Recent Progress of Electrospun Nanofiber-Based Composite Materials for Monitoring Physical, Physiological, and Body Fluid Signals
Corresponding Author: Yuekun Lai
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 302
Abstract
Flexible electronic skin (E-skin) sensors offer innovative solutions for detecting human body signals, enabling human–machine interactions and advancing the development of intelligent robotics. Electrospun nanofibers are particularly well-suited for E-skin applications due to their exceptional mechanical properties, tunable breathability, and lightweight nature. Nanofiber-based composite materials consist of three-dimensional structures that integrate one-dimensional polymer nanofibers with other functional materials, enabling efficient signal conversion and positioning them as an ideal platform for next-generation intelligent electronics. Here, this review begins with an overview of electrospinning technology, including far-field electrospinning, near-field electrospinning, and melt electrospinning. It also discusses the diverse morphologies of electrospun nanofibers, such as core–shell, porous, hollow, bead, Janus, and ribbon structure, as well as strategies for incorporating functional materials to enhance nanofiber performance. Following this, the article provides a detailed introduction to electrospun nanofiber-based composite materials (i.e., nanofiber/hydrogel, nanofiber/aerogel, nanofiber/metal), emphasizing their recent advancements in monitoring physical, physiological, body fluid, and multi-signal in human signal detection. Meanwhile, the review explores the development of multimodal sensors capable of responding to diverse stimuli, focusing on innovative strategies for decoupling multiple signals and their state-of-the-art advancements. Finally, current challenges are analyzed, while future prospects for electrospun nanofiber-based composite sensors are outlined. This review aims to advance the design and application of next-generation flexible electronics, fostering breakthroughs in multifunctional sensing and health monitoring technologies.
Highlights:
1 This work reviews recent advancements in electrospun nanofiber-based composite materials for monitoring physical, physiological, and body fluid signals, with a particular focus on the design strategies of nanofiber-based composites.
2 The electrospinning technologies, nanofiber morphologies, fabrication of nanofiber membranes, and the integration of nanofibers with materials such as hydrogels, aerogels, or metals are comprehensively reviewed and discussed.
3 The current challenges and future prospects of nanofiber-based composite materials for human monitoring are discussed and analyzed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Li, Y. Zhang, Y. Wang, K. Xia, Z. Yin et al., Physical sensors for skin-inspired electronics. InfoMat 2(1), 184–211 (2020). https://doi.org/10.1002/inf2.12060
- Y. Wang, M.L. Adam, Y. Zhao, W. Zheng, L. Gao et al., Machine learning-enhanced flexible mechanical sensing. Nano-Micro Lett. 15(1), 55 (2023). https://doi.org/10.1007/s40820-023-01013-9
- X. Lv, Y. Liu, J. Yu, Z. Li, B. Ding, Smart fibers for self-powered electronic skins. Adv. Fiber Mater. 5(2), 401–428 (2023). https://doi.org/10.1007/s42765-022-00236-6
- J.C. Yang, J. Mun, S.Y. Kwon, S. Park, Z. Bao et al., Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31(48), 1904765 (2019). https://doi.org/10.1002/adma.201904765
- R. Wu, T. Zhu, Y. Cheng, Z. Liu, J. Huang et al., Materials, structure design, performances of multifunctional flexible devices for healthcare. Prog. Mater. Sci. 153, 101491 (2025). https://doi.org/10.1016/j.pmatsci.2025.101491
- Y. Yang, T. Cui, D. Li, S. Ji, Z. Chen et al., Breathable electronic skins for daily physiological signal monitoring. Nano-Micro Lett. 14(1), 161 (2022). https://doi.org/10.1007/s40820-022-00911-8
- Y. Qiao, J. Luo, T. Cui, H. Liu, H. Tang et al., Soft electronics for health monitoring assisted by machine learning. Nano-Micro Lett. 15(1), 66 (2023). https://doi.org/10.1007/s40820-023-01029-1
- J. Wang, B. Wu, P. Wei, S. Sun, P. Wu, Fatigue-free artificial ionic skin toughened by self-healable elastic nanomesh. Nat. Commun. 13, 4411 (2022). https://doi.org/10.1038/s41467-022-32140-3
- Z. Liu, T. Zhu, J. Wang, Z. Zheng, Y. Li et al., Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics. Nano-Micro Lett. 14(1), 61 (2022). https://doi.org/10.1007/s40820-022-00806-8
- X. Cao, J. Zhang, S. Chen, R.J. Varley, K. Pan, 1D/2D nanomaterials synergistic, compressible, and response rapidly 3D graphene aerogel for piezoresistive sensor. Adv. Funct. Mater. 30(35), 2003618 (2020). https://doi.org/10.1002/adfm.202003618
- D. Li, T. Cui, J. Jian, J. Yan, J. Xu et al., Lantern-inspired on-skin helical interconnects for epidermal electronic sensors. Adv. Funct. Mater. 33(18), 2213335 (2023). https://doi.org/10.1002/adfm.202213335
- K.D. Anderson, D. Lu, M.E. McConney, T. Han, D.H. Reneker et al., Hydrogel microstructures combined with electrospun fibers and photopatterning for shape and modulus control. Polymer 49(24), 5284–5293 (2008). https://doi.org/10.1016/j.polymer.2008.09.039
- M. Zhao, Y. Zhou, B. Cai, Y. Ma, H. Cai et al., The application of porous ZnO 3D framework to assemble enzyme for rapid and ultrahigh sensitive biosensors. Ceram. Int. 39(8), 9319–9323 (2013). https://doi.org/10.1016/j.ceramint.2013.05.047
- T. Huang, C. Wang, H. Yu, H. Wang, Q. Zhang et al., Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers. Nano Energy 14, 226–235 (2015). https://doi.org/10.1016/j.nanoen.2015.01.038
- X. Wang, B. Yang, J. Liu, Y. Zhu, C. Yang et al., A flexible triboelectric-piezoelectric hybrid nanogenerator based on P(VDF-TrFE) nanofibers and PDMS/MWCNT for wearable devices. Sci. Rep. 6, 36409 (2016). https://doi.org/10.1038/srep36409
- H. Jin, M.O.G. Nayeem, S. Lee, N. Matsuhisa, D. Inoue et al., Highly durable nanofiber-reinforced elastic conductors for skin-tight electronic textiles. ACS Nano 13(7), 7905–7912 (2019). https://doi.org/10.1021/acsnano.9b02297
- J. Zhu, S. Lv, T. Yang, T. Huang, H. Yu et al., Facile and green strategy for designing ultralight, flexible, and multifunctional PVA nanofiber-based aerogels. Adv. Sustain. Syst. 4(4), 1900141 (2020). https://doi.org/10.1002/adsu.201900141
- F. Niu, Z. Qin, L. Min, B. Zhao, Y. Lv et al., Ultralight and hyperelastic nanofiber-reinforced MXene–graphene aerogel for high-performance piezoresistive sensor. Adv. Mater. Technol. 6(11), 2100394 (2021). https://doi.org/10.1002/admt.202100394
- Z. Qin, Y. Lv, X. Fang, B. Zhao, F. Niu et al., Ultralight polypyrrole crosslinked nanofiber aerogel for highly sensitive piezoresistive sensor. Chem. Eng. J. 427, 131650 (2022). https://doi.org/10.1016/j.cej.2021.131650
- S. Sun, Q. Cheng, Z. Chen, J. Zheng, R. Liu et al., A shape-adaptable and highly resilient aerogel assembled by poly(vinylidene fluoride) nanofibers for self-powered sensing. Nano Energy 116, 108820 (2023). https://doi.org/10.1016/j.nanoen.2023.108820
- Q. Gao, F. Sun, Y. Li, L. Li, M. Liu et al., Biological tissue-inspired ultrasoft, ultrathin, and mechanically enhanced microfiber composite hydrogel for flexible bioelectronics. Nano-Micro Lett. 15(1), 139 (2023). https://doi.org/10.1007/s40820-023-01096-4
- B. Zheng, H. Zhou, Z. Wang, Y. Gao, G. Zhao et al., Fishing net-inspired mutiscale ionic organohydrogels with outstanding mechanical robustness for flexible electronic devices. Adv. Funct. Mater. 33(28), 2213501 (2023). https://doi.org/10.1002/adfm.202213501
- Z. Wang, Z. Qin, B. Zhao, H. Zhu, K. Pan, Lightweight, superelastic, and temperature-resistant rGO/polysulfoneamide-based nanofiber composite aerogel for wearable piezoresistive sensors. J. Mater. Chem. C 11(42), 14641–14651 (2023). https://doi.org/10.1039/d3tc02496b
- W. Su, Y. Pang, Z. Chang, E. Yuyu, F. Geng et al., A “nanofiber membrane-microarray hydrogel” dual-module structure for thermal-solar-electric energy conversion. Nano Energy 123, 109408 (2024). https://doi.org/10.1016/j.nanoen.2024.109408
- X. Gou, J. Yang, P. Li, M. Su, Z. Zhou et al., Biomimetic nanofiber-iongel composites for flexible pressure sensors with broad range and ultra-high sensitivity. Nano Energy 120, 109140 (2024). https://doi.org/10.1016/j.nanoen.2023.109140
- C. Zhu, G. Chen, S. Li, H. Yang, J. Zheng et al., Breathable ultrathin film sensors based on nanomesh reinforced anti-dehydrating organohydrogels for motion monitoring. Adv. Funct. Mater. 34(52), 2411725 (2024). https://doi.org/10.1002/adfm.202411725
- J. Lin, J. Li, Y. Song, W. Chu, W. Li et al., Carbon nanofibrous aerogels derived from electrospun polyimide for multifunctional piezoresistive sensors. ACS Appl. Mater. Interfaces 16(13), 16712–16723 (2024). https://doi.org/10.1021/acsami.4c00452
- J. Xu, H. Huang, C. Sun, J. Yu, M. Wang et al., Flexible accelerated-wound-healing antibacterial hydrogel-nanofiber scaffold for intelligent wearable health monitoring. ACS Appl. Mater. Interfaces 16(5), 5438–5450 (2024). https://doi.org/10.1021/acsami.3c14445
- K. Pang, J. Ma, X. Song, X. Liu, C. Zhang et al., Highly flexible and superelastic graphene nanofibrous aerogels for intelligent sign language. Small 20(34), 2400415 (2024). https://doi.org/10.1002/smll.202400415
- Z. Ren, F. Guo, Y. Wen, Y. Yang, J. Liu et al., Strong and anti-swelling nanofibrous hydrogel composites inspired by biological tissue for amphibious motion sensors. Mater. Horiz. 11(22), 5600–5613 (2024). https://doi.org/10.1039/D4MH01025F
- X. Duan, Y. Mi, T. Lei, X.Y.D. Ma, Z. Chen et al., Highly elastic spongelike hydrogels for impedance-based multimodal sensing. ACS Nano 19(2), 2909–2921 (2025). https://doi.org/10.1021/acsnano.4c16694
- H. Qi, X. Jing, Y. Hu, P. Wu, X. Zhang et al., Electrospun green fluorescent-highly anisotropic conductive Janus-type nanoribbon hydrogel array film for multiple stimulus response sensors. Compos. Part B Eng. 288, 111933 (2025). https://doi.org/10.1016/j.compositesb.2024.111933
- J. Lin, J. Li, W. Li, S. Chen, Y. Lu et al., Multifunctional polyimide nanofibrous aerogel sensor for motion monitoring and airflow perception. Compos. Part A Appl. Sci. Manuf. 178, 108003 (2024). https://doi.org/10.1016/j.compositesa.2023.108003
- J. Wen, Y. Wu, Y. Gao, Q. Su, Y. Liu et al., Nanofiber composite reinforced organohydrogels for multifunctional and wearable electronics. Nano-Micro Lett. 15(1), 174 (2023). https://doi.org/10.1007/s40820-023-01148-9
- Q. Gao, S. Agarwal, A. Greiner, T. Zhang, Electrospun fiber-based flexible electronics: fiber fabrication, device platform, functionality integration and applications. Prog. Mater. Sci. 137, 101139 (2023). https://doi.org/10.1016/j.pmatsci.2023.101139
- H. Wu, S. Shi, H. Zhou, C. Zhi, S. Meng et al., Stem cell self-triggered regulation and differentiation on polyvinylidene fluoride electrospun nanofibers. Adv. Funct. Mater. 34(4), 2309270 (2024). https://doi.org/10.1002/adfm.202309270
- S. Shi, H. Wu, C. Zhi, J. Yang, Y. Si et al., A skin-like nanostructured membrane for advanced wound dressing. Compos. Part B Eng. 250, 110438 (2023). https://doi.org/10.1016/j.compositesb.2022.110438
- K. Ren, Y. Shen, Z.L. Wang, Piezoelectric properties of electrospun polymer nanofibers and related energy harvesting applications. Macromol. Mater. Eng. 309(3), 2300307 (2024). https://doi.org/10.1002/mame.202300307
- D. Ji, Y. Lin, X. Guo, B. Ramasubramanian, R. Wang et al., Electrospinning of nanofibres. Nat. Rev. Meth. Primers 4, 1 (2024). https://doi.org/10.1038/s43586-023-00278-z
- X.-X. Wang, G.-F. Yu, J. Zhang, M. Yu, S. Ramakrishna et al., Conductive polymer ultrafine fibers via electrospinning: preparation, physical properties and applications. Prog. Mater. Sci. 115, 100704 (2021). https://doi.org/10.1016/j.pmatsci.2020.100704
- J. Song, X. Lin, L.Y. Ee, S.F.Y. Li, M. Huang, A review on electrospinning as versatile supports for diverse nanofibers and their applications in environmental sensing. Adv. Fiber Mater. 5(2), 429–460 (2023). https://doi.org/10.1007/s42765-022-00237-5
- S.-J. Kim, T.H. Phung, S. Kim, M.K. Rahman, K.-S. Kwon, Low-cost fabrication method for thin, flexible, and transparent touch screen sensors. Adv. Mater. Technol. 5(9), 2000441 (2020). https://doi.org/10.1002/admt.202000441
- Y. Yang, X. Li, Z. Zhou, Q. Qiu, W. Chen et al., Ultrathin, ultralight dual-scale fibrous networks with high-infrared transmittance for high-performance, comfortable and sustainable PM0.3 filter. Nat. Commun. 15(1), 1586 (2024). https://doi.org/10.1038/s41467-024-45833-8
- M.H. Syu, Y.J. Guan, W.C. Lo, Y.K. Fuh, Biomimetic and porous nanofiber-based hybrid sensor for multifunctional pressure sensing and human gesture identification via deep learning method. Nano Energy 76, 105029 (2020). https://doi.org/10.1016/j.nanoen.2020.105029
- D. Ye, Y. Ding, Y. Duan, J. Su, Z. Yin et al., Large-scale direct-writing of aligned nanofibers for flexible electronics. Small 14(21), e1703521 (2018). https://doi.org/10.1002/smll.201703521
- H. Kong, Y. Jin, G. Li, M. Zhang, J. Du, Design and fabrication of a hierarchical structured pressure sensor based on BaTiO3/PVDF nanofibers via near-field electrospinning. Adv. Eng. Mater. 25(14), 2201660 (2023). https://doi.org/10.1002/adem.202201660
- Y. Li, Y. Huang, N. Zhao, Low-intensity sensitive and high stability flexible heart sound sensor enabled by hybrid near-field/far-field electrospinning. Adv. Funct. Mater. 33(29), 2300666 (2023). https://doi.org/10.1002/adfm.202300666
- W. Wang, P.N. Stipp, K. Ouaras, S. Fathi, Y.Y.S. Huang, Broad bandwidth, self-powered acoustic sensor created by dynamic near-field electrospinning of suspended, transparent piezoelectric nanofiber mesh. Small 16(28), 2000581 (2020). https://doi.org/10.1002/smll.202000581
- Y. Huang, X. You, X. Fan, C.P. Wong, P. Guo et al., Near-field electrospinning enabled highly sensitive and anisotropic strain sensors. Adv. Mater. Technol. 5(11), 2000550 (2020). https://doi.org/10.1002/admt.202000550
- A.A. Yousefi, A.R. Mohebbi, S. Falahdoost Moghadam, S.A. Poursamar, L. Hao, Uniaxially aligned microwire networks for flexible transparent electrodes using a novel electrospinning set-up. Sol. Energy 188, 1111–1117 (2019). https://doi.org/10.1016/j.solener.2019.07.007
- Y. Huang, X. You, Z. Tang, K.-Y. Tong, P. Guo et al., Interface engineering of flexible piezoresistive sensors via near-field electrospinning processed spacer layers. Small Meth. 5(4), 2000842 (2021). https://doi.org/10.1002/smtd.202000842
- M.M. Nazemi, A. Khodabandeh, A. Hadjizadeh, Near-field electrospinning: crucial parameters, challenges, and applications. ACS Appl. Bio Mater. 5(2), 394–412 (2022). https://doi.org/10.1021/acsabm.1c00944
- T.D. Brown, P.D. Dalton, D.W. Hutmacher, Melt electrospinning today: an opportune time for an emerging polymer process. Prog. Polym. Sci. 56, 116–166 (2016). https://doi.org/10.1016/j.progpolymsci.2016.01.001
- K.S. Moon, S.Q. Lee, J.S. Kang, A. Hnat, D.B. Karen, A wireless electrooculogram (EOG) wearable using conductive fiber electrode. Electronics 12(3), 571 (2023). https://doi.org/10.3390/electronics12030571
- I. Razquin, A. Iregui, M. Cobos, J. Latasa, A. Eceiza et al., Cationically photocured epoxy/polycaprolactone materials processed by solution electrospinning, melt electrowriting and 3D printing: morphology and shape memory properties. Polymer 282, 126160 (2023). https://doi.org/10.1016/j.polymer.2023.126160
