Electrolyte/Structure-Dependent Cocktail Mediation Enabling High-Rate/Low-Plateau Metal Sulfide Anodes for Sodium Storage
Corresponding Author: Jieshan Qiu
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 178
Abstract
As promising anodes for sodium-ion batteries, metal sulfides ubiquitously suffer from low-rate and high-plateau issues, greatly hindering their application in full-cells. Herein, exemplifying carbon nanotubes (CNTs)-stringed metal sulfides superstructure (CSC) assembled by nano-dispersed SnS2 and CoS2 phases, cocktail mediation effect similar to that of high-entropy materials is initially studied in ether-based electrolyte to solve the challenges. The high nano-dispersity of metal sulfides in CSC anode underlies the cocktail-like mediation effect, enabling the circumvention of intrinsic drawbacks of different metal sulfides. By utilizing ether-based electrolyte, the reversibility of metal sulfides is greatly improved, sustaining a long-life effectivity of cocktail-like mediation. As such, CSC effectively overcomes low-rate flaw of SnS2 and high-plateau demerit of CoS2, simultaneously realizes a high rate and a low plateau. In half-cells, CSC delivers an ultrahigh-rate capability of 327.6 mAh g−1anode at 20 A g−1, far outperforming those of monometallic sulfides (SnS2, CoS2) and their mixtures. Compared with CoS2 phase and SnS2/CoS2 mixture, CSC shows remarkably lowered average charge voltage up to ca. 0.62 V. As-assembled CSC//Na1.5VPO4.8F0.7 full-cell shows a good rate capability (0.05 ~ 1.0 A g−1, 120.3 mAh g−1electrode at 0.05 A g−1) and a high average discharge voltage up to 2.57 V, comparable to full-cells with alloy-type anodes. Kinetics analysis verifies that the cocktail-like mediation effect largely boosts the charge transfer and ionic diffusion in CSC, compared with single phase and mixed phases. Further mechanism study reveals that alternative and complementary electrochemical processes between nano-dispersed SnS2 and CoS2 phases are responsible for the lowered charge voltage of CSC. This electrolyte/structure-dependent cocktail-like mediation effect effectively enhances the practicability of metal sulfide anodes, which will boost the development of high-rate/-voltage sodium-ion full batteries.
Highlights:
1 Nano-dispersed SnS2 and CoS2 phases endow CSC anode with electrolyte/structure-dependent cocktail mediation effect, showing superior rate capability and evidently lowered charge plateau compared with CoS2 and SnS2/CoS2 mixture.
2 Alternative electrochemical processes between nano-dispersed different metal sulfides and Na+ carriers effectively overcome intrinsic flaws of monometallic sulfide, responsible for the lowered charge plateau of CSC.
3 As-assembled CSC//Na1.5VPO4.8F0.7 full-cell shows high-rate capability, and high discharge plateau up to 2.57 V, which is comparable to that with alloy-type anodes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Hu, Q. Liu, S.L. Chou, S.X. Dou, Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv. Mater. 29(48), 1700606 (2017). https://doi.org/10.1002/adma.201700606
- Y. Fang, D. Luan, X.W. Lou, Recent advances on mixed metal sulfides for advanced sodium-ion batteries. Adv. Mater. 32(42), 2002976 (2020). https://doi.org/10.1002/adma.202002976
