, S. Castellanos, J.R. Foster et al., Ultra-sensitive and resilient compliant strain gauges for soft machines. Nature 587(7833), 219–224 (2020). https://doi.org/10.1038/s41586-020-2892-6
S. Takamatsu, T. Lonjaret, E. Ismailova, A. Masuda, T. Itoh et al., Wearable keyboard using conducting polymer electrodes on textiles. Adv. Mater. 28(22), 4485–4488 (2016). https://doi.org/10.1002/adma.201504249
S.M. Jeong, Y. Kang, T. Lim, S. Ju, Hydrophobic microfiber strain sensor operating stably in sweat and water environment. Adv. Mater. Interfaces 5(24), 1801376 (2018). https://doi.org/10.1002/admi.201801376
Y. Zhao, M. Ren, Y. Shang, J. Li, S. Wang et al., Ultra-sensitive and durable strain sensor with sandwich structure and excellent anti-interference ability for wearable electronic skins. Compos. Sci. Technol. 200, 108448 (2020). https://doi.org/10.1016/j.compscitech.2020.108448
M. Nankali, N.M. Nouri, N.G. Malek, M. Amjadi, Dynamic thermoelectromechanical characterization of carbon nanotube nanocomposite strain sensors. Sens. Actuat. A Phys. 332, 113122 (2021). https://doi.org/10.1016/j.sna.2021.113122
M. Nankali, N.M. Nouri, M. Navidbakhsh, N.G. Malek, M.A. Amindehghan et al., Highly stretchable and sensitive strain sensors based on carbon nanotube–elastomer nanocomposites: the effect of environmental factors on strain sensing performance. J. Mater. Chem. C 8(18), 6185–6195 (2020). https://doi.org/10.1039/d0tc00373e
L. Lu, B. Yang, J. Liu, Flexible multifunctional graphite nanosheet/electrospun-polyamide 66 nanocomposite sensor for ECG, strain, temperature and gas measurements. Chem. Eng. J. 400, 125928 (2020) https://doi.org/10.1016/j.cej.2020.125928.
C. Wang, K. Xia, M. Zhang, M. Jian, Y. Zhang, An all-silk-derived dual-mode e-skin for simultaneous temperature–pressure detection. ACS Appl. Mater. Interfaces 9(45), 39484–39492 (2017). https://doi.org/10.1021/acsami.7b13356