- K. Zhang, W. Zhao, Q. Liu, M. Yu, A new magnetic melt spinning device for patterned nanofiber. Sci. Rep. 11(1), 8895 (2021). https://doi.org/10.1038/s41598-021-88520-0
- C. Wei, H. Zhou, B. Zheng, H. Zheng, Q. Shu et al., Fully flexible and mechanically robust tactile sensors containing core–shell structured fibrous piezoelectric mat as sensitive layer. Chem. Eng. J. 476, 146654 (2023). https://doi.org/10.1016/j.cej.2023.146654
- S. Dong, B.M. Maciejewska, R.M. Schofield, N. Hawkins, C.R. Siviour et al., Electrospinning nonspinnable sols to ceramic fibers and springs. ACS Nano 18(21), 13538–13550 (2024). https://doi.org/10.1021/acsnano.3c12659
- S. Cai, G. Zhang, L. Wang, T. Jian, J. Xu et al., Ratiometric fluorescent sensor based on TPU-PVP coaxial nanofibers for monitoring trace ammonia in breath. Mater. Today Chem. 26, 101148 (2022). https://doi.org/10.1016/j.mtchem.2022.101148
- X. Zhang, S. Lv, X. Lu, H. Yu, T. Huang et al., Synergistic enhancement of coaxial nanofiber-based triboelectric nanogenerator through dielectric and dispersity modulation. Nano Energy 75, 104894 (2020). https://doi.org/10.1016/j.nanoen.2020.104894
- S.-T. Fan, D.-L. Guo, Y.-T. Zhang, T. Chen, B.-J. Li et al., Washable and stable coaxial electrospinning fabric with superior electromagnetic interference shielding performance for multifunctional electronics. Chem. Eng. J. 488, 151051 (2024). https://doi.org/10.1016/j.cej.2024.151051
- T. Li, Y. Yuan, L. Gu, J. Li, Y. Shao et al., Ultrastable piezoelectric biomaterial nanofibers and fabrics as an implantable and conformal electromechanical sensor patch. Sci. Adv. 10(29), eadn8706 (2024). https://doi.org/10.1126/sciadv.adn8706
- L. Chen, S. Chen, J. Li, C. Hu, M. Zhu et al., Ultralight and high sensitive CA/TPU/PPy nanofiber aerogels with coaxial conductive structure for wearable piezoresistive sensors. Compos. Sci. Technol. 262, 111062 (2025). https://doi.org/10.1016/j.compscitech.2025.111062
- X. Kang, H. Yu, X. Ma, E. Shang, H. Chen et al., Fast detection of NO2 by In2O3@ZnO nanofibers synthesized by coaxial electrospinning: real-time monitoring application of smart mask. Chem. Eng. J. 504, 158872 (2025). https://doi.org/10.1016/j.cej.2024.158872
- S. Lee, D. Kim, S. Lee, Y.-I. Kim, S. Kum et al., Ambient humidity-induced phase separation for fiber morphology engineering toward piezoelectric self-powered sensing. Small 18(17), 2270086 (2022). https://doi.org/10.1002/smll.202270086
- Z. Cai, S. Park, Ultrasensitive hydrogen sensor based on porous-structured Pd-decorated In2O3 nanop-embedded SnO2 nanofibers. Sens. Actuat. B Chem. 367, 132090 (2022). https://doi.org/10.1016/j.snb.2022.132090
- S.H. Kwon, C. Zhang, Z. Jiang, L. Dong, Textured nanofibers inspired by nature for harvesting biomechanical energy and sensing biophysiological signals. Nano Energy 122, 109334 (2024). https://doi.org/10.1016/j.nanoen.2024.109334
- Q. Zhang, J. Li, G. Li, J. Du, C. Xie et al., Hierarchically structured hollow PVDF nanofibers for flexible piezoelectric sensor. Chem. Eng. J. 498, 155661 (2024). https://doi.org/10.1016/j.cej.2024.155661
- Y. Zhang, S. Han, M. Wang, S. Liu, G. Liu et al., Electrospun Cu-doped In2O3 hollow nanofibers with enhanced H2S gas sensing performance. J. Adv. Ceram. 11(3), 427–442 (2022). https://doi.org/10.1007/s40145-021-0546-2
- C. Han, X. Li, C. Shao, X. Li, J. Ma et al., Composition-controllable p-CuO/n-ZnO hollow nanofibers for high-performance H2S detection. Sens. Actuat. B Chem. 285, 495–503 (2019). https://doi.org/10.1016/j.snb.2019.01.077
- F. Guo, Z. Ren, Y. Xie, H. Huang, S. Wang et al., Leaf-inspired flexible NFMs with multi-conductive network for multifunctional integrated physical sensing, joule heating, and noncontact thermosensation. Chem. Eng. J. 495, 153485 (2024). https://doi.org/10.1016/j.cej.2024.153485
- J. Yin, J. Wang, S. Ramakrishna, L. Xu, All-electrospun triboelectric nanogenerator incorporating carbon-black-loaded nanofiber membranes for self-powered wearable sensors. ACS Appl. Nano Mater. 6(17), 15416–15425 (2023). https://doi.org/10.1021/acsanm.3c01891
- T. Jin, Y. Pan, G.J. Jeon, H.I. Yeom, S. Zhang et al., Ultrathin nanofibrous membranes containing insulating microbeads for highly sensitive flexible pressure sensors. ACS Appl. Mater. Interfaces 12(11), 13348–13359 (2020). https://doi.org/10.1021/acsami.0c00448
- A.C. Wang, S.K. Wang, B.J. Zhou, D.C. Jun, Q.Y. Liu et al., Side-by-side design of bi-component heterojunction nanofibers for high-performance gas sensors: improvement in synergistic effect. Appl. Surf. Sci. 603, 154436 (2022). https://doi.org/10.1016/j.apsusc.2022.154436
- K. Hu, J. Feng, N. Lv, Z. Lyu, Y. Zhang et al., AC/DC dual-type pressure and movement sensor based on the nanoresistance network. Colloids Surf. A Physicochem. Eng. Aspects 656, 130530 (2023). https://doi.org/10.1016/j.colsurfa.2022.130530
- R. Zhang, S. Cao, T. Zhou, T. Fei, R. Wang et al., Rational design and tunable synthesis of Co3O4 nanop-incorporating into In2O3 one-dimensional ribbon as effective sensing material for gas detection. Sens. Actuat. B Chem. 310, 127695 (2020). https://doi.org/10.1016/j.snb.2020.127695
- X. Wang, Q. Ma, Y. Wang, D. Zhao, L. Li et al., MIL-101-derived porous WO3/FeWO4 hierarchical structures with efficient heterojunction interfaces for excellent room temperature n-butanol-sensing performance. Chem. Eng. J. 479, 147647 (2024). https://doi.org/10.1016/j.cej.2023.147647
- C. Chen, G. Xie, J. Dai, W. Li, Y. Cai et al., Integrated core-shell structured smart textiles for active NO2 concentration and pressure monitoring. Nano Energy 116, 108788 (2023). https://doi.org/10.1016/j.nanoen.2023.108788
- C. Zhi, S. Zhang, H. Wu, Y. Ming, S. Shi et al., Perovskite nanocrystals induced core-shell inorganic-organic nanofibers for efficient energy harvesting and self-powered monitoring. ACS Nano 18(13), 9365–9377 (2024). https://doi.org/10.1021/acsnano.3c09935
- L. Lu, B. Yang, Y. Zhai, J. Liu, Electrospinning core-sheath piezoelectric microfibers for self-powered stitchable sensor. Nano Energy 76, 104966 (2020). https://doi.org/10.1016/j.nanoen.2020.104966
- J. He, X. Ruan, L. Yang, Z. Liu, K. Liao et al., Micro-nano fibers with core-shell structure for enhancing flame retardancy and high-temperature resistance of biodegradable triboelectric materials. Nano Energy 138, 110848 (2025). https://doi.org/10.1016/j.nanoen.2025.110848
- Z. Zhang, A. Bolshakov, J. Han, J. Zhu, K.-L. Yang, Electrospun core-sheath fibers with a uniformly aligned polymer network liquid crystal (PNLC). ACS Appl. Mater. Interfaces (2023). https://doi.org/10.1021/acsami.2c23065
- M.-F. Lin, J. Xiong, J. Wang, K. Parida, P.S. Lee, Core-shell nanofiber mats for tactile pressure sensor and nanogenerator applications. Nano Energy 44, 248–255 (2018). https://doi.org/10.1016/j.nanoen.2017.12.004
- M. Zhang, Z. Tan, Q. Zhang, Y. Shen, X. Mao et al., Flexible self-powered friction piezoelectric sensor based on structured PVDF-based composite nanofiber membranes. ACS Appl. Mater. Interfaces 15(25), 30849–30858 (2023). https://doi.org/10.1021/acsami.3c05540
- L. Fu, J. Xu, Q. Liu, C. Liu, S. Fan et al., Gas sensors based on Co3O4/TiO2 core-shell nanofibers prepared by coaxial electrospinning for breath marker acetone detection. Ceram. Int. 50(2), 3443–3452 (2024). https://doi.org/10.1016/j.ceramint.2023.11.092
- K.-R. Park, H.-B. Cho, J. Lee, Y. Song, W.-B. Kim et al., Design of highly porous SnO2-CuO nanotubes for enhancing H2S gas sensor performance. Sens. Actuat. B Chem. 302, 127179 (2020). https://doi.org/10.1016/j.snb.2019.127179
- X. Karagiorgis, D. Shakthivel, G. Khandelwal, R. Ginesi, P.J. Skabara et al., Highly conductive PEDOT: PSS: Ag nanowire-based nanofibers for transparent flexible electronics. ACS Appl. Mater. Interfaces 16(15), 19551–19562 (2024). https://doi.org/10.1021/acsami.4c00682
- Y. Zhao, N. Hou, Y. Wang, C. Fu, X. Li et al., All-fiber structure covered with two-dimensional conductive MOF materials to construct a comfortable, breathable and high-quality self-powered wearable sensor system. J. Mater. Chem. A 10(3), 1248–1256 (2022). https://doi.org/10.1039/D1TA08453D
- X. Hou, Y. Zhou, Y. Liu, L. Wang, J. Wang, Coaxial electrospun flexible PANI// PU fibers as highly sensitive pH wearable sensor. J. Mater. Sci. 55(33), 16033–16047 (2020). https://doi.org/10.1007/s10853-020-05110-7
- T. Li, M. Qu, C. Carlos, L. Gu, F. Jin et al., High-performance poly(vinylidene difluoride)/dopamine core/shell piezoelectric nanofiber and its application for biomedical sensors. Adv. Mater. 33(3), 2006093 (2021). https://doi.org/10.1002/adma.202006093
- R. Liu, L. Hou, G. Yue, H. Li, J. Zhang et al., Progress of fabrication and applications of electrospun hierarchically porous nanofibers. Adv. Fiber Mater. 4(4), 604–630 (2022). https://doi.org/10.1007/s42765-022-00132-z
- C.M. Hung, H.V. Phuong, V. Van Thinh, L.T. Hong, N.T. Thang et al., Au doped ZnO/SnO2 composite nanofibers for enhanced H2S gas sensing performance. Sens. Actuat. A Phys. 317, 112454 (2021). https://doi.org/10.1016/j.sna.2020.112454
- J.-H. Zhang, Z. Zhou, J. Li, B. Shen, T. Zhu et al., Coupling enhanced performance of triboelectric–piezoelectric hybrid nanogenerator based on nanoporous film of poly(vinylidene fluoride)/BaTiO3 composite electrospun fibers. ACS Mater. Lett. 4(5), 847–852 (2022). https://doi.org/10.1021/acsmaterialslett.1c00819
- X. Zhang, G. Hu, M. Liu, C. Wei, B. Yu et al., Advanced electrospun fiber-based triboelectric nanogenerators: from diversified designs to customized applications. Chem. Eng. J. 503, 158636 (2025). https://doi.org/10.1016/j.cej.2024.158636
- Z. Yu, M. Chen, Y. Wang, J. Zheng, Y. Zhang et al., Nanoporous PVDF hollow fiber employed piezo-tribo nanogenerator for effective acoustic harvesting. ACS Appl. Mater. Interfaces 13(23), 26981–26988 (2021). https://doi.org/10.1021/acsami.1c04489
- T. Wang, X. Shang, H. Wang, J. Wang, C. Zhang, Porous nanofibers and micro-pyramid structures array for high-performance flexible pressure sensors. Compos. Part A Appl. Sci. Manuf. 181, 108163 (2024). https://doi.org/10.1016/j.compositesa.2024.108163
- F. Mokhtari, A. Samadi, A.O. Rashed, X. Li, J.M. Razal et al., Recent progress in electrospun polyvinylidene fluoride (PVDF)-based nanofibers for sustainable energy and environmental applications. Prog. Mater. Sci. 148, 101376 (2025). https://doi.org/10.1016/j.pmatsci.2024.101376
- Z. Shao, X. Zhang, Z. Song, J. Liu, X. Liu et al., Simulation guided coaxial electrospinning of polyvinylidene fluoride hollow fibers with tailored piezoelectric performance. Small 19(38), 2303285 (2023). https://doi.org/10.1002/smll.202303285
- L. Zhu, J. Wang, J. Liu, X. Chen, Z. Xu et al., Designing highly sensitive formaldehyde sensors via A-site cation deficiency in LaFeO3 hollow nanofibers. Appl. Surf. Sci. 590, 153085 (2022). https://doi.org/10.1016/j.apsusc.2022.153085
- D. Xu, Y. Zhang, Q. Zhu, Z. Song, Z. Deng et al., A-site non-stoichiometric defects engineering in xPt–La0.9Fe0.75Sn0.25O3–δ hollow nanofiber for high-performance formaldehyde sensor. J. Mater. Chem. C 10(47), 17907–17916 (2022). https://doi.org/10.1039/d2tc04185e
- M. Bonyani, S.M. Zebarjad, A. Mirzaei, T.-U. Kim, H.W. Kim et al., Electrospun ZnO hollow nanofibers gas sensors: an overview. J. Alloys Compd. 1001, 175201 (2024). https://doi.org/10.1016/j.jallcom.2024.175201
- Y. Tang, J. Yan, W. Xiao, X. Huang, L. Tang et al., Stretchable, durable and asymmetrically wettable nanofiber composites with unidirectional water transportation capability for temperature sensing. J. Colloid Interface Sci. 641, 893–902 (2023). https://doi.org/10.1016/j.jcis.2023.03.088
- R. Sukowati, Y.M. Rohman, B.H. Agung, D. Ahmad Hapidin, H. Damayanti et al., An investigation of the influence of nanofibers morphology on the performance of QCM-based ethanol vapor sensor utilizing polyvinylpyrrolidone nanofibers active layer. Sens. Actuat. B Chem. 386, 133708 (2023). https://doi.org/10.1016/j.snb.2023.133708
- H. Qi, H. Huang, Y. Hu, F. Bi, X. Zhang et al., Electrospinning fabrication and performances of [Double network]// [Single network] Janus nanobelt array hydrogel membrane endowed with luminescence and highly anisotropic conduction. J. Alloys Compd. 1010, 178291 (2025). https://doi.org/10.1016/j.jallcom.2024.178291
- H. Qi, H. Huang, Y. Hu, N. Li, L. Yang et al., Design and electrospinning synthesis of red luminescent-highly anisotropic conductive Janus nanobelt hydrogel array films. Mater. Chem. Front. 9(4), 710–724 (2025). https://doi.org/10.1039/D4QM00852A
- J.B. Ballengee, P.N. Pintauro, Morphological control of electrospun nafion nanofiber mats. J. Electrochem. Soc. 158(5), B568 (2011). https://doi.org/10.1149/1.3561645
- M.-H. Kim, J.-S. Jang, W.-T. Koo, S.-J. Choi, S.-J. Kim et al., Bimodally porous WO3 microbelts functionalized with Pt catalysts for selective H2S sensors. ACS Appl. Mater. Interfaces 10(24), 20643–20651 (2018). https://doi.org/10.1021/acsami.8b00588
- M. Robiul Islam, O. Faruk, S.M. Sohel Rana, G.B. Pradhan, H. Kim et al., Poly-DADMAC functionalized polyethylene oxide composite nanofibrous mat as highly positive material for triboelectric nanogenerators and self-powered pressure sensors. Adv. Funct. Mater. 34(40), 2403899 (2024). https://doi.org/10.1002/adfm.202403899
- J.-W. Li, B.-S. Huang, C.-H. Chang, C.-W. Chiu, Advanced electrospun AgNPs/rGO/PEDOT: PSS/TPU nanofiber electrodes: stretchable, self-healing, and perspiration-resistant wearable devices for enhanced ECG and EMG monitoring. Adv. Compos. Hybrid Mater. 6(6), 231 (2023). https://doi.org/10.1007/s42114-023-00812-3
- Y. Gao, H. Li, S. Chao, Y. Wang, L. Hou et al., Zebra-patterned stretchable helical yarn for triboelectric self-powered multifunctional sensing. ACS Nano 18(26), 16958–16966 (2024). https://doi.org/10.1021/acsnano.4c03115
- J. Li, Y. Zhao, X. Zhao, W. Zhai, K. Dai et al., Liquid metal-facilitated flexible electrospun thermoplastic polyurethane fibrous mats with aligned wavelike structure for strain and triboelectric double-mode sensing. Compos. Part A Appl. Sci. Manuf. 179, 108031 (2024). https://doi.org/10.1016/j.compositesa.2024.108031
- L. Wu, Y. Zhang, Q. Feng, J. Zhang, J. Li et al., A multifunctional flexible sensor with a 3D TPU fiber-based conductive network via in situ reduction of an AgNP layer. ACS Sustain. Chem. Eng. 12(16), 6111–6121 (2024). https://doi.org/10.1021/acssuschemeng.3c06811
- C. Li, J. Mu, Y. Song, S. Chen, F. Xu, Highly aligned cellulose/polypyrrole composite nanofibers via electrospinning and in situ polymerization for anisotropic flexible strain sensor. ACS Appl. Mater. Interfaces (2023). https://doi.org/10.1021/acsami.2c20464
- J.-H. Lee, J. Kim, D. Liu, F. Guo, X. Shen et al., Highly aligned, anisotropic carbon nanofiber films for multidirectional strain sensors with exceptional selectivity. Adv. Funct. Mater. 29(29), 1901623 (2019). https://doi.org/10.1002/adfm.201901623
- X. Yang, Y. Wang, X. Qing, A flexible capacitive sensor based on the electrospun PVDF nanofiber membrane with carbon nanotubes. Sens. Actuat. A Phys. 299, 111579 (2019). https://doi.org/10.1016/j.sna.2019.111579
- X. Li, Y. Liu, Y. Ding, M. Zhang, Z. Lin et al., Capacitive pressure sensor combining dual dielectric layers with integrated composite electrode for wearable healthcare monitoring. ACS Appl. Mater. Interfaces 16(10), 12974–12985 (2024). https://doi.org/10.1021/acsami.4c01042
- Y. Zhou, D. Gao, B. Lyu, C. Zheng, L. Tang et al., Close-loop recyclable and flexible halide perovskite@wool keratin sensor with piezoelectric property. J. Energy Chem. 84, 428–435 (2023). https://doi.org/10.1016/j.jechem.2023.05.005