- Y. Tang, Z. Zhao, X. Hao, Y. Wang et al., Engineering hollow polyhedrons structured from carbon-coated CoSe2 nanospheres bridged by cnts with boosted sodium storage performance. J. Mater. Chem. A 5(26), 13591–13600 (2017). https://doi.org/10.1039/C7TA02665J
- Y. Tang, Z. Zhao, X. Hao, Y. Wei et al., Cellular carbon-wrapped FeSe2 nanocavities with ultrathin walls and multiple rooms for ion diffusion-confined ultrafast sodium storage. J. Mater. Chem. A 7(9), 4469–4479 (2019). https://doi.org/10.1039/C8TA10614B
- Y. Xiao, S.H. Lee, Y.-K. Sun, The application of metal sulfides in sodium ion batteries. Adv. Energy Mater. 7(3), 1601329 (2017). https://doi.org/10.1002/aenm.201601329
- J. Wang, L. Wang, C. Eng, J. Wang, Elucidating the irreversible mechanism and voltage hysteresis in conversion reaction for high-energy sodium–metal sulfide batteries. Adv. Energy Mater. 7(14), 1602706 (2017). https://doi.org/10.1002/aenm.201602706
- Q. Guo, Y. Ma, T. Chen, Q. Xia et al., Cobalt sulfide quantum dot embedded N/S-doped carbon nanosheets with superior reversibility and rate capability for sodium-ion batteries. ACS Nano 11(12), 12658–12667 (2017). https://doi.org/10.1021/acsnano.7b07132
- X.-W. Lou, Bullet-like Cu9S5 hollow particles coated with nitrogen-doped carbon for sodium-ion batteries. Angew. Chem. Int. Ed. 131(23), 7826–7830 (2019). https://doi.org/10.1002/ange.201902988
- Y. Tang, X. Li, H. Lv, D. Xie et al., Stabilized Co3+/Co4+ redox pair in in situ produced CoSe2−x-derived cobalt oxides for alkaline Zn batteries with 10,000-cycle lifespan and 1.9-V voltage plateau. Adv. Energy Mater. 10(25), 2000892 (2020). https://doi.org/10.1002/aenm.202000892
- A. Eftekhari, Low voltage anode materials for lithium-ion batteries. Energy Storage Mater. 7, 157–180 (2017). https://doi.org/10.1016/j.ensm.2017.01.009
- X. Li, Y. Tang, J. Zhu, H. Lv et al., Boosting the cycling stability of aqueous flexible Zn batteries via F doping in nickel–cobalt carbonate hydroxide cathode. Small 16(31), 2001935 (2020). https://doi.org/10.1002/smll.202001935
- D. Chao, W. Zhou, F. Xie, C. Ye et al., Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6(21), eaba4098 (2020). https://doi.org/10.1126/sciadv.aba4098
- K. Zhang, M. Park, L. Zhou, G.-H. Lee et al., Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Adv. Funct. Mater. 26(37), 6728–6735 (2016). https://doi.org/10.1002/adfm.201602608
- Y. Tang, Z. Zhao, Y. Wang, Y. Dong et al., Carbon-stabilized interlayer-expanded few-layer MoSe2 nanosheets for sodium ion batteries with enhanced rate capability and cycling performance. ACS Appl. Mater. Interfaces 8(47), 32324–32332 (2016). https://doi.org/10.1021/acsami.6b11230
- S. Qi, L. Mi, K. Song, K. Yang et al., Understanding shuttling effect in sodium ion batteries for the solution of capacity fading: FeS2 as an example. J. Phys. Chem. C 123(5), 2775–2782 (2019). https://doi.org/10.1021/acs.jpcc.8b11069
- C. Dong, L. Guo, H. Li, B. Zhang et al., Rational fabrication of CoS2/Co4S3@N-doped carbon microspheres as excellent cycling performance anode for half/full sodium ion batteries. Energy Storage Mater. 25, 679–686 (2020). https://doi.org/10.1016/j.ensm.2019.09.019
- Z. Man, P. Li, D. Zhou, Y. Wang et al., Two birds with one stone: FeS2@C yolk–shell composite for high-performance sodium-ion energy storage and electromagnetic wave absorption. Nano Lett. 20(5), 3769–3777 (2020). https://doi.org/10.1021/acs.nanolett.0c00789
