Amplified Detection of Iron Ion Based on Plasmon Enhanced Fluorescence and Subsequently Fluorescence Quenching
Corresponding Author: Si Cheng
Nano-Micro Letters,
Vol. 6 No. 4 (2014), Article Number: 327-334
Abstract
A facile and rapid approach for detecting low concentration of iron ion (Fe3+) with improved sensitivity was developed on the basis of plasmon enhanced fluorescence and subsequently amplified fluorescence quenching. Au1Ag4@SiO2 nanoparticles were synthesized and dispersed into fluorescein isothiocyanate (FITC) solution. The fluorescence of the FITC solution was improved due to plasmon enhanced fluorescence. However, efficient fluorescence quenching of the FITC/Au1Ag4@SiO2 solution was subsequently achieved when Fe3+, with a concentration ranging from 17 nM to 3.4 μM, was added into the FITC/Au1Ag4@SiO2 solution, whereas almost no fluorescence quenching was observed for pure FITC solution under the same condition. FITC/Au1Ag4@SiO2 solution shows a better sensitivity for detecting low concentration of Fe3+ compared to pure FITC solution. The quantized limit of detection toward Fe3+ was improved from 4.6 μM for pure FITC solution to 20 nM for FITC/Au1Ag4@SiO2 solution.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W.H. Ni, Z. Yang, H.J. Chen, L. Li, J.F. Wang, Coupling between molecular and plasmonic resonances in freestanding dye-gold nanorod hybrid nanostructures. J. Am. Chem. Soc. 130(21), 6692–6693 (2008). doi:10.1021/ja8012374
- T. Ming, H.J. Chen, R.B. Jiang, Q. Li, J.F. Wang, Plasmon-controlled fluorescence: beyond the intensity enhancement. J. Phys. Chem. Lett. 3(2), 191–202 (2012). doi:10.1021/jz201392k
- G. Schneider, G. Decher, Distance-dependent fluorescence quenching on gold nanoparticles ensheathed with layer-by-layer assembled polyelectrolytes. Nano Lett. 6(3), 530–536 (2006). doi:10.1021/nl052441s
- P. Reineck, D. Gómez, S.H. Ng, M. Karg, T. Bell, P. Mulvaney, U. Bach, Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core–shell nanoparticles. ACS Nano 7(8), 6636–6648 (2013). doi:10.1021/nn401775e
- A.R. Guerrero, R.F. Aroca, Surface-enhanced fluorescence with shell-isolated nanoparticles (SHINEF). Angew. Chem. Int. Ed. 50(3), 665–668 (2011). doi:10.1002/anie.201004806
- D.M. Cheng, Q.H. Xu, Separation distance dependent fluorescence enhancement of fluorescein isothiocyanate by silver nanoparticles. Chem. Commun. 3, 248–250 (2007). doi:10.1039/B612401A
- K. Aslan, M. Wu, J.R. Lakowicz, C.D. Geddes, Fluorescent core–shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. J. Am. Chem. Soc. 129(6), 1524–1525 (2007). doi:10.1021/ja0680820
- J.P. Yang, F. Zhang, Y.R. Chen, S. Qian, P. Hu, W. Li, Y.H. Deng, Y. Fang, L. Han, M. Luqman, D.Y. Zhao, Core–shell Ag@ SiO2@mSiO2 mesoporous nanocarriers for metal-enhanced fluorescence. Chem. Commun. 47(42), 11618–11620 (2011). doi:10.1039/C1CC15304H
- C. Wu, J. Zheng, C. Huang, J. Lai, S. Li, C. Chen, Y. Zhao, Hybrid silica-nanocrystal-organic dye superstructures as post-encoding fluorescent probes. Angew. Chem. Int. Ed. 46(28), 5393–5396 (2007). doi:10.1002/anie.200700847
- V.W.K. Ng, R. Berti, F. Lesage, A. Kakkar, Gold: a versatile tool for in vivo imaging. J. Mater. Chem. B 1(1), 9–25 (2013). doi:10.1039/C2TB00020B
- Z.J. Zhang, J. Wang, C.Y. Chen, Gold nanorods based platforms for light-mediated theranostics. Theranostics 3(3), 223–238 (2012). doi:10.7150/thno.5409
- H.M. Su, Y.C. Zhong, T. Ming, J.F. Wang, K.S. Wong, Extraordinary surface plasmon coupled emission using core/shell gold nanorods. J. Phys. Chem. C 116(16), 9259–9264 (2012). doi:10.1021/jp211713y