- Y. Zhang, Z. Liu, Y. Li, E.Y.B. Pun, H. Lin, Electrospun fibers embedded with microcrystal for optical temperature sensing. J. Alloys Compd. 855, 157410 (2021). https://doi.org/10.1016/j.jallcom.2020.157410
- P. Gajula, J.U. Yoon, I. Woo, S.-J. Oh, J.W. Bae, Triboelectric touch sensor array system for energy generation and self-powered human-machine interfaces based on chemically functionalized, electrospun rGO/Nylon-12 and micro-patterned Ecoflex/MoS2 films. Nano Energy 121, 109278 (2024). https://doi.org/10.1016/j.nanoen.2024.109278
- J. Li, J. Yin, M.G.V. Wee, A. Chinnappan, S. Ramakrishna, A self-powered piezoelectric nanofibrous membrane as wearable tactile sensor for human body motion monitoring and recognition. Adv. Fiber Mater. 5, 1–14 (2023). https://doi.org/10.1007/s42765-023-00282-8
- Q. Zhu, X. Song, X. Chen, D. Li, X. Tang et al., A high performance nanocellulose-PVDF based piezoelectric nanogenerator based on the highly active CNF@ZnO via electrospinning technology. Nano Energy 127, 109741 (2024). https://doi.org/10.1016/j.nanoen.2024.109741
- R. Yin, Y. Li, W. Li, F. Gao, X. Chen et al., High-temperature flexible electric Piezo/pyroelectric bifunctional sensor with excellent output performance based on thermal-cyclized electrospun PAN/Zn(Ac)2 nanofiber mat. Nano Energy 124, 109488 (2024). https://doi.org/10.1016/j.nanoen.2024.109488
- X. Li, Y. Li, Y. Li, J. Tan, J. Zhang et al., Flexible piezoelectric and pyroelectric nanogenerators based on PAN/TMAB nanocomposite fiber mats for self-power multifunctional sensors. ACS Appl. Mater. Interfaces 14(41), 46789–46800 (2022). https://doi.org/10.1021/acsami.2c10951
- T. Bhatta, P. Maharjan, H. Cho, C. Park, S.H. Yoon et al., High-performance triboelectric nanogenerator based on MXene functionalized polyvinylidene fluoride composite nanofibers. Nano Energy 81, 105670 (2021). https://doi.org/10.1016/j.nanoen.2020.105670
- P. Das, P.K. Marvi, S. Ganguly, X.S. Tang, B. Wang et al., MXene-based elastomer mimetic stretchable sensors: design, properties, and applications. Nano-Micro Lett. 16(1), 135 (2024). https://doi.org/10.1007/s40820-024-01349-w
- D. Sengupta, L. Lu, D.R. Gomes, B. Jayawardhana, Y. Pei et al., Fabric-like electrospun PVAc-graphene nanofiber webs as wearable and degradable piezocapacitive sensors. ACS Appl. Mater. Interfaces 15(18), 22351–22366 (2023). https://doi.org/10.1021/acsami.3c03113
- Y. Zhou, L. Zhao, Q. Jia, T. Wang, P. Sun et al., Multifunctional flexible ionic skin with dual-modal output based on fibrous structure. ACS Appl. Mater. Interfaces 14(49), 55109–55118 (2022). https://doi.org/10.1021/acsami.2c17498
- Y. Liu, C. Zhao, Y. Xiong, J. Yang, H. Jiao et al., Versatile ion-gel fibrous membrane for energy-harvesting iontronic skin. Adv. Funct. Mater. 33(37), 2303723 (2023). https://doi.org/10.1002/adfm.202303723
- P. Wang, J. Liu, W. Yu, G. Li, C. Meng et al., Flexible, stretchable, breathable and sweatproof all-nanofiber iontronic tactile sensor for continuous and comfortable knee joint motion monitoring. Nano Energy 103, 107768 (2022). https://doi.org/10.1016/j.nanoen.2022.107768
- Z. Shao, X. Zhang, J. Liu, X. Liu, C. Zhang, Electrospinning of highly bi-oriented flexible piezoelectric nanofibers for anisotropic-responsive intelligent sensing. Small Meth. 7(9), 2300701 (2023). https://doi.org/10.1002/smtd.202300701
- D. Wang, D. Zhang, P. Li, Z. Yang, Q. Mi et al., Electrospinning of flexible poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro Lett. 13(1), 57 (2021). https://doi.org/10.1007/s40820-020-00580-5
- X. Liu, J. Tong, J. Wang, S. Lu, D. Yang et al., BaTiO3/MXene/PVDF-TrFE composite films via an electrospinning method for flexible piezoelectric pressure sensors. J. Mater. Chem. C 11(14), 4614–4622 (2023). https://doi.org/10.1039/D2TC05291A
- S.A. Iyengar, P. Srikrishnarka, S.K. Jana, M.R. Islam, T. Ahuja et al., Surface-treated nanofibers as high current yielding breath humidity sensors for wearable electronics. ACS Appl. Electron. Mater. 1(6), 951–960 (2019). https://doi.org/10.1021/acsaelm.9b00123
- Z. Jia, Z. Li, S. Ma, W. Zhang, Y. Chen et al., Constructing conductive titanium carbide nanosheet (MXene) network on polyurethane/polyacrylonitrile fibre framework for flexible strain sensor. J. Colloid Interface Sci. 584, 1–10 (2021). https://doi.org/10.1016/j.jcis.2020.09.035
- Y. Peng, J. Dong, J. Sun, Y. Mao, Y. Zhang et al., Multimodal health monitoring via a hierarchical and ultrastretchable all-in-one electronic textile. Nano Energy 110, 108374 (2023). https://doi.org/10.1016/j.nanoen.2023.108374
- H. Hu, S. Shang, J. Liu, P. Zhu, Silk fibroin based flexible and self-powered sensor for real-time monitoring of abdominal respiration. Int. J. Biol. Macromol. 254, 127723 (2024). https://doi.org/10.1016/j.ijbiomac.2023.127723
- S. Wang, M. Tian, S. Hu, W. Zhai, G. Zheng et al., Hierarchical nanofibrous mat via water-assisted electrospinning for self-powered ultrasensitive vibration sensors. Nano Energy 97, 107149 (2022). https://doi.org/10.1016/j.nanoen.2022.107149
- C. Ma, M. Wang, P.C. Uzabakiriho, G. Zhao, High sensitivity, broad working range, comfortable, and biofriendly wearable strain sensor for electronic skin. Adv. Mater. Technol. 7(8), 2270049 (2022). https://doi.org/10.1002/admt.202270049
- F. Nikbakhtnasrabadi, E.S. Hosseini, S. Dervin, D. Shakthivel, R. Dahiya, Smart bandage with in ductor-capacitor resonant tank based printed wireless pressure sensor on electrospun poly-L-lactide nanofibers. Adv. Electron. Mater. 8(7), 2101348 (2022). https://doi.org/10.1002/aelm.202101348
- L. Kang, J. Ma, C. Wang, K. Li, H. Wu et al., Highly sensitive and wide detection range thermoplastic polyurethane/graphene nanoplatelets multifunctional strain sensor with a porous and crimped network structure. ACS Appl. Mater. Interfaces 16(2), 2814–2824 (2024). https://doi.org/10.1021/acsami.3c18397
- Z. Tian, W. Qin, Y. Wang, X. Li, C. Gu et al., Ultra-stable strain/humidity dual-functional flexible wearable sensor based on brush-like AgNPs@CNTs@TPU heterogeneous structure. Colloids Surf. A Physicochem. Eng. Aspects 670, 131398 (2023). https://doi.org/10.1016/j.colsurfa.2023.131398
- B. Zhao, H. Cong, Z. Dong, Highly stretchable and sensitive strain sensor based on Ti3C2-coated electrospinning TPU film for human motion detection. Smart Mater. Struct. 30(9), 095003 (2021). https://doi.org/10.1088/1361-665X/ac102c
- J. Shi, D. Wang, B. Sarkodie, D. Wu, Z. Mao et al., Strain sensors for human movement detection based on fibrous membranes comprising thermoplastic polyurethane, Ag nanops, and carbon nanotubes. ACS Appl. Nano Mater. 7(2), 2051–2061 (2024). https://doi.org/10.1021/acsanm.3c05335
- M. Chen, Z. Wang, Y. Zheng, Q. Zhang, B. He et al., Flexible tactile sensor based on patterned Ag-nanofiber electrodes through electrospinning. Sensors 21(7), 2413 (2021). https://doi.org/10.3390/s21072413
- B. Lan, T. Yang, G. Tian, Y. Ao, L. Jin et al., Multichannel gradient piezoelectric transducer assisted with deep learning for broadband acoustic sensing. ACS Appl. Mater. Interfaces 15(9), 12146–12153 (2023). https://doi.org/10.1021/acsami.2c20520
- A.H. Hassanin, E. Elnabawy, M. Salah, R. Nair, M. Gamal et al., Multi-functional wet-electrospun piezoelectric nanofibers sensing mat: manufacturing, characterization, and applications. Mater. Sci. Semicond. Process. 166, 107708 (2023). https://doi.org/10.1016/j.mssp.2023.107708
- P. Wang, G. Sun, W. Yu, G. Li, C. Meng et al., Wearable, ultrathin and breathable tactile sensors with an integrated all-nanofiber network structure for highly sensitive and reliable motion monitoring. Nano Energy 104, 107883 (2022). https://doi.org/10.1016/j.nanoen.2022.107883
- M. Wang, C. Ma, P.C. Uzabakiriho, X. Chen, Z. Chen et al., Stencil printing of liquid metal upon electrospun nanofibers enables high-performance flexible electronics. ACS Nano 15(12), 19364–19376 (2021). https://doi.org/10.1021/acsnano.1c05762
- S. Pan, J. He, W. Wang, J. Yan et al., Piezoresistive MXene@CNTs nanofiber membrane sensors with micro-hemispherical structures via template-assisted electrospinning for human health monitoring. Ind. Eng. Chem. Res. 64(6), 3587–3601 (2025). https://doi.org/10.1021/acs.iecr.4c04197
- X. Yu, Z. Wu, L. Weng, D. Jiang, H. Algadi et al., Flexible strain sensor enabled by carbon nanotubes-decorated electrospun TPU membrane for human motion monitoring. Adv. Mater. Interfaces 10(11), 2202292 (2023). https://doi.org/10.1002/admi.202202292
- N. Ram, J. Kaarthik, S. Singh, H. Palneedi, P.D. Prasad et al., Boosting energy harvesting of fully flexible magnetoelectric composites of PVDF-AlN and NiO-decorated carbon nanofibers. Ceram. Int. 50(10), 17465–17474 (2024). https://doi.org/10.1016/j.ceramint.2024.02.234
- T. Jin, Y. Pan, S.K. Park, D.-W. Fang, Ultrathin flexible pressure sensors using microbead embedded nanofibrous membrane for wearable applications. J. Alloys Compd. 1014, 178609 (2025). https://doi.org/10.1016/j.jallcom.2025.178609
- D. Wang, D. Zhang, M. Tang, H. Zhang, F. Chen et al., Rotating triboelectric-electromagnetic nanogenerator driven by tires for self-powered MXene-based flexible wearable electronics. Chem. Eng. J. 446, 136914 (2022). https://doi.org/10.1016/j.cej.2022.136914
- M. Yang, W. Huang, R. Chen, Z. Ma, Flexible electrospun nanofibers for tactile sensing and integrated system research. IEEE Sens. J. 25(1), 9–16 (2025). https://doi.org/10.1109/JSEN.2024.3493072
- W. Wang, Y. Ma, T. Wang, K. Ding, W. Zhao et al., Double-layered conductive network design of flexible strain sensors for high sensitivity and wide working range. ACS Appl. Mater. Interfaces 14(32), 36611–36621 (2022). https://doi.org/10.1021/acsami.2c08285
- M. Ren, J. Li, Y. Zhao, W. Zhai, K. Zhou et al., Highly strain-sensitive and stretchable multilayer conductive composite based on aligned thermoplastic polyurethane fibrous mat for human motion monitoring. Compos. Commun. 46, 101840 (2024). https://doi.org/10.1016/j.coco.2024.101840
- J. Lee, S. Varagnolo, M. Walker, R.A. Hatton, Transparent fused nanowire electrodes by condensation coefficient modulation. Adv. Funct. Mater. 30(51), 2005959 (2020). https://doi.org/10.1002/adfm.202005959
- L. Liu, H.Y. Li, Y.J. Fan, Y.H. Chen, S.Y. Kuang et al., Nanofiber-reinforced silver nanowires network as a robust, ultrathin, and conformable epidermal electrode for ambulatory monitoring of physiological signals. Small 15(22), 1900755 (2019). https://doi.org/10.1002/smll.201900755
- C. Xu, L. Jiang, Y. Zhang, G. Zhu, X. Zhu et al., Lotus leaf-inspired poly(lactic acid) nanofibrous membranes with enhanced humidity resistance for superefficient PM filtration and high-sensitivity passive monitoring. J. Hazard. Mater. 488, 137516 (2025). https://doi.org/10.1016/j.jhazmat.2025.137516
- S. Zheng, X. Wang, W. Li, Z. Liu, Q. Li et al., Pressure-stamped stretchable electronics using a nanofibre membrane containing semi-embedded liquid metal ps. Nat. Electron. 7(7), 576–585 (2024). https://doi.org/10.1038/s41928-024-01194-0
- R. Yu, L. Wu, Z. Yang, J. Wu, H. Chen et al., Dynamic liquid metal–microfiber interlocking enables highly conductive and strain-insensitive metastructured fibers for wearable electronics. Adv. Mater. 37(6), 2415268 (2025). https://doi.org/10.1002/adma.202415268
- Y. Liu, J. Wang, J. Chen, Q. Yuan, Y. Zhu, Ultrasensitive iontronic pressure sensor based on rose-structured ionogel dielectric layer and compressively porous electrodes. Adv. Compos. Hybrid Mater. 6(6), 210 (2023). https://doi.org/10.1007/s42114-023-00765-7
- X. Li, M. Yang, W. Qin, C. Gu, L. Feng et al., MXene-based multilayered flexible strain sensor integrating electromagnetic shielding and Joule heat. Colloids Surf. A Physicochem. Eng. Aspects 658, 130706 (2023). https://doi.org/10.1016/j.colsurfa.2022.130706
- Z. Wang, P. Bi, Y. Yang, H. Ma, Y. Lan et al., Star-nose-inspired multi-mode sensor for anisotropic motion monitoring. Nano Energy 80, 105559 (2021). https://doi.org/10.1016/j.nanoen.2020.105559
- J. Gu, M. Zheng, T. Zhu, N. Wang, L. Wang et al., Electrostatic-modulated interfacial crosslinking and waterborne emulsion coating toward waterproof, breathable, and antifouling fibrous membranes. Chem. Eng. J. 454, 140439 (2023). https://doi.org/10.1016/j.cej.2022.140439
- Y. Tian, M. Huang, Y. Wang, Y. Zheng, R. Yin et al., Ultra-stretchable, sensitive and breathable electronic skin based on TPU electrospinning fibrous membrane with microcrack structure for human motion monitoring and self-powered application. Chem. Eng. J. 480, 147899 (2024). https://doi.org/10.1016/j.cej.2023.147899
- D. Chen, Y. Li, J. Gao, M. Zhang, J. Liang et al., Biomimetic fiber of PVDF@Ag enabling the multimodal sensing for biomechanics and biomolecules integrated by textile carrier. Nano Energy 128, 109821 (2024). https://doi.org/10.1016/j.nanoen.2024.109821
- X. Fu, J. Li, D. Li, L. Zhao, Z. Yuan et al., MXene/ZIF-67/PAN nanofiber film for ultra-sensitive pressure sensors. ACS Appl. Mater. Interfaces 14(10), 12367–12374 (2022). https://doi.org/10.1021/acsami.1c24655
- B.-C. Shiu, Y.-L. Liu, Q.-Y. Yuan, C.-W. Lou, J.-H. Lin, Preparation and characterization of PEDOT: PSS/TiO2 micro/nanofiber-based gas sensors. Polymers 14(9), 1780 (2022). https://doi.org/10.3390/polym14091780
- Y. Shen, S. Chai, Q. Zhang, M. Zhang, X. Mao et al., PVF composite conductive nanofibers-based organic electrochemical transistors for lactate detection in human sweat. Chem. Eng. J. 475, 146008 (2023). https://doi.org/10.1016/j.cej.2023.146008
- M.F. de Aguiar, A.N.R. Leal, C.P. de Melo, K.G.B. Alves, Polypyrrole-coated electrospun polystyrene films as humidity sensors. Talanta 234, 122636 (2021). https://doi.org/10.1016/j.talanta.2021.122636
- Y. Yu, H. Wu, Y. Yu, J. Yan, J. Shi et al., Acid- and alkali-resistant, UV-shielding, and photocatalytic self-cleaning nanofiber membrane-based wearable triboelectric nanogenerator for ultra-low-frequency energy-harvesting and self-powered sensors. Chem. Eng. J. 490, 151546 (2024). https://doi.org/10.1016/j.cej.2024.151546
- S. Yan, B. Xin, S. Zhu, M.A. Amin Newton, J. Cai, Two-step preparation of 3D fluffy, single-sided composite nanofiber skeleton with continuous internal network for multifunctional sensing. ACS Appl. Nano Mater. 7(11), 13392–13399 (2024). https://doi.org/10.1021/acsanm.4c01879
- S. Yan, S. Zhu, M.A.A. Newton, J. Cai, H. Feng et al., Ultra-light, ultra-resilient and ultra-flexible, multifunctional composite carbon nanofiber aerogel for physiological signal monitoring and hazard warning in extreme environments. Chem. Eng. J. 494, 153017 (2024). https://doi.org/10.1016/j.cej.2024.153017
- S. Yan, D. Shen, M.A.A. Newton, S. Zhu, B. Xin, Patterned, flexible, self-supporting humidity sensor with core-sheath structure for real-time sensing of human-related humidity. Colloids Surf. A Physicochem. Eng. Aspects 695, 134198 (2024). https://doi.org/10.1016/j.colsurfa.2024.134198
- G. Zhao, L. Shi, G. Yang, X. Zhuang, B. Cheng, 3D fibrous aerogels from 1D polymer nanofibers for energy and environmental applications. J. Mater. Chem. A 11(2), 512–547 (2023). https://doi.org/10.1039/D2TA05984C
- H. Ren, L. Zheng, G. Wang, X. Gao, Z. Tan et al., Transfer-medium-free nanofiber-reinforced graphene film and applications in wearable transparent pressure sensors. ACS Nano 13(5), 5541–5548 (2019). https://doi.org/10.1021/acsnano.9b00395