- S. Li, W. He, B. Liu, J. Cui et al., One-step construction of three-dimensional nickel sulfide-embedded carbon matrix for sodium-ion batteries and hybrid capacitors. Energy Storage Mater. 25, 636–643 (2020). https://doi.org/10.1016/j.ensm.2019.09.021
- Y. Tang, Z. Zhao, Y. Wang, Y. Dong et al., Ultrasmall MoS2 nanosheets mosaiced into nitrogen-doped hierarchical porous carbon matrix for enhanced sodium storage performance. Electrochim. Acta 225, 369–377 (2017). https://doi.org/10.1016/j.electacta.2016.12.176
- Y. Li, Y.-S. Hu, M.-M. Titirici, L. Chen et al., Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 6(18), 1600659 (2016). https://doi.org/10.1002/aenm.201600659
- H. Jin, H. Lu, W. Wu, S. Chen et al., Tailoring conductive networks within hollow carbon nanospheres to host phosphorus for advanced sodium ion batteries. Nano Energy 70, 104569 (2020). https://doi.org/10.1016/j.nanoen.2020.104569
- K. Zhang, M. Park, L. Zhou, G.-H. Lee et al., Cobalt-doped FeS2 nanospheres with complete solid solubility as a high-performance anode material for sodium-ion batteries. Angew. Chem. Int. Ed. 55(41), 12822–12826 (2016). https://doi.org/10.1002/anie.201607469
- Y. Liu, Y. Yang, X. Wang, Y. Dong et al., Flexible paper-like free-standing electrodes by anchoring ultrafine SnS2 nanocrystals on graphene nanoribbons for high-performance sodium ion batteries. ACS Appl. Mater. Interfaces 9(18), 15484–15491 (2017). https://doi.org/10.1021/acsami.7b02394
- Z. Liu, A. Daali, G.-L. Xu, M. Zhuang et al., Highly reversible sodiation/desodiation from a carbon-sandwiched SnS2 nanosheet anode for sodium ion batteries. Nano Lett. 20(5), 3844–3851 (2020). https://doi.org/10.1021/acs.nanolett.0c00964
- X. Ou, L. Cao, X. Liang, F. Zheng et al., Fabrication of SnS2/Mn2SnS4/carbon heterostructures for sodium-ion batteries with high initial coulombic efficiency and cycling stability. ACS Nano 13(3), 3666–3676 (2019). https://doi.org/10.1021/acsnano.9b00375
- X. Xiong, G. Wang, Y. Lin, Y. Wang et al., Enhancing sodium ion battery performance by strongly binding nanostructured Sb2S3 on sulfur-doped graphene sheets. ACS Nano 10(12), 10953–10959 (2016). https://doi.org/10.1021/acsnano.6b05653
- L. Cao, X. Gao, B. Zhang, X. Ou et al., Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries. ACS Nano 14(3), 3610–3620 (2020). https://doi.org/10.1021/acsnano.0c00020
- S. Dong, C. Li, X. Ge, Z. Li et al., ZnS-Sb2S3@C core-double shell polyhedron structure derived from metal–organic framework as anodes for high performance sodium ion batteries. ACS Nano 11(6), 6474–6482 (2017). https://doi.org/10.1021/acsnano.7b03321
- Y. Huang, X. Hu, J. Li, J. Zhang et al., Rational construction of heterostructured core-shell Bi2S3@Co9S8 complex hollow particles toward high-performance Li- and Na-ion storage. Energy Storage Mater. 29, 121–130 (2020). https://doi.org/10.1016/j.ensm.2020.04.004
- B. Qu, C. Ma, G. Ji, C. Xu et al., Layered SnS2-reduced graphene oxide composite: a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 26(23), 3854–3859 (2014). https://doi.org/10.1002/adma.201306314
- X. Gao, X. Yang, M. Li, Q. Sun et al., Cobalt-doped SnS2 with dual active centers of synergistic absorption-catalysis effect for high-S loading Li-S batteries. Adv. Funct. Mater. 29(8), 1806724 (2019). https://doi.org/10.1002/adfm.201806724