- J. Song, W. Zhang, K.S. Miao, H.L. Zeng, S. Cheng, L.J. Fan, Receptor-free poly (phenylenevinylene) fibrous membranes for cation sensing: high sensitivity and good selectivity achieved by choosing the appropriate polymer matrix. Appl. Mater. Interfaces 5(10), 4011–4016 (2013). doi:10.1021/am4005336
- D.Z. Shen, L.S. Wang, Z.X. Pan, S. Cheng, X.L. Zhu, L.J. Fan, Toward a highly sensitive fluorescence sensing system of an amphiphilic molecular rod: facile synthesis and significant solvent-assisted photophysical tunability. Macromolecules 44(4), 1009–1015 (2011). doi:10.1021/ma102311n
- G. Sener, L. Uzun, A. Denizli, Lysine promoted colorimetric response of gold nanoparticles: a simple assay for ultra-sensitive mercury (II) detection. Anal. Chem. 86(1), 514–520 (2014). doi:10.1021/ac403447a
- T.Y. Zhou, L.P. Lin, M.C. Rong, Y.Q. Jiang, X. Chen, Silver–gold alloy nanoclusters as a fluorescence-enhanced probe for aluminum ion sensing. Anal. Chem. 85(20), 9839–9844 (2013). doi:10.1021/ac4023764
- Z.Q. Yuan, N. Cai, Y. Du, Y. He, E.S. Yeung, Sensitive and selective detection of copper ions with highly stable polyethyleneimine-protected silver nanoclusters. Anal. Chem. 86(1), 419–426 (2014). doi:10.1021/ac402158j
- X.F. Wu, B.W. Xu, H. Tong, L.X. Wang, Phosphonate-functionalized polyfluorene film sensors for sensitive detection of iron (III) in both organic and aqueous media. Macromolecules 43(21), 8917–8923 (2010). doi:10.1021/ma1019413
- X. He, H. Liu, Y. Li, S. Wang, Y. Li, N. Wang, J. Xiao, X. Xu, D. Zhu, Gold nanoparticle-based fluorometric and colorimetric sensing of copper (II) ions. Adv. Mater. 17(23), 2811–2815 (2005). doi:10.1002/adma.200501173
- J.P. Xie, Y.G. Zheng, J.Y. Ying, Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+-Au+ interactions. Chem. Commun. 46(6), 961–963 (2010). doi:10.1039/B920748A
- Y.S. Wu, F.F. Huang, Y.W. Lin, Fluorescent detection of lead in environmental water and urine samples using enzyme mimics of catechin-synthesized Au nanoparticles. Appl. Mater. Interfaces 5(4), 1503–1509 (2013). doi:10.1021/am3030454
- J.W. Liu, Y. Lu, A DNAzyme catalytic beacon sensor for paramagnetic Cu2+ ions in aqueous solution with high sensitivity and selectivity. J. Am. Chem. Soc. 129(32), 9838–9839 (2007). doi:10.1021/ja0717358
- D.B. Liu, Z. Wang, X.Y. Jiang, Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. Nanoscale 3(4), 1421–1433 (2011). doi:10.1039/C0NR00887G
- S.C. Wei, P.H. Hsu, Y.F. Lee, Y.W. Lin, C.C. Huang, Selective detection of iodide and cyanide anions using gold-nanoparticle-based fluorescent probes. ACS Appl. Mater. Interfaces 4(5), 2652–2658 (2012). doi:10.1021/am3003044
- C.Y. Lin, C.H. Liu, W.L. Tseng, Fluorescein isothiocyanate-capped gold nanoparticles for fluorescent detection of reactive oxygen species based on thiol oxidation and their application for sensing glucose in serum. Anal. Methods 2(11), 1810–1815 (2010). doi:10.1039/C0AY00428F
- J.H. Choi, H.S. Kim, J.W. Choi, J.W. Hong, Y.K. Kim, B.K. Oh, A novel Au-nanoparticle biosensor for the rapid and simple detection of PSA using a sequence-specific peptide cleavage reaction. Biosens. Bioelectron. 49, 415–419 (2013). doi:10.1016/j.bios.2013.05.042
- B. Hu, Y. Zhao, H.Z. Zhu, S.H. Yu, Selective chromogenic detection of thiol-containing biomolecules using carbonaceous nanospheres loaded with silver nanoparticles as carrier. ACS Nano 5(4), 3166–3171 (2011). doi:10.1021/nn2003053
- R. Clark, C.S. Williams, Infra-red spectra (3000–200 cm−1) of metal-isothiocyanate complexes. Spectrochim. Acta 22(6), 1081–1090 (1966). doi:10.1016/0371-1951(66)80198-4
- Y.C. Chen, K. Munechika, D.S. Ginger, Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett. 7(3), 690–696 (2007). doi:10.1021/nl062795z
- S. Link, Z.L. Wang, M.A. El-Sayed, Alloy formation of gold–silver nanoparticles and the dependence of the plasmon absorption on their composition. J. Phys. Chem. B 103(18), 3529–3533 (1999). doi:10.1021/jp990387w