- Z. Mu, Y. Sun, J. Qin, Z. Shen, G. Liang et al., Flexible carbon nanocomposite fabric with negative permittivity property prepared by electrostatic spinning. Adv. Compos. Hybrid Mater. 8(1), 77 (2024). https://doi.org/10.1007/s42114-024-01163-3
- C. Cai, H. Gong, W. Li, F. Gao, Q. Jiang et al., A flexible and highly sensitive pressure sensor based on three-dimensional electrospun carbon nanofibers. RSC Adv. 11(23), 13898–13905 (2021). https://doi.org/10.1039/D0RA10803K
- X. Lu, Y. Qin, X. Chen, C. Peng, Y. Yang et al., An ultra-wide sensing range film strain sensor based on a branch-shaped PAN-based carbon nanofiber and carbon black synergistic conductive network for human motion detection and human–machine interfaces. J. Mater. Chem. C 10(16), 6296–6305 (2022). https://doi.org/10.1039/D1TC05886J
- H. Liu, L. Jin, S. Zhu, C. Mao, S. Wu et al., Motion-activating pliable carbon nanofiber for smart mechanosensitive sensing and antibacterial protection. Adv. Funct. Mater. 35(7), 2415258 (2025). https://doi.org/10.1002/adfm.202415258
- H. Wang, H. Cao, H. Wu, Q. Zhang, X. Mao et al., Environmentally friendly and sensitive strain sensor based on multiwalled carbon nanotubes/lignin-based carbon nanofibers. ACS Appl. Nano Mater. 6(15), 14165–14176 (2023). https://doi.org/10.1021/acsanm.3c02073
- T.T.T. Phan, T.D. Nguyen, M.T.N. Nguyen, J.S. Lee, Facile synthesis of nickel-decorated multidimensional carbon nanofibers via oxygen plasma activation for non-enzymatic acetaminophen sensing. Carbon 212, 118176 (2023). https://doi.org/10.1016/j.carbon.2023.118176
- Q. Song, K. Wang, G. Zhao, Self-adhesive, conductive, and antibacterial hydrogel nanofiber composite as a flexible strain sensor. ACS Appl. Electron. Mater. 5(12), 6947–6954 (2023). https://doi.org/10.1021/acsaelm.3c01359
- T. Xu, Y. Ding, Z. Liang, H. Sun, F. Zheng et al., Three-dimensional monolithic porous structures assembled from fragmented electrospun nanofiber mats/membranes: methods, properties, and applications. Prog. Mater. Sci. 112, 100656 (2020). https://doi.org/10.1016/j.pmatsci.2020.100656
- J. Chen, X. Wang, L. Dao, L. Liu, Y. Yang et al., A conductive bio-hydrogel with high conductivity and mechanical strength via physical filling of electrospinning polyaniline fibers. Colloids Surf. A Physicochem. Eng. Aspects 637, 128190 (2022). https://doi.org/10.1016/j.colsurfa.2021.128190
- Z. Duan, F. Cai, Y. Chen, T. Chen, P. Lu, Advanced applications of porous materials in triboelectric nanogenerator self-powered sensors. Sensors 24(12), 3812 (2024). https://doi.org/10.3390/s24123812
- Y. Fu, S. Wang, Y. Tian, B. Zhang, Z. Zhao et al., A high-sensitivity and multi-response magnetic nanofiber-aerogel sensor with directionally aligned porous structure based on triple network for interactive human–machine interfaces. Chem. Eng. J. 497, 154441 (2024). https://doi.org/10.1016/j.cej.2024.154441
- J. Li, H. Li, J. Lin, Y. Lu, J. Qin et al., Multilayer polyimide nanofibrous aerogels for efficient thermal insulation and piezoelectric sensor. Chem. Eng. J. 507, 160807 (2025). https://doi.org/10.1016/j.cej.2025.160807
- H. Dong, C. Zhi, C. Wang, R. Sun, Z. Dong et al., Artificial vascular stent-inspired bending sensors embedded in a data glove for hand gesture recognition. IEEE Sens. J. 23(19), 23388–23398 (2023). https://doi.org/10.1109/JSEN.2023.3306045
- J. Qin, L.-J. Yin, Y.-N. Hao, S.-L. Zhong, D.-L. Zhang et al., Flexible and stretchable capacitive sensors with different microstructures. Adv. Mater. 33(34), 2008267 (2021). https://doi.org/10.1002/adma.202008267
- D. Wang, J. Zhang, C. Fan, J. Xing, A. Wei et al., A strong, ultrastretchable, antifreezing and high sensitive strain sensor based on ionic conductive fiber reinforced organohydrogel. Compos. Part B Eng. 243, 110116 (2022). https://doi.org/10.1016/j.compositesb.2022.110116
- F. Chen, Q. Zhuang, Y. Ding, C. Zhang, X. Song et al., Wet-adaptive electronic skin. Adv. Mater. 35(49), e2305630 (2023). https://doi.org/10.1002/adma.202305630
- W. Yue, Y. Guo, J.C. Lee, E. Ganbold, J.K. Wu et al., Advancements in passive wireless sensing systems in monitoring harsh environment and healthcare applications. Nano-Micro Lett. 17(1), 106 (2025). https://doi.org/10.1007/s40820-024-01599-8
- K. Shrestha, G.B. Pradhan, T. Bhatta, S. Sharma, S. Lee et al., Intermediate nanofibrous charge trapping layer-based wearable triboelectric self-powered sensor for human activity recognition and user identification. Nano Energy 108, 108180 (2023). https://doi.org/10.1016/j.nanoen.2023.108180
- T. Bhatta, S. Sharma, K. Shrestha, Y. Shin, S. Seonu et al., Siloxene/PVDF composite nanofibrous membrane for high-performance triboelectric nanogenerator and self-powered static and dynamic pressure sensing applications. Adv. Funct. Mater. 32(25), 2202145 (2022). https://doi.org/10.1002/adfm.202202145
- J. Zhang, T. Yang, G. Tian, B. Lan, W. Deng et al., Spatially confined MXene/PVDF nanofiber piezoelectric electronics. Adv. Fiber Mater. 6(1), 133–144 (2024). https://doi.org/10.1007/s42765-023-00337-w
- Y. Yang, Y. Yang, J. Huang, S. Li, Z. Meng et al., Electrospun nanocomposite fibrous membranes for sustainable face mask based on triboelectric nanogenerator with high air filtration efficiency. Adv. Fiber Mater. 5, 1–14 (2023). https://doi.org/10.1007/s42765-023-00299-z
- P.C. Uzabakiriho, M. Wang, K. Wang, C. Ma, G. Zhao, High-strength and extensible electrospun yarn for wearable electronics. ACS Appl. Mater. Interfaces 14(40), 46068–46076 (2022). https://doi.org/10.1021/acsami.2c13182
- Y. Yang, Y. Song, X. Bo, J. Min, O.S. Pak et al., A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 38(2), 217–224 (2020). https://doi.org/10.1038/s41587-019-0321-x
- Y. Wei, S. Chen, X. Yuan, P. Wang, L. Liu, Multiscale wrinkled microstructures for piezoresistive fibers. Adv. Funct. Mater. 26(28), 5078–5085 (2016). https://doi.org/10.1002/adfm.201600580
- S.M. Park, S. Eom, D. Choi, S.J. Han, S.J. Park et al., Direct fabrication of spatially patterned or aligned electrospun nanofiber mats on dielectric polymer surfaces. Chem. Eng. J. 335, 712–719 (2018). https://doi.org/10.1016/j.cej.2017.11.018
- S. Yang, K. Ding, W. Wang, T. Wang, H. Gong et al., Electrospun fiber-based high-performance flexible multi-level micro-structured pressure sensor: design, development and modelling. Chem. Eng. J. 431, 133700 (2022). https://doi.org/10.1016/j.cej.2021.133700
- M. Raisch, D. Genovese, N. Zaccheroni, S.B. Schmidt, M.L. Focarete et al., Highly sensitive, anisotropic, and reversible stress/strain-sensors from mechanochromic nanofiber composites. Adv. Mater. 30(39), e1802813 (2018). https://doi.org/10.1002/adma.201802813
- J.-H. Zhang, Z. Li, J. Xu, J. Li, K. Yan et al., Versatile self-assembled electrospun micropyramid arrays for high-performance on-skin devices with minimal sensory interference. Nat. Commun. 13(1), 5839 (2022). https://doi.org/10.1038/s41467-022-33454-y
- J. Yan, Y. Ma, G. Jia, S. Zhao, Y. Yue et al., Bionic MXene based hybrid film design for an ultrasensitive piezoresistive pressure sensor. Chem. Eng. J. 431, 133458 (2022). https://doi.org/10.1016/j.cej.2021.133458
- M. Cui, H. Guo, W. Zhai, C. Liu, C. Shen et al., Template-assisted electrospun ordered hierarchical microhump arrays-based multifunctional triboelectric nanogenerator for tactile sensing and animal voice-emotion identification. Adv. Funct. Mater. 33(46), 2301589 (2023). https://doi.org/10.1002/adfm.202301589
- M.I. Shekh, M. Wang, G. Zhu, F.J. Stadler, J. Ma et al., Mechanically robust and conductive zwitter ionic polymer coated electrospun nanofibrous electrolyte membranes for wireless human motion detection and capacitor applications. Compos. Struct. 329, 117797 (2024). https://doi.org/10.1016/j.compstruct.2023.117797
- T. Yang, C. Ma, C. Lin, J. Wang, W. Qiao et al., Innovative fabrication of ultrasensitive and durable graphene fiber aerogel for flexible pressure sensors. Carbon 229, 119484 (2024). https://doi.org/10.1016/j.carbon.2024.119484
- J. Yang, K. Hong, Y. Hao, X. Zhu, J. Su et al., Mica/nylon composite nanofiber film based wearable triboelectric sensor for object recognition. Nano Energy 129, 110056 (2024). https://doi.org/10.1016/j.nanoen.2024.110056
- J. Yang, M. Wang, Y. Meng, Z. Niu, Y. Hao et al., High-performance flexible wearable triboelectric nanogenerator sensor by β-phase polyvinylidene fluoride polarization. ACS Appl. Electron. Mater. 6(2), 1385–1395 (2024). https://doi.org/10.1021/acsaelm.3c01678
- S. Pan, F. Zhang, P. Cai, M. Wang, K. He et al., Mechanically interlocked hydrogel–elastomer hybrids for on-skin electronics. Adv. Funct. Mater. 30(29), 1909540 (2020). https://doi.org/10.1002/adfm.201909540
- C.-Y. Huang, C.-W. Chiu, Facile fabrication of a stretchable and flexible nanofiber carbon film-sensing electrode by electrospinning and its application in smart clothing for ECG and EMG monitoring. ACS Appl. Electron. Mater. 3(2), 676–686 (2021). https://doi.org/10.1021/acsaelm.0c00841
- M.S. Reza, L. Jin, Y.J. Jeong, T.I. Oh, H. Kim et al., Electrospun rubber nanofiber web-based dry electrodes for biopotential monitoring. Sensors 23(17), 7377 (2023). https://doi.org/10.3390/s23177377
- C.-T. Pan, C.-C. Chang, Y.-S. Yang, C.-K. Yen, Y.-H. Kao et al., Development of MMG sensors using PVDF piezoelectric electrospinning for lower limb rehabilitation exoskeleton. Sens. Actuat. A Phys. 301, 111708 (2020). https://doi.org/10.1016/j.sna.2019.111708
- C. Zhi, S. Shi, S. Zhang, Y. Si, J. Yang et al., Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing. Nano-Micro Lett. 15(1), 60 (2023). https://doi.org/10.1007/s40820-023-01028-2
- W. Wang, L. Xu, L. Zhang, A. Zhang, J. Zhang, Self-powered integrated sensing system with in-plane micro-supercapacitors for wearable electronics. Small 19(29), e2207723 (2023). https://doi.org/10.1002/smll.202207723
- T. Cui, Y. Qiao, D. Li, X. Huang, L. Yang et al., Multifunctional, breathable MXene-PU mesh electronic skin for wearable intelligent 12-lead ECG monitoring system. Chem. Eng. J. 455, 140690 (2023). https://doi.org/10.1016/j.cej.2022.140690
- Q. Li, C. Ding, W. Yuan, R. Xie, X. Zhou et al., Highly stretchable and permeable conductors based on shrinkable electrospun fiber mats. Adv. Fiber Mater. 3(5), 302–311 (2021). https://doi.org/10.1007/s42765-021-00079-7
- C.-W. Chiu, C.-Y. Huang, J.-W. Li, C.-L. Li, Flexible hybrid electronics nanofiber electrodes with excellent stretchability and highly stable electrical conductivity for smart clothing. ACS Appl. Mater. Interfaces 14(37), 42441–42453 (2022). https://doi.org/10.1021/acsami.2c11724
- S. Yan, S. Jin, X. He, J. Xu, H. Feng et al., Direct synthesis of composite conductive carbon nanofiber aerogels with continuous internal networks for collaborative physiological signal monitoring under complex environments. Sens. Actuat. B Chem. 426, 136975 (2025). https://doi.org/10.1016/j.snb.2024.136975
- A. Ahmed, N.A. Khoso, M.F. Arain, I.A. Khan, K. Javed et al., Development of highly flexible piezoelectric PVDF-TRFE/reduced graphene oxide doped electrospun nano-fibers for self-powered pressure sensor. Polymers 16(13), 1781 (2024). https://doi.org/10.3390/polym16131781
- Z. Shen, F. Liu, S. Huang, H. Wang, C. Yang et al., Progress of flexible strain sensors for physiological signal monitoring. Biosens. Bioelectron. 211, 114298 (2022). https://doi.org/10.1016/j.bios.2022.114298
- R. Guo, T. Li, C. Jiang, H. Zong, X. Li et al., Pressure regulated printing of semiliquid metal on electrospinning film enables breathable and waterproof wearable electronics. Adv. Fiber Mater. 6(2), 354–366 (2024). https://doi.org/10.1007/s42765-023-00343-y
- W. Yu, Q. Li, J. Ren, K. Feng, J. Gong et al., A sensor platform based on SERS detection/Janus textile for sweat glucose and lactate analysis toward portable monitoring of wellness status. Biosens. Bioelectron. 263, 116612 (2024). https://doi.org/10.1016/j.bios.2024.116612
- M. Chung, W.H. Skinner, C. Robert, C.J. Campbell, R.M. Rossi et al., Fabrication of a wearable flexible sweat pH sensor based on SERS-active Au/TPU electrospun nanofibers. ACS Appl. Mater. Interfaces 13(43), 51504–51518 (2021). https://doi.org/10.1021/acsami.1c15238
- T.P. Brito, N. Butto-Miranda, A. Neira-Carrillo, S. Bollo, D. Ruíz-León, Synergistic effect of composite nickel phosphide nanops and carbon fiber on the enhancement of salivary enzyme-free glucose sensing. Biosensors 13(1), 49 (2022). https://doi.org/10.3390/bios13010049
- J. Wang, L. Xu, Y. Lu, K. Sheng, W. Liu et al., Engineered IrO2@NiO core-shell nanowires for sensitive non-enzymatic detection of trace glucose in saliva. Anal. Chem. 88(24), 12346–12353 (2016). https://doi.org/10.1021/acs.analchem.6b03558
- N. Sunil, R. Unnathpadi, B. Pullithadathil, Ag nanoisland functionalized hollow carbon nanofibers as a non-invasive, label-free SERS salivary biosensor platform for salivary nitrite detection for pre-diagnosis of oral cancer. Analyst 149(17), 4443–4453 (2024). https://doi.org/10.1039/D4AN00641K
- Y. Ziai, F. Petronella, C. Rinoldi, P. Nakielski, A. Zakrzewska et al., Chameleon-inspired multifunctional plasmonic nanoplatforms for biosensing applications. NPG Asia Mater. 14, 18 (2022). https://doi.org/10.1038/s41427-022-00365-9
- R.J.B. Leote, D.N. Crisan, E. Matei, I. Enculescu, V.C. Diculescu, Palladium-coated submicron electrospun polymeric fibers with immobilized uricase for uric acid determination in body fluids. ACS Appl. Polym. Mater. 6(4), 2274–2283 (2024). https://doi.org/10.1021/acsapm.3c02811
- Z. Deng, D. Bao, L. Jiang, X. Zhang, W. Xi et al., A low fouling and high biocompatibility electrochemical sensor based on the electrospun gelatin-PLGA-CNTs nanofibers for dopamine detection in blood. J. Appl. Polym. Sci. 141(38), e55969 (2024). https://doi.org/10.1002/app.55969
- H. Liu, X. Yuan, T. Liu, W. Zhang, H. Dong et al., Freestanding nanofiber-assembled aptasensor for precisely and ultrafast electrochemical detection of Alzheimer’s disease biomarkers. Adv. Healthc. Mater. 13(15), 2470100 (2024). https://doi.org/10.1002/adhm.202470100
- C. Zhao, J. Park, S.E. Root, Z. Bao, Skin-inspired soft bioelectronic materials, devices and systems. Nat. Rev. Bioeng. 2(8), 671–690 (2024). https://doi.org/10.1038/s44222-024-00194-1
- S. Shi, Y. Ming, H. Wu, C. Zhi, L. Yang et al., A bionic skin for health management: excellent breathability, in situ sensing, and big data analysis. Adv. Mater. 36(17), 2306435 (2024). https://doi.org/10.1002/adma.202306435
- X. He, S. Yang, Q. Pei, Y. Song, C. Liu et al., Integrated smart Janus textile bands for self-pumping sweat sampling and analysis. ACS Sens. 5(6), 1548–1554 (2020). https://doi.org/10.1021/acssensors.0c00563
- G.J. Kim, K.O. Kim, Novel glucose-responsive of the transparent nanofiber hydrogel patches as a wearable biosensor via electrospinning. Sci. Rep. 10(1), 18858 (2020). https://doi.org/10.1038/s41598-020-75906-9
- V.C. Diculescu, M. Beregoi, A. Evanghelidis, R.F. Negrea, N.G. Apostol et al., Palladium/palladium oxide coated electrospun fibers for wearable sweat pH-sensors. Sci. Rep. 9(1), 8902 (2019). https://doi.org/10.1038/s41598-019-45399-2
- J. Zhang, X. Li, J.-C. Zhang, J.-S. Yan, H. Zhu et al., Ultrasensitive and reusable upconversion-luminescence nanofibrous indicator paper for in situ dual detection of single droplet. Chem. Eng. J. 382, 122779 (2020). https://doi.org/10.1016/j.cej.2019.122779
- L. Lüder, P.N. Nirmalraj, A. Neels, R.M. Rossi, M. Calame, Sensing of KCl, NaCl, and pyocyanin with a MOF-decorated electrospun nitrocellulose matrix. ACS Appl. Nano Mater. 6(4), 2854–2863 (2023). https://doi.org/10.1021/acsanm.2c05252