- M. Hu, H. Zhang, L. Yang, R. Lv, Ultrahigh rate sodium-ion storage of SnS/SnS2 heterostructures anchored on S-doped reduced graphene oxide by ion-assisted growth. Carbon 143, 21–29 (2019). https://doi.org/10.1016/j.carbon.2018.08.048
- Y. Xu, W. Cao, Y. Yin, J. Sheng et al., Novel NaTi2(PO4)3 nanowire clusters as high performance cathodes for mg-na hybrid-ion batteries. Nano Energy 55, 526–533 (2019). https://doi.org/10.1016/j.nanoen.2018.10.064
- J. Xie, Y. Zhu, N. Zhuang, X. Li et al., High-concentration ether-based electrolyte boosts the electrochemical performance of SnS2–reduced graphene oxide for K-ion batteries. J. Mater. Chem. A 7(33), 19332–19341 (2019). https://doi.org/10.1039/C9TA06418D
- E.J. Pickering, N.G. Jones, High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 61(3), 183–202 (2016). https://doi.org/10.1080/09506608.2016.1180020
- Y. Ma, Y. Ma, Q. Wang, S. Schweidler et al., High-entropy energy materials: Challenges and new opportunities. Energy Environ. Sci. 14, 2883–2905 (2021). https://doi.org/10.1039/D1EE00505G
- J. Kim, M.S. Choi, K.H. Shin, M. Kota et al., Rational design of carbon nanomaterials for electrochemical sodium storage and capture. Adv. Mater. 31(34), 1803444 (2019). https://doi.org/10.1002/adma.201803444
- P. Xiong, P. Bai, A. Li, B. Li et al., Bismuth nanoparticle@carbon composite anodes for ultralong cycle life and high-rate sodium-ion batteries. Adv. Mater. 31(48), 1904771 (2019). https://doi.org/10.1002/adma.201904771
- C. Li, S. Wang, G. Wang, S. Wang et al., NH4V4O10/RGO composite as a high-performance electrode material for hybrid capacitive deionization. Environ. Sci. Wat. Res. 6(2), 303–311 (2020). https://doi.org/10.1039/C9EW00499H
- L. Shi, D. Li, P. Yao, J. Yu et al., SnS2 nanosheets coating on nanohollow cubic CoS2/C for ultralong life and high rate capability half/full sodium-ion batteries. Small 14(41), 1802716 (2018). https://doi.org/10.1002/smll.201802716
- X. Wang, X. Li, Q. Li, H. Li et al., Improved electrochemical performance based on nanostructured SnS2@CoS2–RGO composite anode for sodium-ion batteries. Nano-Micro Lett. 10(3), 46 (2018). https://doi.org/10.1007/s40820-018-0200-x
- X. Liu, Y. Xiang, Q. Li, Q. Zheng et al., SnS2-CoS2@C nanocubes as high initial coulombic efficiency and long-life anodes for sodium-ion batteries. Electrochim. Acta 387, 138525 (2021). https://doi.org/10.1016/j.electacta.2021.138525
- P. Nørby, J. Overgaard, P.S. Christensen, B. Richter et al., (NH4)4Sn2S6·3H2O: crystal structure, thermal decomposition, and precursor for textured thin film. Chem. Mater. 26(15), 4494–4504 (2014). https://doi.org/10.1021/cm501681r
- Z. Hu, L. Wang, K. Zhang, J. Wang et al., MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew. Chem. Int. Ed. 53(47), 12794–12798 (2014). https://doi.org/10.1002/anie.201407898
- S. Huang, M. Wang, P. Jia, B. Wang et al., N-graphene motivated SnO2@SnS2 heterostructure quantum dots for high performance lithium/sodium storage. Energy Storage Mater. 20, 225–233 (2019). https://doi.org/10.1016/j.ensm.2018.11.024
- Y. Yang, X.-A. Yang, D. Leng, S.-B. Wang et al., Fabrication of g-C3N4/SnS2/SnO2 nanocomposites for promoting photocatalytic reduction of aqueous Cr(VI) under visible light. Chem. Eng. J. 335, 491–500 (2018). https://doi.org/10.1016/j.cej.2017.10.173