- A.G. Martinez, J.P. Juste, L.M. Liz-Marzan, Recent progress on silica coating of nanoparticles and related nanomaterials. Adv. Mater. 22(11), 1182–1195 (2010). doi:10.1002/adma.200901263
- H.J. Chen, T. Ming, L. Zhao, F. Wang, L.D. Sun, J.F. Wang, C.H. Yan, Plasmon-molecule interactions. Nano Today 5(5), 494–505 (2010). doi:10.1016/j.nantod.2010.08.009
- O. Stranik, R. Nooney, C. McDonagh, B.D. MacCraith, Optimization of nanoparticle size for plasmonic enhancement of fluorescence. Plasmonics 2(1), 15–22 (2007). doi:10.1007/s11468-006-9020-9
References
W.H. Ni, Z. Yang, H.J. Chen, L. Li, J.F. Wang, Coupling between molecular and plasmonic resonances in freestanding dye-gold nanorod hybrid nanostructures. J. Am. Chem. Soc. 130(21), 6692–6693 (2008). doi:10.1021/ja8012374
T. Ming, H.J. Chen, R.B. Jiang, Q. Li, J.F. Wang, Plasmon-controlled fluorescence: beyond the intensity enhancement. J. Phys. Chem. Lett. 3(2), 191–202 (2012). doi:10.1021/jz201392k
G. Schneider, G. Decher, Distance-dependent fluorescence quenching on gold nanoparticles ensheathed with layer-by-layer assembled polyelectrolytes. Nano Lett. 6(3), 530–536 (2006). doi:10.1021/nl052441s
P. Reineck, D. Gómez, S.H. Ng, M. Karg, T. Bell, P. Mulvaney, U. Bach, Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core–shell nanoparticles. ACS Nano 7(8), 6636–6648 (2013). doi:10.1021/nn401775e
A.R. Guerrero, R.F. Aroca, Surface-enhanced fluorescence with shell-isolated nanoparticles (SHINEF). Angew. Chem. Int. Ed. 50(3), 665–668 (2011). doi:10.1002/anie.201004806
D.M. Cheng, Q.H. Xu, Separation distance dependent fluorescence enhancement of fluorescein isothiocyanate by silver nanoparticles. Chem. Commun. 3, 248–250 (2007). doi:10.1039/B612401A
K. Aslan, M. Wu, J.R. Lakowicz, C.D. Geddes, Fluorescent core–shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. J. Am. Chem. Soc. 129(6), 1524–1525 (2007). doi:10.1021/ja0680820
J.P. Yang, F. Zhang, Y.R. Chen, S. Qian, P. Hu, W. Li, Y.H. Deng, Y. Fang, L. Han, M. Luqman, D.Y. Zhao, Core–shell Ag@ SiO2@mSiO2 mesoporous nanocarriers for metal-enhanced fluorescence. Chem. Commun. 47(42), 11618–11620 (2011). doi:10.1039/C1CC15304H
C. Wu, J. Zheng, C. Huang, J. Lai, S. Li, C. Chen, Y. Zhao, Hybrid silica-nanocrystal-organic dye superstructures as post-encoding fluorescent probes. Angew. Chem. Int. Ed. 46(28), 5393–5396 (2007). doi:10.1002/anie.200700847
V.W.K. Ng, R. Berti, F. Lesage, A. Kakkar, Gold: a versatile tool for in vivo imaging. J. Mater. Chem. B 1(1), 9–25 (2013). doi:10.1039/C2TB00020B
Z.J. Zhang, J. Wang, C.Y. Chen, Gold nanorods based platforms for light-mediated theranostics. Theranostics 3(3), 223–238 (2012). doi:10.7150/thno.5409
H.M. Su, Y.C. Zhong, T. Ming, J.F. Wang, K.S. Wong, Extraordinary surface plasmon coupled emission using core/shell gold nanorods. J. Phys. Chem. C 116(16), 9259–9264 (2012). doi:10.1021/jp211713y
J. Song, W. Zhang, K.S. Miao, H.L. Zeng, S. Cheng, L.J. Fan, Receptor-free poly (phenylenevinylene) fibrous membranes for cation sensing: high sensitivity and good selectivity achieved by choosing the appropriate polymer matrix. Appl. Mater. Interfaces 5(10), 4011–4016 (2013). doi:10.1021/am4005336
D.Z. Shen, L.S. Wang, Z.X. Pan, S. Cheng, X.L. Zhu, L.J. Fan, Toward a highly sensitive fluorescence sensing system of an amphiphilic molecular rod: facile synthesis and significant solvent-assisted photophysical tunability. Macromolecules 44(4), 1009–1015 (2011). doi:10.1021/ma102311n
G. Sener, L. Uzun, A. Denizli, Lysine promoted colorimetric response of gold nanoparticles: a simple assay for ultra-sensitive mercury (II) detection. Anal. Chem. 86(1), 514–520 (2014). doi:10.1021/ac403447a