- K. Li, S. Yang, S. Wu, Z. Ying, L. Wang et al., Portable and recyclable luminescent lanthanide coordination polymer film sensors for adenosine triphosphate in urine. ACS Appl. Mater. Interfaces 16(4), 5129–5137 (2024). https://doi.org/10.1021/acsami.3c16504
- J.E. An, K.H. Kim, S.J. Park, S.E. Seo, J. Kim et al., Wearable Cortisol aptasensor for simple and rapid real-time monitoring. ACS Sens. 7(1), 99–108 (2022). https://doi.org/10.1021/acssensors.1c01734
- X. Liang, S. Meng, C. Zhi, S. Zhang, R. Tan et al., Thermal transfer printed flexible and wearable bionic skin with bilayer nanofiber for comfortable multimodal health management. Adv. Healthc. Mater. 14(6), 2403780 (2025). https://doi.org/10.1002/adhm.202403780
- Z. Tang, J. Jian, M. Guo, S. Liu, S. Ji et al., All-fiber flexible electrochemical sensor for wearable glucose monitoring. Sensors 24(14), 4580 (2024). https://doi.org/10.3390/s24144580
- J.-H. Lee, K. Cho, J.-K. Kim, Age of flexible electronics: emerging trends in soft multifunctional sensors. Adv. Mater. 36(16), e2310505 (2024). https://doi.org/10.1002/adma.202310505
- G. Ye, Q. Wu, Y. Chen, X. Wang, Z. Xiang et al., Bimodal coupling haptic perceptron for accurate contactless gesture perception and material identification. Adv. Fiber Mater. 6(6), 1874–1886 (2024). https://doi.org/10.1007/s42765-024-00458-w
- S. Sharma, G.B. Pradhan, S. Jeong, S. Zhang, H. Song et al., Stretchable and all-directional strain-insensitive electronic glove for robotic skins and human-machine interfacing. ACS Nano 17(9), 8355–8366 (2023). https://doi.org/10.1021/acsnano.2c12784
References
S. Li, Y. Zhang, Y. Wang, K. Xia, Z. Yin et al., Physical sensors for skin-inspired electronics. InfoMat 2(1), 184–211 (2020). https://doi.org/10.1002/inf2.12060
Y. Wang, M.L. Adam, Y. Zhao, W. Zheng, L. Gao et al., Machine learning-enhanced flexible mechanical sensing. Nano-Micro Lett. 15(1), 55 (2023). https://doi.org/10.1007/s40820-023-01013-9
X. Lv, Y. Liu, J. Yu, Z. Li, B. Ding, Smart fibers for self-powered electronic skins. Adv. Fiber Mater. 5(2), 401–428 (2023). https://doi.org/10.1007/s42765-022-00236-6
J.C. Yang, J. Mun, S.Y. Kwon, S. Park, Z. Bao et al., Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31(48), 1904765 (2019). https://doi.org/10.1002/adma.201904765
R. Wu, T. Zhu, Y. Cheng, Z. Liu, J. Huang et al., Materials, structure design, performances of multifunctional flexible devices for healthcare. Prog. Mater. Sci. 153, 101491 (2025). https://doi.org/10.1016/j.pmatsci.2025.101491
Y. Yang, T. Cui, D. Li, S. Ji, Z. Chen et al., Breathable electronic skins for daily physiological signal monitoring. Nano-Micro Lett. 14(1), 161 (2022). https://doi.org/10.1007/s40820-022-00911-8
Y. Qiao, J. Luo, T. Cui, H. Liu, H. Tang et al., Soft electronics for health monitoring assisted by machine learning. Nano-Micro Lett. 15(1), 66 (2023). https://doi.org/10.1007/s40820-023-01029-1
J. Wang, B. Wu, P. Wei, S. Sun, P. Wu, Fatigue-free artificial ionic skin toughened by self-healable elastic nanomesh. Nat. Commun. 13, 4411 (2022). https://doi.org/10.1038/s41467-022-32140-3
Z. Liu, T. Zhu, J. Wang, Z. Zheng, Y. Li et al., Functionalized fiber-based strain sensors: pathway to next-generation wearable electronics. Nano-Micro Lett. 14(1), 61 (2022). https://doi.org/10.1007/s40820-022-00806-8
X. Cao, J. Zhang, S. Chen, R.J. Varley, K. Pan, 1D/2D nanomaterials synergistic, compressible, and response rapidly 3D graphene aerogel for piezoresistive sensor. Adv. Funct. Mater. 30(35), 2003618 (2020). https://doi.org/10.1002/adfm.202003618
D. Li, T. Cui, J. Jian, J. Yan, J. Xu et al., Lantern-inspired on-skin helical interconnects for epidermal electronic sensors. Adv. Funct. Mater. 33(18), 2213335 (2023). https://doi.org/10.1002/adfm.202213335
K.D. Anderson, D. Lu, M.E. McConney, T. Han, D.H. Reneker et al., Hydrogel microstructures combined with electrospun fibers and photopatterning for shape and modulus control. Polymer 49(24), 5284–5293 (2008). https://doi.org/10.1016/j.polymer.2008.09.039
M. Zhao, Y. Zhou, B. Cai, Y. Ma, H. Cai et al., The application of porous ZnO 3D framework to assemble enzyme for rapid and ultrahigh sensitive biosensors. Ceram. Int. 39(8), 9319–9323 (2013). https://doi.org/10.1016/j.ceramint.2013.05.047
T. Huang, C. Wang, H. Yu, H. Wang, Q. Zhang et al., Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers. Nano Energy 14, 226–235 (2015). https://doi.org/10.1016/j.nanoen.2015.01.038
X. Wang, B. Yang, J. Liu, Y. Zhu, C. Yang et al., A flexible triboelectric-piezoelectric hybrid nanogenerator based on P(VDF-TrFE) nanofibers and PDMS/MWCNT for wearable devices. Sci. Rep. 6, 36409 (2016). https://doi.org/10.1038/srep36409
H. Jin, M.O.G. Nayeem, S. Lee, N. Matsuhisa, D. Inoue et al., Highly durable nanofiber-reinforced elastic conductors for skin-tight electronic textiles. ACS Nano 13(7), 7905–7912 (2019). https://doi.org/10.1021/acsnano.9b02297
J. Zhu, S. Lv, T. Yang, T. Huang, H. Yu et al., Facile and green strategy for designing ultralight, flexible, and multifunctional PVA nanofiber-based aerogels. Adv. Sustain. Syst. 4(4), 1900141 (2020). https://doi.org/10.1002/adsu.201900141
F. Niu, Z. Qin, L. Min, B. Zhao, Y. Lv et al., Ultralight and hyperelastic nanofiber-reinforced MXene–graphene aerogel for high-performance piezoresistive sensor. Adv. Mater. Technol. 6(11), 2100394 (2021). https://doi.org/10.1002/admt.202100394
Z. Qin, Y. Lv, X. Fang, B. Zhao, F. Niu et al., Ultralight polypyrrole crosslinked nanofiber aerogel for highly sensitive piezoresistive sensor. Chem. Eng. J. 427, 131650 (2022). https://doi.org/10.1016/j.cej.2021.131650
S. Sun, Q. Cheng, Z. Chen, J. Zheng, R. Liu et al., A shape-adaptable and highly resilient aerogel assembled by poly(vinylidene fluoride) nanofibers for self-powered sensing. Nano Energy 116, 108820 (2023). https://doi.org/10.1016/j.nanoen.2023.108820
Q. Gao, F. Sun, Y. Li, L. Li, M. Liu et al., Biological tissue-inspired ultrasoft, ultrathin, and mechanically enhanced microfiber composite hydrogel for flexible bioelectronics. Nano-Micro Lett. 15(1), 139 (2023). https://doi.org/10.1007/s40820-023-01096-4
B. Zheng, H. Zhou, Z. Wang, Y. Gao, G. Zhao et al., Fishing net-inspired mutiscale ionic organohydrogels with outstanding mechanical robustness for flexible electronic devices. Adv. Funct. Mater. 33(28), 2213501 (2023). https://doi.org/10.1002/adfm.202213501
Z. Wang, Z. Qin, B. Zhao, H. Zhu, K. Pan, Lightweight, superelastic, and temperature-resistant rGO/polysulfoneamide-based nanofiber composite aerogel for wearable piezoresistive sensors. J. Mater. Chem. C 11(42), 14641–14651 (2023). https://doi.org/10.1039/d3tc02496b
W. Su, Y. Pang, Z. Chang, E. Yuyu, F. Geng et al., A “nanofiber membrane-microarray hydrogel” dual-module structure for thermal-solar-electric energy conversion. Nano Energy 123, 109408 (2024). https://doi.org/10.1016/j.nanoen.2024.109408
X. Gou, J. Yang, P. Li, M. Su, Z. Zhou et al., Biomimetic nanofiber-iongel composites for flexible pressure sensors with broad range and ultra-high sensitivity. Nano Energy 120, 109140 (2024). https://doi.org/10.1016/j.nanoen.2023.109140
C. Zhu, G. Chen, S. Li, H. Yang, J. Zheng et al., Breathable ultrathin film sensors based on nanomesh reinforced anti-dehydrating organohydrogels for motion monitoring. Adv. Funct. Mater. 34(52), 2411725 (2024). https://doi.org/10.1002/adfm.202411725
J. Lin, J. Li, Y. Song, W. Chu, W. Li et al., Carbon nanofibrous aerogels derived from electrospun polyimide for multifunctional piezoresistive sensors. ACS Appl. Mater. Interfaces 16(13), 16712–16723 (2024). https://doi.org/10.1021/acsami.4c00452
J. Xu, H. Huang, C. Sun, J. Yu, M. Wang et al., Flexible accelerated-wound-healing antibacterial hydrogel-nanofiber scaffold for intelligent wearable health monitoring. ACS Appl. Mater. Interfaces 16(5), 5438–5450 (2024). https://doi.org/10.1021/acsami.3c14445
K. Pang, J. Ma, X. Song, X. Liu, C. Zhang et al., Highly flexible and superelastic graphene nanofibrous aerogels for intelligent sign language. Small 20(34), 2400415 (2024). https://doi.org/10.1002/smll.202400415
Z. Ren, F. Guo, Y. Wen, Y. Yang, J. Liu et al., Strong and anti-swelling nanofibrous hydrogel composites inspired by biological tissue for amphibious motion sensors. Mater. Horiz. 11(22), 5600–5613 (2024). https://doi.org/10.1039/D4MH01025F
X. Duan, Y. Mi, T. Lei, X.Y.D. Ma, Z. Chen et al., Highly elastic spongelike hydrogels for impedance-based multimodal sensing. ACS Nano 19(2), 2909–2921 (2025). https://doi.org/10.1021/acsnano.4c16694
H. Qi, X. Jing, Y. Hu, P. Wu, X. Zhang et al., Electrospun green fluorescent-highly anisotropic conductive Janus-type nanoribbon hydrogel array film for multiple stimulus response sensors. Compos. Part B Eng. 288, 111933 (2025). https://doi.org/10.1016/j.compositesb.2024.111933
J. Lin, J. Li, W. Li, S. Chen, Y. Lu et al., Multifunctional polyimide nanofibrous aerogel sensor for motion monitoring and airflow perception. Compos. Part A Appl. Sci. Manuf. 178, 108003 (2024). https://doi.org/10.1016/j.compositesa.2023.108003
J. Wen, Y. Wu, Y. Gao, Q. Su, Y. Liu et al., Nanofiber composite reinforced organohydrogels for multifunctional and wearable electronics. Nano-Micro Lett. 15(1), 174 (2023). https://doi.org/10.1007/s40820-023-01148-9
Q. Gao, S. Agarwal, A. Greiner, T. Zhang, Electrospun fiber-based flexible electronics: fiber fabrication, device platform, functionality integration and applications. Prog. Mater. Sci. 137, 101139 (2023). https://doi.org/10.1016/j.pmatsci.2023.101139
H. Wu, S. Shi, H. Zhou, C. Zhi, S. Meng et al., Stem cell self-triggered regulation and differentiation on polyvinylidene fluoride electrospun nanofibers. Adv. Funct. Mater. 34(4), 2309270 (2024). https://doi.org/10.1002/adfm.202309270
S. Shi, H. Wu, C. Zhi, J. Yang, Y. Si et al., A skin-like nanostructured membrane for advanced wound dressing. Compos. Part B Eng. 250, 110438 (2023). https://doi.org/10.1016/j.compositesb.2022.110438
K. Ren, Y. Shen, Z.L. Wang, Piezoelectric properties of electrospun polymer nanofibers and related energy harvesting applications. Macromol. Mater. Eng. 309(3), 2300307 (2024). https://doi.org/10.1002/mame.202300307
D. Ji, Y. Lin, X. Guo, B. Ramasubramanian, R. Wang et al., Electrospinning of nanofibres. Nat. Rev. Meth. Primers 4, 1 (2024). https://doi.org/10.1038/s43586-023-00278-z
X.-X. Wang, G.-F. Yu, J. Zhang, M. Yu, S. Ramakrishna et al., Conductive polymer ultrafine fibers via electrospinning: preparation, physical properties and applications. Prog. Mater. Sci. 115, 100704 (2021). https://doi.org/10.1016/j.pmatsci.2020.100704
J. Song, X. Lin, L.Y. Ee, S.F.Y. Li, M. Huang, A review on electrospinning as versatile supports for diverse nanofibers and their applications in environmental sensing. Adv. Fiber Mater. 5(2), 429–460 (2023). https://doi.org/10.1007/s42765-022-00237-5
S.-J. Kim, T.H. Phung, S. Kim, M.K. Rahman, K.-S. Kwon, Low-cost fabrication method for thin, flexible, and transparent touch screen sensors. Adv. Mater. Technol. 5(9), 2000441 (2020). https://doi.org/10.1002/admt.202000441
Y. Yang, X. Li, Z. Zhou, Q. Qiu, W. Chen et al., Ultrathin, ultralight dual-scale fibrous networks with high-infrared transmittance for high-performance, comfortable and sustainable PM0.3 filter. Nat. Commun. 15(1), 1586 (2024). https://doi.org/10.1038/s41467-024-45833-8
M.H. Syu, Y.J. Guan, W.C. Lo, Y.K. Fuh, Biomimetic and porous nanofiber-based hybrid sensor for multifunctional pressure sensing and human gesture identification via deep learning method. Nano Energy 76, 105029 (2020). https://doi.org/10.1016/j.nanoen.2020.105029
D. Ye, Y. Ding, Y. Duan, J. Su, Z. Yin et al., Large-scale direct-writing of aligned nanofibers for flexible electronics. Small 14(21), e1703521 (2018). https://doi.org/10.1002/smll.201703521
H. Kong, Y. Jin, G. Li, M. Zhang, J. Du, Design and fabrication of a hierarchical structured pressure sensor based on BaTiO3/PVDF nanofibers via near-field electrospinning. Adv. Eng. Mater. 25(14), 2201660 (2023). https://doi.org/10.1002/adem.202201660
Y. Li, Y. Huang, N. Zhao, Low-intensity sensitive and high stability flexible heart sound sensor enabled by hybrid near-field/far-field electrospinning. Adv. Funct. Mater. 33(29), 2300666 (2023). https://doi.org/10.1002/adfm.202300666
W. Wang, P.N. Stipp, K. Ouaras, S. Fathi, Y.Y.S. Huang, Broad bandwidth, self-powered acoustic sensor created by dynamic near-field electrospinning of suspended, transparent piezoelectric nanofiber mesh. Small 16(28), 2000581 (2020). https://doi.org/10.1002/smll.202000581
Y. Huang, X. You, X. Fan, C.P. Wong, P. Guo et al., Near-field electrospinning enabled highly sensitive and anisotropic strain sensors. Adv. Mater. Technol. 5(11), 2000550 (2020). https://doi.org/10.1002/admt.202000550
A.A. Yousefi, A.R. Mohebbi, S. Falahdoost Moghadam, S.A. Poursamar, L. Hao, Uniaxially aligned microwire networks for flexible transparent electrodes using a novel electrospinning set-up. Sol. Energy 188, 1111–1117 (2019). https://doi.org/10.1016/j.solener.2019.07.007
Y. Huang, X. You, Z. Tang, K.-Y. Tong, P. Guo et al., Interface engineering of flexible piezoresistive sensors via near-field electrospinning processed spacer layers. Small Meth. 5(4), 2000842 (2021). https://doi.org/10.1002/smtd.202000842
M.M. Nazemi, A. Khodabandeh, A. Hadjizadeh, Near-field electrospinning: crucial parameters, challenges, and applications. ACS Appl. Bio Mater. 5(2), 394–412 (2022). https://doi.org/10.1021/acsabm.1c00944
T.D. Brown, P.D. Dalton, D.W. Hutmacher, Melt electrospinning today: an opportune time for an emerging polymer process. Prog. Polym. Sci. 56, 116–166 (2016). https://doi.org/10.1016/j.progpolymsci.2016.01.001
K.S. Moon, S.Q. Lee, J.S. Kang, A. Hnat, D.B. Karen, A wireless electrooculogram (EOG) wearable using conductive fiber electrode. Electronics 12(3), 571 (2023). https://doi.org/10.3390/electronics12030571
I. Razquin, A. Iregui, M. Cobos, J. Latasa, A. Eceiza et al., Cationically photocured epoxy/polycaprolactone materials processed by solution electrospinning, melt electrowriting and 3D printing: morphology and shape memory properties. Polymer 282, 126160 (2023). https://doi.org/10.1016/j.polymer.2023.126160
K. Zhang, W. Zhao, Q. Liu, M. Yu, A new magnetic melt spinning device for patterned nanofiber. Sci. Rep. 11(1), 8895 (2021). https://doi.org/10.1038/s41598-021-88520-0
C. Wei, H. Zhou, B. Zheng, H. Zheng, Q. Shu et al., Fully flexible and mechanically robust tactile sensors containing core–shell structured fibrous piezoelectric mat as sensitive layer. Chem. Eng. J. 476, 146654 (2023). https://doi.org/10.1016/j.cej.2023.146654
S. Dong, B.M. Maciejewska, R.M. Schofield, N. Hawkins, C.R. Siviour et al., Electrospinning nonspinnable sols to ceramic fibers and springs. ACS Nano 18(21), 13538–13550 (2024). https://doi.org/10.1021/acsnano.3c12659
S. Cai, G. Zhang, L. Wang, T. Jian, J. Xu et al., Ratiometric fluorescent sensor based on TPU-PVP coaxial nanofibers for monitoring trace ammonia in breath. Mater. Today Chem. 26, 101148 (2022). https://doi.org/10.1016/j.mtchem.2022.101148
X. Zhang, S. Lv, X. Lu, H. Yu, T. Huang et al., Synergistic enhancement of coaxial nanofiber-based triboelectric nanogenerator through dielectric and dispersity modulation. Nano Energy 75, 104894 (2020). https://doi.org/10.1016/j.nanoen.2020.104894
S.-T. Fan, D.-L. Guo, Y.-T. Zhang, T. Chen, B.-J. Li et al., Washable and stable coaxial electrospinning fabric with superior electromagnetic interference shielding performance for multifunctional electronics. Chem. Eng. J. 488, 151051 (2024). https://doi.org/10.1016/j.cej.2024.151051