- S. Wang, F. Gong, S. Yang, J. Liao et al., Graphene oxide-template controlled cuboid-shaped high-capacity VS4 nanoparticles as anode for sodium-ion batteries. Adv. Funct. Mater. 28(34), 1801806 (2018). https://doi.org/10.1002/adfm.201801806
- S. Li, P. Ge, F. Jiang, H. Shuai et al., The advance of nickel-cobalt-sulfide as ultra-fast/high sodium storage materials: the influences of morphology structure, phase evolution and interface property. Energy Storage Mater. 16, 267–280 (2019). https://doi.org/10.1016/j.ensm.2018.06.006
- Y. Li, R. Zhang, W. Zhou, X. Wu et al., Hierarchical MoS2 hollow architectures with abundant mo vacancies for efficient sodium storage. ACS Nano 13(5), 5533–5540 (2019). https://doi.org/10.1021/acsnano.9b00383
- J. Chen, L. Mohrhusen, G. Ali, S. Li et al., Electrochemical mechanism investigation of Cu2MoS4 hollow nanospheres for fast and stable sodium ion storage. Adv. Funct. Mater. 29(7), 1807753 (2019). https://doi.org/10.1002/adfm.201807753
- G. Fang, Q. Wang, J. Zhou, Y. Lei et al., Metal organic framework-templated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction. ACS Nano 13(5), 5635–5645 (2019). https://doi.org/10.1021/acsnano.9b00816
- Z. Ali, T. Tang, X. Huang, Y. Wang et al., Cobalt selenide decorated carbon spheres for excellent cycling performance of sodium ion batteries. Energy Storage Mater. 13, 19–28 (2018). https://doi.org/10.1016/j.ensm.2017.12.014
- Y. Jiang, G. Zou, H. Hou, J. Li et al., Composition engineering boosts voltage windows for advanced sodium-ion batteries. ACS Nano 13(9), 10787–10797 (2019). https://doi.org/10.1021/acsnano.9b05614
- G. Fang, Z. Wu, J. Zhou, C. Zhu et al., Observation of pseudocapacitive effect and fast ion diffusion in bimetallic sulfides as an advanced sodium-ion battery anode. Adv. Energy Mater. 8(19), 1703155 (2018). https://doi.org/10.1002/aenm.201703155
- M. Hadouchi, N. Yaqoob, P. Kaghazchi, M. Tang et al., Fast sodium intercalation in Na3.41£0.59FeV(PO4)3: a novel sodium-deficient nasicon cathode for sodium-ion batteries. Energy Storage Mater. 35, 192–202 (2021). https://doi.org/10.1016/j.ensm.2020.11.010
- J. Zhang, Y. Liu, X. Zhao, L. He et al., A novel NASICON-type Na4MnCr(PO4)3 demonstrating the energy density record of phosphate cathodes for sodium-ion batteries. Adv. Mater. 32(11), 1906348 (2020). https://doi.org/10.1002/adma.201906348
- J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111(40), 14925–14931 (2007). https://doi.org/10.1021/jp074464w
- C. An, Y. Yuan, B. Zhang, L. Tang et al., Graphene wrapped FeSe2 nano-microspheres with high pseudocapacitive contribution for enhanced Na-ion storage. Adv. Energy Mater. 9(18), 1900356 (2019). https://doi.org/10.1002/aenm.201900356
- Y. Tang, X. Li, H. Lv, W. Wang et al., High-energy aqueous magnesium hybrid full batteries enabled by carrier-hosting potential compensation. Angew. Chem. Int. Ed. 133(10), 5503–5512 (2021). https://doi.org/10.1002/anie.202013315
- X. Liu, K. Zhang, K. Lei, F. Li et al., Facile synthesis and electrochemical sodium storage of CoS2 micro/nano-structures. Nano Res. 9(1), 198–206 (2016). https://doi.org/10.1007/s12274-016-0981-5
- K. Zhang, Z. Hu, X. Liu, Z. Tao et al., FeSe2 microspheres as a high-performance anode material for na-ion batteries. Adv. Mater. 27(21), 3305–3309 (2015). https://doi.org/10.1002/adma.201500196