T.Y. Zhou, L.P. Lin, M.C. Rong, Y.Q. Jiang, X. Chen, Silver–gold alloy nanoclusters as a fluorescence-enhanced probe for aluminum ion sensing. Anal. Chem. 85(20), 9839–9844 (2013). doi:10.1021/ac4023764
Z.Q. Yuan, N. Cai, Y. Du, Y. He, E.S. Yeung, Sensitive and selective detection of copper ions with highly stable polyethyleneimine-protected silver nanoclusters. Anal. Chem. 86(1), 419–426 (2014). doi:10.1021/ac402158j
X.F. Wu, B.W. Xu, H. Tong, L.X. Wang, Phosphonate-functionalized polyfluorene film sensors for sensitive detection of iron (III) in both organic and aqueous media. Macromolecules 43(21), 8917–8923 (2010). doi:10.1021/ma1019413
X. He, H. Liu, Y. Li, S. Wang, Y. Li, N. Wang, J. Xiao, X. Xu, D. Zhu, Gold nanoparticle-based fluorometric and colorimetric sensing of copper (II) ions. Adv. Mater. 17(23), 2811–2815 (2005). doi:10.1002/adma.200501173
J.P. Xie, Y.G. Zheng, J.Y. Ying, Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+-Au+ interactions. Chem. Commun. 46(6), 961–963 (2010). doi:10.1039/B920748A
Y.S. Wu, F.F. Huang, Y.W. Lin, Fluorescent detection of lead in environmental water and urine samples using enzyme mimics of catechin-synthesized Au nanoparticles. Appl. Mater. Interfaces 5(4), 1503–1509 (2013). doi:10.1021/am3030454
J.W. Liu, Y. Lu, A DNAzyme catalytic beacon sensor for paramagnetic Cu2+ ions in aqueous solution with high sensitivity and selectivity. J. Am. Chem. Soc. 129(32), 9838–9839 (2007). doi:10.1021/ja0717358
D.B. Liu, Z. Wang, X.Y. Jiang, Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. Nanoscale 3(4), 1421–1433 (2011). doi:10.1039/C0NR00887G
S.C. Wei, P.H. Hsu, Y.F. Lee, Y.W. Lin, C.C. Huang, Selective detection of iodide and cyanide anions using gold-nanoparticle-based fluorescent probes. ACS Appl. Mater. Interfaces 4(5), 2652–2658 (2012). doi:10.1021/am3003044
C.Y. Lin, C.H. Liu, W.L. Tseng, Fluorescein isothiocyanate-capped gold nanoparticles for fluorescent detection of reactive oxygen species based on thiol oxidation and their application for sensing glucose in serum. Anal. Methods 2(11), 1810–1815 (2010). doi:10.1039/C0AY00428F
J.H. Choi, H.S. Kim, J.W. Choi, J.W. Hong, Y.K. Kim, B.K. Oh, A novel Au-nanoparticle biosensor for the rapid and simple detection of PSA using a sequence-specific peptide cleavage reaction. Biosens. Bioelectron. 49, 415–419 (2013). doi:10.1016/j.bios.2013.05.042
B. Hu, Y. Zhao, H.Z. Zhu, S.H. Yu, Selective chromogenic detection of thiol-containing biomolecules using carbonaceous nanospheres loaded with silver nanoparticles as carrier. ACS Nano 5(4), 3166–3171 (2011). doi:10.1021/nn2003053
R. Clark, C.S. Williams, Infra-red spectra (3000–200 cm−1) of metal-isothiocyanate complexes. Spectrochim. Acta 22(6), 1081–1090 (1966). doi:10.1016/0371-1951(66)80198-4
Y.C. Chen, K. Munechika, D.S. Ginger, Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett. 7(3), 690–696 (2007). doi:10.1021/nl062795z
S. Link, Z.L. Wang, M.A. El-Sayed, Alloy formation of gold–silver nanoparticles and the dependence of the plasmon absorption on their composition. J. Phys. Chem. B 103(18), 3529–3533 (1999). doi:10.1021/jp990387w
A.G. Martinez, J.P. Juste, L.M. Liz-Marzan, Recent progress on silica coating of nanoparticles and related nanomaterials. Adv. Mater. 22(11), 1182–1195 (2010). doi:10.1002/adma.200901263
H.J. Chen, T. Ming, L. Zhao, F. Wang, L.D. Sun, J.F. Wang, C.H. Yan, Plasmon-molecule interactions. Nano Today 5(5), 494–505 (2010). doi:10.1016/j.nantod.2010.08.009
O. Stranik, R. Nooney, C. McDonagh, B.D. MacCraith, Optimization of nanoparticle size for plasmonic enhancement of fluorescence. Plasmonics 2(1), 15–22 (2007). doi:10.1007/s11468-006-9020-9