T. Li, Y. Yuan, L. Gu, J. Li, Y. Shao et al., Ultrastable piezoelectric biomaterial nanofibers and fabrics as an implantable and conformal electromechanical sensor patch. Sci. Adv. 10(29), eadn8706 (2024). https://doi.org/10.1126/sciadv.adn8706
L. Chen, S. Chen, J. Li, C. Hu, M. Zhu et al., Ultralight and high sensitive CA/TPU/PPy nanofiber aerogels with coaxial conductive structure for wearable piezoresistive sensors. Compos. Sci. Technol. 262, 111062 (2025). https://doi.org/10.1016/j.compscitech.2025.111062
X. Kang, H. Yu, X. Ma, E. Shang, H. Chen et al., Fast detection of NO2 by In2O3@ZnO nanofibers synthesized by coaxial electrospinning: real-time monitoring application of smart mask. Chem. Eng. J. 504, 158872 (2025). https://doi.org/10.1016/j.cej.2024.158872
S. Lee, D. Kim, S. Lee, Y.-I. Kim, S. Kum et al., Ambient humidity-induced phase separation for fiber morphology engineering toward piezoelectric self-powered sensing. Small 18(17), 2270086 (2022). https://doi.org/10.1002/smll.202270086
Z. Cai, S. Park, Ultrasensitive hydrogen sensor based on porous-structured Pd-decorated In2O3 nanop-embedded SnO2 nanofibers. Sens. Actuat. B Chem. 367, 132090 (2022). https://doi.org/10.1016/j.snb.2022.132090
S.H. Kwon, C. Zhang, Z. Jiang, L. Dong, Textured nanofibers inspired by nature for harvesting biomechanical energy and sensing biophysiological signals. Nano Energy 122, 109334 (2024). https://doi.org/10.1016/j.nanoen.2024.109334
Q. Zhang, J. Li, G. Li, J. Du, C. Xie et al., Hierarchically structured hollow PVDF nanofibers for flexible piezoelectric sensor. Chem. Eng. J. 498, 155661 (2024). https://doi.org/10.1016/j.cej.2024.155661
Y. Zhang, S. Han, M. Wang, S. Liu, G. Liu et al., Electrospun Cu-doped In2O3 hollow nanofibers with enhanced H2S gas sensing performance. J. Adv. Ceram. 11(3), 427–442 (2022). https://doi.org/10.1007/s40145-021-0546-2
C. Han, X. Li, C. Shao, X. Li, J. Ma et al., Composition-controllable p-CuO/n-ZnO hollow nanofibers for high-performance H2S detection. Sens. Actuat. B Chem. 285, 495–503 (2019). https://doi.org/10.1016/j.snb.2019.01.077
F. Guo, Z. Ren, Y. Xie, H. Huang, S. Wang et al., Leaf-inspired flexible NFMs with multi-conductive network for multifunctional integrated physical sensing, joule heating, and noncontact thermosensation. Chem. Eng. J. 495, 153485 (2024). https://doi.org/10.1016/j.cej.2024.153485
J. Yin, J. Wang, S. Ramakrishna, L. Xu, All-electrospun triboelectric nanogenerator incorporating carbon-black-loaded nanofiber membranes for self-powered wearable sensors. ACS Appl. Nano Mater. 6(17), 15416–15425 (2023). https://doi.org/10.1021/acsanm.3c01891
T. Jin, Y. Pan, G.J. Jeon, H.I. Yeom, S. Zhang et al., Ultrathin nanofibrous membranes containing insulating microbeads for highly sensitive flexible pressure sensors. ACS Appl. Mater. Interfaces 12(11), 13348–13359 (2020). https://doi.org/10.1021/acsami.0c00448
A.C. Wang, S.K. Wang, B.J. Zhou, D.C. Jun, Q.Y. Liu et al., Side-by-side design of bi-component heterojunction nanofibers for high-performance gas sensors: improvement in synergistic effect. Appl. Surf. Sci. 603, 154436 (2022). https://doi.org/10.1016/j.apsusc.2022.154436
K. Hu, J. Feng, N. Lv, Z. Lyu, Y. Zhang et al., AC/DC dual-type pressure and movement sensor based on the nanoresistance network. Colloids Surf. A Physicochem. Eng. Aspects 656, 130530 (2023). https://doi.org/10.1016/j.colsurfa.2022.130530
R. Zhang, S. Cao, T. Zhou, T. Fei, R. Wang et al., Rational design and tunable synthesis of Co3O4 nanop-incorporating into In2O3 one-dimensional ribbon as effective sensing material for gas detection. Sens. Actuat. B Chem. 310, 127695 (2020). https://doi.org/10.1016/j.snb.2020.127695
X. Wang, Q. Ma, Y. Wang, D. Zhao, L. Li et al., MIL-101-derived porous WO3/FeWO4 hierarchical structures with efficient heterojunction interfaces for excellent room temperature n-butanol-sensing performance. Chem. Eng. J. 479, 147647 (2024). https://doi.org/10.1016/j.cej.2023.147647
C. Chen, G. Xie, J. Dai, W. Li, Y. Cai et al., Integrated core-shell structured smart textiles for active NO2 concentration and pressure monitoring. Nano Energy 116, 108788 (2023). https://doi.org/10.1016/j.nanoen.2023.108788
C. Zhi, S. Zhang, H. Wu, Y. Ming, S. Shi et al., Perovskite nanocrystals induced core-shell inorganic-organic nanofibers for efficient energy harvesting and self-powered monitoring. ACS Nano 18(13), 9365–9377 (2024). https://doi.org/10.1021/acsnano.3c09935
L. Lu, B. Yang, Y. Zhai, J. Liu, Electrospinning core-sheath piezoelectric microfibers for self-powered stitchable sensor. Nano Energy 76, 104966 (2020). https://doi.org/10.1016/j.nanoen.2020.104966
J. He, X. Ruan, L. Yang, Z. Liu, K. Liao et al., Micro-nano fibers with core-shell structure for enhancing flame retardancy and high-temperature resistance of biodegradable triboelectric materials. Nano Energy 138, 110848 (2025). https://doi.org/10.1016/j.nanoen.2025.110848
Z. Zhang, A. Bolshakov, J. Han, J. Zhu, K.-L. Yang, Electrospun core-sheath fibers with a uniformly aligned polymer network liquid crystal (PNLC). ACS Appl. Mater. Interfaces (2023). https://doi.org/10.1021/acsami.2c23065
M.-F. Lin, J. Xiong, J. Wang, K. Parida, P.S. Lee, Core-shell nanofiber mats for tactile pressure sensor and nanogenerator applications. Nano Energy 44, 248–255 (2018). https://doi.org/10.1016/j.nanoen.2017.12.004
M. Zhang, Z. Tan, Q. Zhang, Y. Shen, X. Mao et al., Flexible self-powered friction piezoelectric sensor based on structured PVDF-based composite nanofiber membranes. ACS Appl. Mater. Interfaces 15(25), 30849–30858 (2023). https://doi.org/10.1021/acsami.3c05540
L. Fu, J. Xu, Q. Liu, C. Liu, S. Fan et al., Gas sensors based on Co3O4/TiO2 core-shell nanofibers prepared by coaxial electrospinning for breath marker acetone detection. Ceram. Int. 50(2), 3443–3452 (2024). https://doi.org/10.1016/j.ceramint.2023.11.092
K.-R. Park, H.-B. Cho, J. Lee, Y. Song, W.-B. Kim et al., Design of highly porous SnO2-CuO nanotubes for enhancing H2S gas sensor performance. Sens. Actuat. B Chem. 302, 127179 (2020). https://doi.org/10.1016/j.snb.2019.127179
X. Karagiorgis, D. Shakthivel, G. Khandelwal, R. Ginesi, P.J. Skabara et al., Highly conductive PEDOT: PSS: Ag nanowire-based nanofibers for transparent flexible electronics. ACS Appl. Mater. Interfaces 16(15), 19551–19562 (2024). https://doi.org/10.1021/acsami.4c00682
Y. Zhao, N. Hou, Y. Wang, C. Fu, X. Li et al., All-fiber structure covered with two-dimensional conductive MOF materials to construct a comfortable, breathable and high-quality self-powered wearable sensor system. J. Mater. Chem. A 10(3), 1248–1256 (2022). https://doi.org/10.1039/D1TA08453D
X. Hou, Y. Zhou, Y. Liu, L. Wang, J. Wang, Coaxial electrospun flexible PANI// PU fibers as highly sensitive pH wearable sensor. J. Mater. Sci. 55(33), 16033–16047 (2020). https://doi.org/10.1007/s10853-020-05110-7
T. Li, M. Qu, C. Carlos, L. Gu, F. Jin et al., High-performance poly(vinylidene difluoride)/dopamine core/shell piezoelectric nanofiber and its application for biomedical sensors. Adv. Mater. 33(3), 2006093 (2021). https://doi.org/10.1002/adma.202006093
R. Liu, L. Hou, G. Yue, H. Li, J. Zhang et al., Progress of fabrication and applications of electrospun hierarchically porous nanofibers. Adv. Fiber Mater. 4(4), 604–630 (2022). https://doi.org/10.1007/s42765-022-00132-z
C.M. Hung, H.V. Phuong, V. Van Thinh, L.T. Hong, N.T. Thang et al., Au doped ZnO/SnO2 composite nanofibers for enhanced H2S gas sensing performance. Sens. Actuat. A Phys. 317, 112454 (2021). https://doi.org/10.1016/j.sna.2020.112454
J.-H. Zhang, Z. Zhou, J. Li, B. Shen, T. Zhu et al., Coupling enhanced performance of triboelectric–piezoelectric hybrid nanogenerator based on nanoporous film of poly(vinylidene fluoride)/BaTiO3 composite electrospun fibers. ACS Mater. Lett. 4(5), 847–852 (2022). https://doi.org/10.1021/acsmaterialslett.1c00819
X. Zhang, G. Hu, M. Liu, C. Wei, B. Yu et al., Advanced electrospun fiber-based triboelectric nanogenerators: from diversified designs to customized applications. Chem. Eng. J. 503, 158636 (2025). https://doi.org/10.1016/j.cej.2024.158636
Z. Yu, M. Chen, Y. Wang, J. Zheng, Y. Zhang et al., Nanoporous PVDF hollow fiber employed piezo-tribo nanogenerator for effective acoustic harvesting. ACS Appl. Mater. Interfaces 13(23), 26981–26988 (2021). https://doi.org/10.1021/acsami.1c04489
T. Wang, X. Shang, H. Wang, J. Wang, C. Zhang, Porous nanofibers and micro-pyramid structures array for high-performance flexible pressure sensors. Compos. Part A Appl. Sci. Manuf. 181, 108163 (2024). https://doi.org/10.1016/j.compositesa.2024.108163
F. Mokhtari, A. Samadi, A.O. Rashed, X. Li, J.M. Razal et al., Recent progress in electrospun polyvinylidene fluoride (PVDF)-based nanofibers for sustainable energy and environmental applications. Prog. Mater. Sci. 148, 101376 (2025). https://doi.org/10.1016/j.pmatsci.2024.101376
Z. Shao, X. Zhang, Z. Song, J. Liu, X. Liu et al., Simulation guided coaxial electrospinning of polyvinylidene fluoride hollow fibers with tailored piezoelectric performance. Small 19(38), 2303285 (2023). https://doi.org/10.1002/smll.202303285
L. Zhu, J. Wang, J. Liu, X. Chen, Z. Xu et al., Designing highly sensitive formaldehyde sensors via A-site cation deficiency in LaFeO3 hollow nanofibers. Appl. Surf. Sci. 590, 153085 (2022). https://doi.org/10.1016/j.apsusc.2022.153085
D. Xu, Y. Zhang, Q. Zhu, Z. Song, Z. Deng et al., A-site non-stoichiometric defects engineering in xPt–La0.9Fe0.75Sn0.25O3–δ hollow nanofiber for high-performance formaldehyde sensor. J. Mater. Chem. C 10(47), 17907–17916 (2022). https://doi.org/10.1039/d2tc04185e
M. Bonyani, S.M. Zebarjad, A. Mirzaei, T.-U. Kim, H.W. Kim et al., Electrospun ZnO hollow nanofibers gas sensors: an overview. J. Alloys Compd. 1001, 175201 (2024). https://doi.org/10.1016/j.jallcom.2024.175201
Y. Tang, J. Yan, W. Xiao, X. Huang, L. Tang et al., Stretchable, durable and asymmetrically wettable nanofiber composites with unidirectional water transportation capability for temperature sensing. J. Colloid Interface Sci. 641, 893–902 (2023). https://doi.org/10.1016/j.jcis.2023.03.088
R. Sukowati, Y.M. Rohman, B.H. Agung, D. Ahmad Hapidin, H. Damayanti et al., An investigation of the influence of nanofibers morphology on the performance of QCM-based ethanol vapor sensor utilizing polyvinylpyrrolidone nanofibers active layer. Sens. Actuat. B Chem. 386, 133708 (2023). https://doi.org/10.1016/j.snb.2023.133708
H. Qi, H. Huang, Y. Hu, F. Bi, X. Zhang et al., Electrospinning fabrication and performances of [Double network]// [Single network] Janus nanobelt array hydrogel membrane endowed with luminescence and highly anisotropic conduction. J. Alloys Compd. 1010, 178291 (2025). https://doi.org/10.1016/j.jallcom.2024.178291
H. Qi, H. Huang, Y. Hu, N. Li, L. Yang et al., Design and electrospinning synthesis of red luminescent-highly anisotropic conductive Janus nanobelt hydrogel array films. Mater. Chem. Front. 9(4), 710–724 (2025). https://doi.org/10.1039/D4QM00852A
J.B. Ballengee, P.N. Pintauro, Morphological control of electrospun nafion nanofiber mats. J. Electrochem. Soc. 158(5), B568 (2011). https://doi.org/10.1149/1.3561645
M.-H. Kim, J.-S. Jang, W.-T. Koo, S.-J. Choi, S.-J. Kim et al., Bimodally porous WO3 microbelts functionalized with Pt catalysts for selective H2S sensors. ACS Appl. Mater. Interfaces 10(24), 20643–20651 (2018). https://doi.org/10.1021/acsami.8b00588
M. Robiul Islam, O. Faruk, S.M. Sohel Rana, G.B. Pradhan, H. Kim et al., Poly-DADMAC functionalized polyethylene oxide composite nanofibrous mat as highly positive material for triboelectric nanogenerators and self-powered pressure sensors. Adv. Funct. Mater. 34(40), 2403899 (2024). https://doi.org/10.1002/adfm.202403899
J.-W. Li, B.-S. Huang, C.-H. Chang, C.-W. Chiu, Advanced electrospun AgNPs/rGO/PEDOT: PSS/TPU nanofiber electrodes: stretchable, self-healing, and perspiration-resistant wearable devices for enhanced ECG and EMG monitoring. Adv. Compos. Hybrid Mater. 6(6), 231 (2023). https://doi.org/10.1007/s42114-023-00812-3
Y. Gao, H. Li, S. Chao, Y. Wang, L. Hou et al., Zebra-patterned stretchable helical yarn for triboelectric self-powered multifunctional sensing. ACS Nano 18(26), 16958–16966 (2024). https://doi.org/10.1021/acsnano.4c03115
J. Li, Y. Zhao, X. Zhao, W. Zhai, K. Dai et al., Liquid metal-facilitated flexible electrospun thermoplastic polyurethane fibrous mats with aligned wavelike structure for strain and triboelectric double-mode sensing. Compos. Part A Appl. Sci. Manuf. 179, 108031 (2024). https://doi.org/10.1016/j.compositesa.2024.108031
L. Wu, Y. Zhang, Q. Feng, J. Zhang, J. Li et al., A multifunctional flexible sensor with a 3D TPU fiber-based conductive network via in situ reduction of an AgNP layer. ACS Sustain. Chem. Eng. 12(16), 6111–6121 (2024). https://doi.org/10.1021/acssuschemeng.3c06811
C. Li, J. Mu, Y. Song, S. Chen, F. Xu, Highly aligned cellulose/polypyrrole composite nanofibers via electrospinning and in situ polymerization for anisotropic flexible strain sensor. ACS Appl. Mater. Interfaces (2023). https://doi.org/10.1021/acsami.2c20464
J.-H. Lee, J. Kim, D. Liu, F. Guo, X. Shen et al., Highly aligned, anisotropic carbon nanofiber films for multidirectional strain sensors with exceptional selectivity. Adv. Funct. Mater. 29(29), 1901623 (2019). https://doi.org/10.1002/adfm.201901623
X. Yang, Y. Wang, X. Qing, A flexible capacitive sensor based on the electrospun PVDF nanofiber membrane with carbon nanotubes. Sens. Actuat. A Phys. 299, 111579 (2019). https://doi.org/10.1016/j.sna.2019.111579
X. Li, Y. Liu, Y. Ding, M. Zhang, Z. Lin et al., Capacitive pressure sensor combining dual dielectric layers with integrated composite electrode for wearable healthcare monitoring. ACS Appl. Mater. Interfaces 16(10), 12974–12985 (2024). https://doi.org/10.1021/acsami.4c01042
Y. Zhou, D. Gao, B. Lyu, C. Zheng, L. Tang et al., Close-loop recyclable and flexible halide perovskite@wool keratin sensor with piezoelectric property. J. Energy Chem. 84, 428–435 (2023). https://doi.org/10.1016/j.jechem.2023.05.005
Y. Zhang, Z. Liu, Y. Li, E.Y.B. Pun, H. Lin, Electrospun fibers embedded with microcrystal for optical temperature sensing. J. Alloys Compd. 855, 157410 (2021). https://doi.org/10.1016/j.jallcom.2020.157410
P. Gajula, J.U. Yoon, I. Woo, S.-J. Oh, J.W. Bae, Triboelectric touch sensor array system for energy generation and self-powered human-machine interfaces based on chemically functionalized, electrospun rGO/Nylon-12 and micro-patterned Ecoflex/MoS2 films. Nano Energy 121, 109278 (2024). https://doi.org/10.1016/j.nanoen.2024.109278
J. Li, J. Yin, M.G.V. Wee, A. Chinnappan, S. Ramakrishna, A self-powered piezoelectric nanofibrous membrane as wearable tactile sensor for human body motion monitoring and recognition. Adv. Fiber Mater. 5, 1–14 (2023). https://doi.org/10.1007/s42765-023-00282-8
Q. Zhu, X. Song, X. Chen, D. Li, X. Tang et al., A high performance nanocellulose-PVDF based piezoelectric nanogenerator based on the highly active CNF@ZnO via electrospinning technology. Nano Energy 127, 109741 (2024). https://doi.org/10.1016/j.nanoen.2024.109741
R. Yin, Y. Li, W. Li, F. Gao, X. Chen et al., High-temperature flexible electric Piezo/pyroelectric bifunctional sensor with excellent output performance based on thermal-cyclized electrospun PAN/Zn(Ac)2 nanofiber mat. Nano Energy 124, 109488 (2024). https://doi.org/10.1016/j.nanoen.2024.109488