- L. Liang, Y. Xu, C. Wang, L. Wen et al., Large-scale highly ordered sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries. Energy Environ. Sci. 8(10), 2954–2962 (2015). https://doi.org/10.1039/C5EE00878F
- P. Xue, N. Wang, Z. Fang, Z. Lu et al., Rayleigh-instability-induced bismuth nanorod@nitrogen-doped carbon nanotubes as a long cycling and high rate anode for sodium-ion batteries. Nano Lett. 19(3), 1998–2004 (2019). https://doi.org/10.1021/acs.nanolett.8b05189
- N. Wang, Z. Bai, Y. Qian, J. Yang, Double-walled Sb@TiO2−x nanotubes as a superior high-rate and ultralong-lifespan anode material for Na-ion and Li-ion batteries. Adv. Mater. 28(21), 4126–4133 (2016). https://doi.org/10.1002/adma.201505918
- J. Pan, S. Chen, Q. Fu, Y. Sun et al., Layered-structure sbpo4/reduced graphene oxide: an advanced anode material for sodium ion batteries. ACS Nano 12(12), 12869–12878 (2018). https://doi.org/10.1021/acsnano.8b08065
- Q. Gui, D. Ba, Z. Zhao, Y. Mao et al., Synergistic coupling of ether electrolyte and 3d electrode enables titanates with extraordinary coulombic efficiency and rate performance for sodium-ion capacitors. Small Methods 3(2), 1800371 (2019). https://doi.org/10.1002/smtd.201800371
- H. Yuan, F. Ma, X. Wei, J.-L. Lan et al., Ionic-conducting and robust multilayered solid electrolyte interphases for greatly improved rate and cycling capabilities of sodium ion full cells. Adv. Energy Mater. 10(37), 2001418 (2020). https://doi.org/10.1002/aenm.202001418
References
Z. Hu, Q. Liu, S.L. Chou, S.X. Dou, Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv. Mater. 29(48), 1700606 (2017). https://doi.org/10.1002/adma.201700606
Y. Fang, D. Luan, X.W. Lou, Recent advances on mixed metal sulfides for advanced sodium-ion batteries. Adv. Mater. 32(42), 2002976 (2020). https://doi.org/10.1002/adma.202002976
Y. Tang, Z. Zhao, X. Hao, Y. Wang et al., Engineering hollow polyhedrons structured from carbon-coated CoSe2 nanospheres bridged by cnts with boosted sodium storage performance. J. Mater. Chem. A 5(26), 13591–13600 (2017). https://doi.org/10.1039/C7TA02665J
Y. Tang, Z. Zhao, X. Hao, Y. Wei et al., Cellular carbon-wrapped FeSe2 nanocavities with ultrathin walls and multiple rooms for ion diffusion-confined ultrafast sodium storage. J. Mater. Chem. A 7(9), 4469–4479 (2019). https://doi.org/10.1039/C8TA10614B
Y. Xiao, S.H. Lee, Y.-K. Sun, The application of metal sulfides in sodium ion batteries. Adv. Energy Mater. 7(3), 1601329 (2017). https://doi.org/10.1002/aenm.201601329
J. Wang, L. Wang, C. Eng, J. Wang, Elucidating the irreversible mechanism and voltage hysteresis in conversion reaction for high-energy sodium–metal sulfide batteries. Adv. Energy Mater. 7(14), 1602706 (2017). https://doi.org/10.1002/aenm.201602706
Q. Guo, Y. Ma, T. Chen, Q. Xia et al., Cobalt sulfide quantum dot embedded N/S-doped carbon nanosheets with superior reversibility and rate capability for sodium-ion batteries. ACS Nano 11(12), 12658–12667 (2017). https://doi.org/10.1021/acsnano.7b07132
X.-W. Lou, Bullet-like Cu9S5 hollow particles coated with nitrogen-doped carbon for sodium-ion batteries. Angew. Chem. Int. Ed. 131(23), 7826–7830 (2019). https://doi.org/10.1002/ange.201902988