X. Li, Y. Li, Y. Li, J. Tan, J. Zhang et al., Flexible piezoelectric and pyroelectric nanogenerators based on PAN/TMAB nanocomposite fiber mats for self-power multifunctional sensors. ACS Appl. Mater. Interfaces 14(41), 46789–46800 (2022). https://doi.org/10.1021/acsami.2c10951
T. Bhatta, P. Maharjan, H. Cho, C. Park, S.H. Yoon et al., High-performance triboelectric nanogenerator based on MXene functionalized polyvinylidene fluoride composite nanofibers. Nano Energy 81, 105670 (2021). https://doi.org/10.1016/j.nanoen.2020.105670
P. Das, P.K. Marvi, S. Ganguly, X.S. Tang, B. Wang et al., MXene-based elastomer mimetic stretchable sensors: design, properties, and applications. Nano-Micro Lett. 16(1), 135 (2024). https://doi.org/10.1007/s40820-024-01349-w
D. Sengupta, L. Lu, D.R. Gomes, B. Jayawardhana, Y. Pei et al., Fabric-like electrospun PVAc-graphene nanofiber webs as wearable and degradable piezocapacitive sensors. ACS Appl. Mater. Interfaces 15(18), 22351–22366 (2023). https://doi.org/10.1021/acsami.3c03113
Y. Zhou, L. Zhao, Q. Jia, T. Wang, P. Sun et al., Multifunctional flexible ionic skin with dual-modal output based on fibrous structure. ACS Appl. Mater. Interfaces 14(49), 55109–55118 (2022). https://doi.org/10.1021/acsami.2c17498
Y. Liu, C. Zhao, Y. Xiong, J. Yang, H. Jiao et al., Versatile ion-gel fibrous membrane for energy-harvesting iontronic skin. Adv. Funct. Mater. 33(37), 2303723 (2023). https://doi.org/10.1002/adfm.202303723
P. Wang, J. Liu, W. Yu, G. Li, C. Meng et al., Flexible, stretchable, breathable and sweatproof all-nanofiber iontronic tactile sensor for continuous and comfortable knee joint motion monitoring. Nano Energy 103, 107768 (2022). https://doi.org/10.1016/j.nanoen.2022.107768
Z. Shao, X. Zhang, J. Liu, X. Liu, C. Zhang, Electrospinning of highly bi-oriented flexible piezoelectric nanofibers for anisotropic-responsive intelligent sensing. Small Meth. 7(9), 2300701 (2023). https://doi.org/10.1002/smtd.202300701
D. Wang, D. Zhang, P. Li, Z. Yang, Q. Mi et al., Electrospinning of flexible poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro Lett. 13(1), 57 (2021). https://doi.org/10.1007/s40820-020-00580-5
X. Liu, J. Tong, J. Wang, S. Lu, D. Yang et al., BaTiO3/MXene/PVDF-TrFE composite films via an electrospinning method for flexible piezoelectric pressure sensors. J. Mater. Chem. C 11(14), 4614–4622 (2023). https://doi.org/10.1039/D2TC05291A
S.A. Iyengar, P. Srikrishnarka, S.K. Jana, M.R. Islam, T. Ahuja et al., Surface-treated nanofibers as high current yielding breath humidity sensors for wearable electronics. ACS Appl. Electron. Mater. 1(6), 951–960 (2019). https://doi.org/10.1021/acsaelm.9b00123
Z. Jia, Z. Li, S. Ma, W. Zhang, Y. Chen et al., Constructing conductive titanium carbide nanosheet (MXene) network on polyurethane/polyacrylonitrile fibre framework for flexible strain sensor. J. Colloid Interface Sci. 584, 1–10 (2021). https://doi.org/10.1016/j.jcis.2020.09.035
Y. Peng, J. Dong, J. Sun, Y. Mao, Y. Zhang et al., Multimodal health monitoring via a hierarchical and ultrastretchable all-in-one electronic textile. Nano Energy 110, 108374 (2023). https://doi.org/10.1016/j.nanoen.2023.108374
H. Hu, S. Shang, J. Liu, P. Zhu, Silk fibroin based flexible and self-powered sensor for real-time monitoring of abdominal respiration. Int. J. Biol. Macromol. 254, 127723 (2024). https://doi.org/10.1016/j.ijbiomac.2023.127723
S. Wang, M. Tian, S. Hu, W. Zhai, G. Zheng et al., Hierarchical nanofibrous mat via water-assisted electrospinning for self-powered ultrasensitive vibration sensors. Nano Energy 97, 107149 (2022). https://doi.org/10.1016/j.nanoen.2022.107149
C. Ma, M. Wang, P.C. Uzabakiriho, G. Zhao, High sensitivity, broad working range, comfortable, and biofriendly wearable strain sensor for electronic skin. Adv. Mater. Technol. 7(8), 2270049 (2022). https://doi.org/10.1002/admt.202270049
F. Nikbakhtnasrabadi, E.S. Hosseini, S. Dervin, D. Shakthivel, R. Dahiya, Smart bandage with in ductor-capacitor resonant tank based printed wireless pressure sensor on electrospun poly-L-lactide nanofibers. Adv. Electron. Mater. 8(7), 2101348 (2022). https://doi.org/10.1002/aelm.202101348
L. Kang, J. Ma, C. Wang, K. Li, H. Wu et al., Highly sensitive and wide detection range thermoplastic polyurethane/graphene nanoplatelets multifunctional strain sensor with a porous and crimped network structure. ACS Appl. Mater. Interfaces 16(2), 2814–2824 (2024). https://doi.org/10.1021/acsami.3c18397
Z. Tian, W. Qin, Y. Wang, X. Li, C. Gu et al., Ultra-stable strain/humidity dual-functional flexible wearable sensor based on brush-like AgNPs@CNTs@TPU heterogeneous structure. Colloids Surf. A Physicochem. Eng. Aspects 670, 131398 (2023). https://doi.org/10.1016/j.colsurfa.2023.131398
B. Zhao, H. Cong, Z. Dong, Highly stretchable and sensitive strain sensor based on Ti3C2-coated electrospinning TPU film for human motion detection. Smart Mater. Struct. 30(9), 095003 (2021). https://doi.org/10.1088/1361-665X/ac102c
J. Shi, D. Wang, B. Sarkodie, D. Wu, Z. Mao et al., Strain sensors for human movement detection based on fibrous membranes comprising thermoplastic polyurethane, Ag nanops, and carbon nanotubes. ACS Appl. Nano Mater. 7(2), 2051–2061 (2024). https://doi.org/10.1021/acsanm.3c05335
M. Chen, Z. Wang, Y. Zheng, Q. Zhang, B. He et al., Flexible tactile sensor based on patterned Ag-nanofiber electrodes through electrospinning. Sensors 21(7), 2413 (2021). https://doi.org/10.3390/s21072413
B. Lan, T. Yang, G. Tian, Y. Ao, L. Jin et al., Multichannel gradient piezoelectric transducer assisted with deep learning for broadband acoustic sensing. ACS Appl. Mater. Interfaces 15(9), 12146–12153 (2023). https://doi.org/10.1021/acsami.2c20520
A.H. Hassanin, E. Elnabawy, M. Salah, R. Nair, M. Gamal et al., Multi-functional wet-electrospun piezoelectric nanofibers sensing mat: manufacturing, characterization, and applications. Mater. Sci. Semicond. Process. 166, 107708 (2023). https://doi.org/10.1016/j.mssp.2023.107708
P. Wang, G. Sun, W. Yu, G. Li, C. Meng et al., Wearable, ultrathin and breathable tactile sensors with an integrated all-nanofiber network structure for highly sensitive and reliable motion monitoring. Nano Energy 104, 107883 (2022). https://doi.org/10.1016/j.nanoen.2022.107883
M. Wang, C. Ma, P.C. Uzabakiriho, X. Chen, Z. Chen et al., Stencil printing of liquid metal upon electrospun nanofibers enables high-performance flexible electronics. ACS Nano 15(12), 19364–19376 (2021). https://doi.org/10.1021/acsnano.1c05762
S. Pan, J. He, W. Wang, J. Yan et al., Piezoresistive MXene@CNTs nanofiber membrane sensors with micro-hemispherical structures via template-assisted electrospinning for human health monitoring. Ind. Eng. Chem. Res. 64(6), 3587–3601 (2025). https://doi.org/10.1021/acs.iecr.4c04197
X. Yu, Z. Wu, L. Weng, D. Jiang, H. Algadi et al., Flexible strain sensor enabled by carbon nanotubes-decorated electrospun TPU membrane for human motion monitoring. Adv. Mater. Interfaces 10(11), 2202292 (2023). https://doi.org/10.1002/admi.202202292
N. Ram, J. Kaarthik, S. Singh, H. Palneedi, P.D. Prasad et al., Boosting energy harvesting of fully flexible magnetoelectric composites of PVDF-AlN and NiO-decorated carbon nanofibers. Ceram. Int. 50(10), 17465–17474 (2024). https://doi.org/10.1016/j.ceramint.2024.02.234
T. Jin, Y. Pan, S.K. Park, D.-W. Fang, Ultrathin flexible pressure sensors using microbead embedded nanofibrous membrane for wearable applications. J. Alloys Compd. 1014, 178609 (2025). https://doi.org/10.1016/j.jallcom.2025.178609
D. Wang, D. Zhang, M. Tang, H. Zhang, F. Chen et al., Rotating triboelectric-electromagnetic nanogenerator driven by tires for self-powered MXene-based flexible wearable electronics. Chem. Eng. J. 446, 136914 (2022). https://doi.org/10.1016/j.cej.2022.136914
M. Yang, W. Huang, R. Chen, Z. Ma, Flexible electrospun nanofibers for tactile sensing and integrated system research. IEEE Sens. J. 25(1), 9–16 (2025). https://doi.org/10.1109/JSEN.2024.3493072
W. Wang, Y. Ma, T. Wang, K. Ding, W. Zhao et al., Double-layered conductive network design of flexible strain sensors for high sensitivity and wide working range. ACS Appl. Mater. Interfaces 14(32), 36611–36621 (2022). https://doi.org/10.1021/acsami.2c08285
M. Ren, J. Li, Y. Zhao, W. Zhai, K. Zhou et al., Highly strain-sensitive and stretchable multilayer conductive composite based on aligned thermoplastic polyurethane fibrous mat for human motion monitoring. Compos. Commun. 46, 101840 (2024). https://doi.org/10.1016/j.coco.2024.101840
J. Lee, S. Varagnolo, M. Walker, R.A. Hatton, Transparent fused nanowire electrodes by condensation coefficient modulation. Adv. Funct. Mater. 30(51), 2005959 (2020). https://doi.org/10.1002/adfm.202005959
L. Liu, H.Y. Li, Y.J. Fan, Y.H. Chen, S.Y. Kuang et al., Nanofiber-reinforced silver nanowires network as a robust, ultrathin, and conformable epidermal electrode for ambulatory monitoring of physiological signals. Small 15(22), 1900755 (2019). https://doi.org/10.1002/smll.201900755
C. Xu, L. Jiang, Y. Zhang, G. Zhu, X. Zhu et al., Lotus leaf-inspired poly(lactic acid) nanofibrous membranes with enhanced humidity resistance for superefficient PM filtration and high-sensitivity passive monitoring. J. Hazard. Mater. 488, 137516 (2025). https://doi.org/10.1016/j.jhazmat.2025.137516
S. Zheng, X. Wang, W. Li, Z. Liu, Q. Li et al., Pressure-stamped stretchable electronics using a nanofibre membrane containing semi-embedded liquid metal ps. Nat. Electron. 7(7), 576–585 (2024). https://doi.org/10.1038/s41928-024-01194-0
R. Yu, L. Wu, Z. Yang, J. Wu, H. Chen et al., Dynamic liquid metal–microfiber interlocking enables highly conductive and strain-insensitive metastructured fibers for wearable electronics. Adv. Mater. 37(6), 2415268 (2025). https://doi.org/10.1002/adma.202415268
Y. Liu, J. Wang, J. Chen, Q. Yuan, Y. Zhu, Ultrasensitive iontronic pressure sensor based on rose-structured ionogel dielectric layer and compressively porous electrodes. Adv. Compos. Hybrid Mater. 6(6), 210 (2023). https://doi.org/10.1007/s42114-023-00765-7
X. Li, M. Yang, W. Qin, C. Gu, L. Feng et al., MXene-based multilayered flexible strain sensor integrating electromagnetic shielding and Joule heat. Colloids Surf. A Physicochem. Eng. Aspects 658, 130706 (2023). https://doi.org/10.1016/j.colsurfa.2022.130706
Z. Wang, P. Bi, Y. Yang, H. Ma, Y. Lan et al., Star-nose-inspired multi-mode sensor for anisotropic motion monitoring. Nano Energy 80, 105559 (2021). https://doi.org/10.1016/j.nanoen.2020.105559
J. Gu, M. Zheng, T. Zhu, N. Wang, L. Wang et al., Electrostatic-modulated interfacial crosslinking and waterborne emulsion coating toward waterproof, breathable, and antifouling fibrous membranes. Chem. Eng. J. 454, 140439 (2023). https://doi.org/10.1016/j.cej.2022.140439
Y. Tian, M. Huang, Y. Wang, Y. Zheng, R. Yin et al., Ultra-stretchable, sensitive and breathable electronic skin based on TPU electrospinning fibrous membrane with microcrack structure for human motion monitoring and self-powered application. Chem. Eng. J. 480, 147899 (2024). https://doi.org/10.1016/j.cej.2023.147899
D. Chen, Y. Li, J. Gao, M. Zhang, J. Liang et al., Biomimetic fiber of PVDF@Ag enabling the multimodal sensing for biomechanics and biomolecules integrated by textile carrier. Nano Energy 128, 109821 (2024). https://doi.org/10.1016/j.nanoen.2024.109821
X. Fu, J. Li, D. Li, L. Zhao, Z. Yuan et al., MXene/ZIF-67/PAN nanofiber film for ultra-sensitive pressure sensors. ACS Appl. Mater. Interfaces 14(10), 12367–12374 (2022). https://doi.org/10.1021/acsami.1c24655
B.-C. Shiu, Y.-L. Liu, Q.-Y. Yuan, C.-W. Lou, J.-H. Lin, Preparation and characterization of PEDOT: PSS/TiO2 micro/nanofiber-based gas sensors. Polymers 14(9), 1780 (2022). https://doi.org/10.3390/polym14091780
Y. Shen, S. Chai, Q. Zhang, M. Zhang, X. Mao et al., PVF composite conductive nanofibers-based organic electrochemical transistors for lactate detection in human sweat. Chem. Eng. J. 475, 146008 (2023). https://doi.org/10.1016/j.cej.2023.146008
M.F. de Aguiar, A.N.R. Leal, C.P. de Melo, K.G.B. Alves, Polypyrrole-coated electrospun polystyrene films as humidity sensors. Talanta 234, 122636 (2021). https://doi.org/10.1016/j.talanta.2021.122636
Y. Yu, H. Wu, Y. Yu, J. Yan, J. Shi et al., Acid- and alkali-resistant, UV-shielding, and photocatalytic self-cleaning nanofiber membrane-based wearable triboelectric nanogenerator for ultra-low-frequency energy-harvesting and self-powered sensors. Chem. Eng. J. 490, 151546 (2024). https://doi.org/10.1016/j.cej.2024.151546
S. Yan, B. Xin, S. Zhu, M.A. Amin Newton, J. Cai, Two-step preparation of 3D fluffy, single-sided composite nanofiber skeleton with continuous internal network for multifunctional sensing. ACS Appl. Nano Mater. 7(11), 13392–13399 (2024). https://doi.org/10.1021/acsanm.4c01879
S. Yan, S. Zhu, M.A.A. Newton, J. Cai, H. Feng et al., Ultra-light, ultra-resilient and ultra-flexible, multifunctional composite carbon nanofiber aerogel for physiological signal monitoring and hazard warning in extreme environments. Chem. Eng. J. 494, 153017 (2024). https://doi.org/10.1016/j.cej.2024.153017
S. Yan, D. Shen, M.A.A. Newton, S. Zhu, B. Xin, Patterned, flexible, self-supporting humidity sensor with core-sheath structure for real-time sensing of human-related humidity. Colloids Surf. A Physicochem. Eng. Aspects 695, 134198 (2024). https://doi.org/10.1016/j.colsurfa.2024.134198
G. Zhao, L. Shi, G. Yang, X. Zhuang, B. Cheng, 3D fibrous aerogels from 1D polymer nanofibers for energy and environmental applications. J. Mater. Chem. A 11(2), 512–547 (2023). https://doi.org/10.1039/D2TA05984C
H. Ren, L. Zheng, G. Wang, X. Gao, Z. Tan et al., Transfer-medium-free nanofiber-reinforced graphene film and applications in wearable transparent pressure sensors. ACS Nano 13(5), 5541–5548 (2019). https://doi.org/10.1021/acsnano.9b00395
Z. Mu, Y. Sun, J. Qin, Z. Shen, G. Liang et al., Flexible carbon nanocomposite fabric with negative permittivity property prepared by electrostatic spinning. Adv. Compos. Hybrid Mater. 8(1), 77 (2024). https://doi.org/10.1007/s42114-024-01163-3
C. Cai, H. Gong, W. Li, F. Gao, Q. Jiang et al., A flexible and highly sensitive pressure sensor based on three-dimensional electrospun carbon nanofibers. RSC Adv. 11(23), 13898–13905 (2021). https://doi.org/10.1039/D0RA10803K
X. Lu, Y. Qin, X. Chen, C. Peng, Y. Yang et al., An ultra-wide sensing range film strain sensor based on a branch-shaped PAN-based carbon nanofiber and carbon black synergistic conductive network for human motion detection and human–machine interfaces. J. Mater. Chem. C 10(16), 6296–6305 (2022). https://doi.org/10.1039/D1TC05886J
H. Liu, L. Jin, S. Zhu, C. Mao, S. Wu et al., Motion-activating pliable carbon nanofiber for smart mechanosensitive sensing and antibacterial protection. Adv. Funct. Mater. 35(7), 2415258 (2025). https://doi.org/10.1002/adfm.202415258
H. Wang, H. Cao, H. Wu, Q. Zhang, X. Mao et al., Environmentally friendly and sensitive strain sensor based on multiwalled carbon nanotubes/lignin-based carbon nanofibers. ACS Appl. Nano Mater. 6(15), 14165–14176 (2023). https://doi.org/10.1021/acsanm.3c02073
T.T.T. Phan, T.D. Nguyen, M.T.N. Nguyen, J.S. Lee, Facile synthesis of nickel-decorated multidimensional carbon nanofibers via oxygen plasma activation for non-enzymatic acetaminophen sensing. Carbon 212, 118176 (2023). https://doi.org/10.1016/j.carbon.2023.118176
Q. Song, K. Wang, G. Zhao, Self-adhesive, conductive, and antibacterial hydrogel nanofiber composite as a flexible strain sensor. ACS Appl. Electron. Mater. 5(12), 6947–6954 (2023). https://doi.org/10.1021/acsaelm.3c01359
T. Xu, Y. Ding, Z. Liang, H. Sun, F. Zheng et al., Three-dimensional monolithic porous structures assembled from fragmented electrospun nanofiber mats/membranes: methods, properties, and applications. Prog. Mater. Sci. 112, 100656 (2020). https://doi.org/10.1016/j.pmatsci.2020.100656
J. Chen, X. Wang, L. Dao, L. Liu, Y. Yang et al., A conductive bio-hydrogel with high conductivity and mechanical strength via physical filling of electrospinning polyaniline fibers. Colloids Surf. A Physicochem. Eng. Aspects 637, 128190 (2022). https://doi.org/10.1016/j.colsurfa.2021.128190
Z. Duan, F. Cai, Y. Chen, T. Chen, P. Lu, Advanced applications of porous materials in triboelectric nanogenerator self-powered sensors. Sensors 24(12), 3812 (2024). https://doi.org/10.3390/s24123812
Y. Fu, S. Wang, Y. Tian, B. Zhang, Z. Zhao et al., A high-sensitivity and multi-response magnetic nanofiber-aerogel sensor with directionally aligned porous structure based on triple network for interactive human–machine interfaces. Chem. Eng. J. 497, 154441 (2024). https://doi.org/10.1016/j.cej.2024.154441
J. Li, H. Li, J. Lin, Y. Lu, J. Qin et al., Multilayer polyimide nanofibrous aerogels for efficient thermal insulation and piezoelectric sensor. Chem. Eng. J. 507, 160807 (2025). https://doi.org/10.1016/j.cej.2025.160807
H. Dong, C. Zhi, C. Wang, R. Sun, Z. Dong et al., Artificial vascular stent-inspired bending sensors embedded in a data glove for hand gesture recognition. IEEE Sens. J. 23(19), 23388–23398 (2023). https://doi.org/10.1109/JSEN.2023.3306045
J. Qin, L.-J. Yin, Y.-N. Hao, S.-L. Zhong, D.-L. Zhang et al., Flexible and stretchable capacitive sensors with different microstructures. Adv. Mater. 33(34), 2008267 (2021). https://doi.org/10.1002/adma.202008267
D. Wang, J. Zhang, C. Fan, J. Xing, A. Wei et al., A strong, ultrastretchable, antifreezing and high sensitive strain sensor based on ionic conductive fiber reinforced organohydrogel. Compos. Part B Eng. 243, 110116 (2022). https://doi.org/10.1016/j.compositesb.2022.110116
F. Chen, Q. Zhuang, Y. Ding, C. Zhang, X. Song et al., Wet-adaptive electronic skin. Adv. Mater. 35(49), e2305630 (2023). https://doi.org/10.1002/adma.202305630
W. Yue, Y. Guo, J.C. Lee, E. Ganbold, J.K. Wu et al., Advancements in passive wireless sensing systems in monitoring harsh environment and healthcare applications. Nano-Micro Lett. 17(1), 106 (2025). https://doi.org/10.1007/s40820-024-01599-8
K. Shrestha, G.B. Pradhan, T. Bhatta, S. Sharma, S. Lee et al., Intermediate nanofibrous charge trapping layer-based wearable triboelectric self-powered sensor for human activity recognition and user identification. Nano Energy 108, 108180 (2023). https://doi.org/10.1016/j.nanoen.2023.108180
T. Bhatta, S. Sharma, K. Shrestha, Y. Shin, S. Seonu et al., Siloxene/PVDF composite nanofibrous membrane for high-performance triboelectric nanogenerator and self-powered static and dynamic pressure sensing applications. Adv. Funct. Mater. 32(25), 2202145 (2022). https://doi.org/10.1002/adfm.202202145
J. Zhang, T. Yang, G. Tian, B. Lan, W. Deng et al., Spatially confined MXene/PVDF nanofiber piezoelectric electronics. Adv. Fiber Mater. 6(1), 133–144 (2024). https://doi.org/10.1007/s42765-023-00337-w
Y. Yang, Y. Yang, J. Huang, S. Li, Z. Meng et al., Electrospun nanocomposite fibrous membranes for sustainable face mask based on triboelectric nanogenerator with high air filtration efficiency. Adv. Fiber Mater. 5, 1–14 (2023). https://doi.org/10.1007/s42765-023-00299-z
P.C. Uzabakiriho, M. Wang, K. Wang, C. Ma, G. Zhao, High-strength and extensible electrospun yarn for wearable electronics. ACS Appl. Mater. Interfaces 14(40), 46068–46076 (2022). https://doi.org/10.1021/acsami.2c13182
Y. Yang, Y. Song, X. Bo, J. Min, O.S. Pak et al., A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 38(2), 217–224 (2020). https://doi.org/10.1038/s41587-019-0321-x
Y. Wei, S. Chen, X. Yuan, P. Wang, L. Liu, Multiscale wrinkled microstructures for piezoresistive fibers. Adv. Funct. Mater. 26(28), 5078–5085 (2016). https://doi.org/10.1002/adfm.201600580
S.M. Park, S. Eom, D. Choi, S.J. Han, S.J. Park et al., Direct fabrication of spatially patterned or aligned electrospun nanofiber mats on dielectric polymer surfaces. Chem. Eng. J. 335, 712–719 (2018). https://doi.org/10.1016/j.cej.2017.11.018
S. Yang, K. Ding, W. Wang, T. Wang, H. Gong et al., Electrospun fiber-based high-performance flexible multi-level micro-structured pressure sensor: design, development and modelling. Chem. Eng. J. 431, 133700 (2022). https://doi.org/10.1016/j.cej.2021.133700
M. Raisch, D. Genovese, N. Zaccheroni, S.B. Schmidt, M.L. Focarete et al., Highly sensitive, anisotropic, and reversible stress/strain-sensors from mechanochromic nanofiber composites. Adv. Mater. 30(39), e1802813 (2018). https://doi.org/10.1002/adma.201802813
J.-H. Zhang, Z. Li, J. Xu, J. Li, K. Yan et al., Versatile self-assembled electrospun micropyramid arrays for high-performance on-skin devices with minimal sensory interference. Nat. Commun. 13(1), 5839 (2022). https://doi.org/10.1038/s41467-022-33454-y
J. Yan, Y. Ma, G. Jia, S. Zhao, Y. Yue et al., Bionic MXene based hybrid film design for an ultrasensitive piezoresistive pressure sensor. Chem. Eng. J. 431, 133458 (2022). https://doi.org/10.1016/j.cej.2021.133458
M. Cui, H. Guo, W. Zhai, C. Liu, C. Shen et al., Template-assisted electrospun ordered hierarchical microhump arrays-based multifunctional triboelectric nanogenerator for tactile sensing and animal voice-emotion identification. Adv. Funct. Mater. 33(46), 2301589 (2023). https://doi.org/10.1002/adfm.202301589
M.I. Shekh, M. Wang, G. Zhu, F.J. Stadler, J. Ma et al., Mechanically robust and conductive zwitter ionic polymer coated electrospun nanofibrous electrolyte membranes for wireless human motion detection and capacitor applications. Compos. Struct. 329, 117797 (2024). https://doi.org/10.1016/j.compstruct.2023.117797
T. Yang, C. Ma, C. Lin, J. Wang, W. Qiao et al., Innovative fabrication of ultrasensitive and durable graphene fiber aerogel for flexible pressure sensors. Carbon 229, 119484 (2024). https://doi.org/10.1016/j.carbon.2024.119484
J. Yang, K. Hong, Y. Hao, X. Zhu, J. Su et al., Mica/nylon composite nanofiber film based wearable triboelectric sensor for object recognition. Nano Energy 129, 110056 (2024). https://doi.org/10.1016/j.nanoen.2024.110056
J. Yang, M. Wang, Y. Meng, Z. Niu, Y. Hao et al., High-performance flexible wearable triboelectric nanogenerator sensor by β-phase polyvinylidene fluoride polarization. ACS Appl. Electron. Mater. 6(2), 1385–1395 (2024). https://doi.org/10.1021/acsaelm.3c01678
S. Pan, F. Zhang, P. Cai, M. Wang, K. He et al., Mechanically interlocked hydrogel–elastomer hybrids for on-skin electronics. Adv. Funct. Mater. 30(29), 1909540 (2020). https://doi.org/10.1002/adfm.201909540
C.-Y. Huang, C.-W. Chiu, Facile fabrication of a stretchable and flexible nanofiber carbon film-sensing electrode by electrospinning and its application in smart clothing for ECG and EMG monitoring. ACS Appl. Electron. Mater. 3(2), 676–686 (2021). https://doi.org/10.1021/acsaelm.0c00841
M.S. Reza, L. Jin, Y.J. Jeong, T.I. Oh, H. Kim et al., Electrospun rubber nanofiber web-based dry electrodes for biopotential monitoring. Sensors 23(17), 7377 (2023). https://doi.org/10.3390/s23177377
C.-T. Pan, C.-C. Chang, Y.-S. Yang, C.-K. Yen, Y.-H. Kao et al., Development of MMG sensors using PVDF piezoelectric electrospinning for lower limb rehabilitation exoskeleton. Sens. Actuat. A Phys. 301, 111708 (2020). https://doi.org/10.1016/j.sna.2019.111708
C. Zhi, S. Shi, S. Zhang, Y. Si, J. Yang et al., Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing. Nano-Micro Lett. 15(1), 60 (2023). https://doi.org/10.1007/s40820-023-01028-2
W. Wang, L. Xu, L. Zhang, A. Zhang, J. Zhang, Self-powered integrated sensing system with in-plane micro-supercapacitors for wearable electronics. Small 19(29), e2207723 (2023). https://doi.org/10.1002/smll.202207723
T. Cui, Y. Qiao, D. Li, X. Huang, L. Yang et al., Multifunctional, breathable MXene-PU mesh electronic skin for wearable intelligent 12-lead ECG monitoring system. Chem. Eng. J. 455, 140690 (2023). https://doi.org/10.1016/j.cej.2022.140690
Q. Li, C. Ding, W. Yuan, R. Xie, X. Zhou et al., Highly stretchable and permeable conductors based on shrinkable electrospun fiber mats. Adv. Fiber Mater. 3(5), 302–311 (2021). https://doi.org/10.1007/s42765-021-00079-7
C.-W. Chiu, C.-Y. Huang, J.-W. Li, C.-L. Li, Flexible hybrid electronics nanofiber electrodes with excellent stretchability and highly stable electrical conductivity for smart clothing. ACS Appl. Mater. Interfaces 14(37), 42441–42453 (2022). https://doi.org/10.1021/acsami.2c11724
S. Yan, S. Jin, X. He, J. Xu, H. Feng et al., Direct synthesis of composite conductive carbon nanofiber aerogels with continuous internal networks for collaborative physiological signal monitoring under complex environments. Sens. Actuat. B Chem. 426, 136975 (2025). https://doi.org/10.1016/j.snb.2024.136975
A. Ahmed, N.A. Khoso, M.F. Arain, I.A. Khan, K. Javed et al., Development of highly flexible piezoelectric PVDF-TRFE/reduced graphene oxide doped electrospun nano-fibers for self-powered pressure sensor. Polymers 16(13), 1781 (2024). https://doi.org/10.3390/polym16131781
Z. Shen, F. Liu, S. Huang, H. Wang, C. Yang et al., Progress of flexible strain sensors for physiological signal monitoring. Biosens. Bioelectron. 211, 114298 (2022). https://doi.org/10.1016/j.bios.2022.114298
R. Guo, T. Li, C. Jiang, H. Zong, X. Li et al., Pressure regulated printing of semiliquid metal on electrospinning film enables breathable and waterproof wearable electronics. Adv. Fiber Mater. 6(2), 354–366 (2024). https://doi.org/10.1007/s42765-023-00343-y
W. Yu, Q. Li, J. Ren, K. Feng, J. Gong et al., A sensor platform based on SERS detection/Janus textile for sweat glucose and lactate analysis toward portable monitoring of wellness status. Biosens. Bioelectron. 263, 116612 (2024). https://doi.org/10.1016/j.bios.2024.116612
M. Chung, W.H. Skinner, C. Robert, C.J. Campbell, R.M. Rossi et al., Fabrication of a wearable flexible sweat pH sensor based on SERS-active Au/TPU electrospun nanofibers. ACS Appl. Mater. Interfaces 13(43), 51504–51518 (2021). https://doi.org/10.1021/acsami.1c15238
T.P. Brito, N. Butto-Miranda, A. Neira-Carrillo, S. Bollo, D. Ruíz-León, Synergistic effect of composite nickel phosphide nanops and carbon fiber on the enhancement of salivary enzyme-free glucose sensing. Biosensors 13(1), 49 (2022). https://doi.org/10.3390/bios13010049
J. Wang, L. Xu, Y. Lu, K. Sheng, W. Liu et al., Engineered IrO2@NiO core-shell nanowires for sensitive non-enzymatic detection of trace glucose in saliva. Anal. Chem. 88(24), 12346–12353 (2016). https://doi.org/10.1021/acs.analchem.6b03558
N. Sunil, R. Unnathpadi, B. Pullithadathil, Ag nanoisland functionalized hollow carbon nanofibers as a non-invasive, label-free SERS salivary biosensor platform for salivary nitrite detection for pre-diagnosis of oral cancer. Analyst 149(17), 4443–4453 (2024). https://doi.org/10.1039/D4AN00641K
Y. Ziai, F. Petronella, C. Rinoldi, P. Nakielski, A. Zakrzewska et al., Chameleon-inspired multifunctional plasmonic nanoplatforms for biosensing applications. NPG Asia Mater. 14, 18 (2022). https://doi.org/10.1038/s41427-022-00365-9
R.J.B. Leote, D.N. Crisan, E. Matei, I. Enculescu, V.C. Diculescu, Palladium-coated submicron electrospun polymeric fibers with immobilized uricase for uric acid determination in body fluids. ACS Appl. Polym. Mater. 6(4), 2274–2283 (2024). https://doi.org/10.1021/acsapm.3c02811
Z. Deng, D. Bao, L. Jiang, X. Zhang, W. Xi et al., A low fouling and high biocompatibility electrochemical sensor based on the electrospun gelatin-PLGA-CNTs nanofibers for dopamine detection in blood. J. Appl. Polym. Sci. 141(38), e55969 (2024). https://doi.org/10.1002/app.55969
H. Liu, X. Yuan, T. Liu, W. Zhang, H. Dong et al., Freestanding nanofiber-assembled aptasensor for precisely and ultrafast electrochemical detection of Alzheimer’s disease biomarkers. Adv. Healthc. Mater. 13(15), 2470100 (2024). https://doi.org/10.1002/adhm.202470100
C. Zhao, J. Park, S.E. Root, Z. Bao, Skin-inspired soft bioelectronic materials, devices and systems. Nat. Rev. Bioeng. 2(8), 671–690 (2024). https://doi.org/10.1038/s44222-024-00194-1
S. Shi, Y. Ming, H. Wu, C. Zhi, L. Yang et al., A bionic skin for health management: excellent breathability, in situ sensing, and big data analysis. Adv. Mater. 36(17), 2306435 (2024). https://doi.org/10.1002/adma.202306435
X. He, S. Yang, Q. Pei, Y. Song, C. Liu et al., Integrated smart Janus textile bands for self-pumping sweat sampling and analysis. ACS Sens. 5(6), 1548–1554 (2020). https://doi.org/10.1021/acssensors.0c00563
G.J. Kim, K.O. Kim, Novel glucose-responsive of the transparent nanofiber hydrogel patches as a wearable biosensor via electrospinning. Sci. Rep. 10(1), 18858 (2020). https://doi.org/10.1038/s41598-020-75906-9
V.C. Diculescu, M. Beregoi, A. Evanghelidis, R.F. Negrea, N.G. Apostol et al., Palladium/palladium oxide coated electrospun fibers for wearable sweat pH-sensors. Sci. Rep. 9(1), 8902 (2019). https://doi.org/10.1038/s41598-019-45399-2
J. Zhang, X. Li, J.-C. Zhang, J.-S. Yan, H. Zhu et al., Ultrasensitive and reusable upconversion-luminescence nanofibrous indicator paper for in situ dual detection of single droplet. Chem. Eng. J. 382, 122779 (2020). https://doi.org/10.1016/j.cej.2019.122779
L. Lüder, P.N. Nirmalraj, A. Neels, R.M. Rossi, M. Calame, Sensing of KCl, NaCl, and pyocyanin with a MOF-decorated electrospun nitrocellulose matrix. ACS Appl. Nano Mater. 6(4), 2854–2863 (2023). https://doi.org/10.1021/acsanm.2c05252
K. Li, S. Yang, S. Wu, Z. Ying, L. Wang et al., Portable and recyclable luminescent lanthanide coordination polymer film sensors for adenosine triphosphate in urine. ACS Appl. Mater. Interfaces 16(4), 5129–5137 (2024). https://doi.org/10.1021/acsami.3c16504
J.E. An, K.H. Kim, S.J. Park, S.E. Seo, J. Kim et al., Wearable Cortisol aptasensor for simple and rapid real-time monitoring. ACS Sens. 7(1), 99–108 (2022). https://doi.org/10.1021/acssensors.1c01734
X. Liang, S. Meng, C. Zhi, S. Zhang, R. Tan et al., Thermal transfer printed flexible and wearable bionic skin with bilayer nanofiber for comfortable multimodal health management. Adv. Healthc. Mater. 14(6), 2403780 (2025). https://doi.org/10.1002/adhm.202403780
Z. Tang, J. Jian, M. Guo, S. Liu, S. Ji et al., All-fiber flexible electrochemical sensor for wearable glucose monitoring. Sensors 24(14), 4580 (2024). https://doi.org/10.3390/s24144580
J.-H. Lee, K. Cho, J.-K. Kim, Age of flexible electronics: emerging trends in soft multifunctional sensors. Adv. Mater. 36(16), e2310505 (2024). https://doi.org/10.1002/adma.202310505
G. Ye, Q. Wu, Y. Chen, X. Wang, Z. Xiang et al., Bimodal coupling haptic perceptron for accurate contactless gesture perception and material identification. Adv. Fiber Mater. 6(6), 1874–1886 (2024). https://doi.org/10.1007/s42765-024-00458-w
S. Sharma, G.B. Pradhan, S. Jeong, S. Zhang, H. Song et al., Stretchable and all-directional strain-insensitive electronic glove for robotic skins and human-machine interfacing. ACS Nano 17(9), 8355–8366 (2023). https://doi.org/10.1021/acsnano.2c12784