Y. Tang, X. Li, H. Lv, D. Xie et al., Stabilized Co3+/Co4+ redox pair in in situ produced CoSe2−x-derived cobalt oxides for alkaline Zn batteries with 10,000-cycle lifespan and 1.9-V voltage plateau. Adv. Energy Mater. 10(25), 2000892 (2020). https://doi.org/10.1002/aenm.202000892
A. Eftekhari, Low voltage anode materials for lithium-ion batteries. Energy Storage Mater. 7, 157–180 (2017). https://doi.org/10.1016/j.ensm.2017.01.009
X. Li, Y. Tang, J. Zhu, H. Lv et al., Boosting the cycling stability of aqueous flexible Zn batteries via F doping in nickel–cobalt carbonate hydroxide cathode. Small 16(31), 2001935 (2020). https://doi.org/10.1002/smll.202001935
D. Chao, W. Zhou, F. Xie, C. Ye et al., Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6(21), eaba4098 (2020). https://doi.org/10.1126/sciadv.aba4098
K. Zhang, M. Park, L. Zhou, G.-H. Lee et al., Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Adv. Funct. Mater. 26(37), 6728–6735 (2016). https://doi.org/10.1002/adfm.201602608
Y. Tang, Z. Zhao, Y. Wang, Y. Dong et al., Carbon-stabilized interlayer-expanded few-layer MoSe2 nanosheets for sodium ion batteries with enhanced rate capability and cycling performance. ACS Appl. Mater. Interfaces 8(47), 32324–32332 (2016). https://doi.org/10.1021/acsami.6b11230
S. Qi, L. Mi, K. Song, K. Yang et al., Understanding shuttling effect in sodium ion batteries for the solution of capacity fading: FeS2 as an example. J. Phys. Chem. C 123(5), 2775–2782 (2019). https://doi.org/10.1021/acs.jpcc.8b11069
C. Dong, L. Guo, H. Li, B. Zhang et al., Rational fabrication of CoS2/Co4S3@N-doped carbon microspheres as excellent cycling performance anode for half/full sodium ion batteries. Energy Storage Mater. 25, 679–686 (2020). https://doi.org/10.1016/j.ensm.2019.09.019
Z. Man, P. Li, D. Zhou, Y. Wang et al., Two birds with one stone: FeS2@C yolk–shell composite for high-performance sodium-ion energy storage and electromagnetic wave absorption. Nano Lett. 20(5), 3769–3777 (2020). https://doi.org/10.1021/acs.nanolett.0c00789
S. Li, W. He, B. Liu, J. Cui et al., One-step construction of three-dimensional nickel sulfide-embedded carbon matrix for sodium-ion batteries and hybrid capacitors. Energy Storage Mater. 25, 636–643 (2020). https://doi.org/10.1016/j.ensm.2019.09.021
Y. Tang, Z. Zhao, Y. Wang, Y. Dong et al., Ultrasmall MoS2 nanosheets mosaiced into nitrogen-doped hierarchical porous carbon matrix for enhanced sodium storage performance. Electrochim. Acta 225, 369–377 (2017). https://doi.org/10.1016/j.electacta.2016.12.176
Y. Li, Y.-S. Hu, M.-M. Titirici, L. Chen et al., Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 6(18), 1600659 (2016). https://doi.org/10.1002/aenm.201600659
H. Jin, H. Lu, W. Wu, S. Chen et al., Tailoring conductive networks within hollow carbon nanospheres to host phosphorus for advanced sodium ion batteries. Nano Energy 70, 104569 (2020). https://doi.org/10.1016/j.nanoen.2020.104569
K. Zhang, M. Park, L. Zhou, G.-H. Lee et al., Cobalt-doped FeS2 nanospheres with complete solid solubility as a high-performance anode material for sodium-ion batteries. Angew. Chem. Int. Ed. 55(41), 12822–12826 (2016). https://doi.org/10.1002/anie.201607469
Y. Liu, Y. Yang, X. Wang, Y. Dong et al., Flexible paper-like free-standing electrodes by anchoring ultrafine SnS2 nanocrystals on graphene nanoribbons for high-performance sodium ion batteries. ACS Appl. Mater. Interfaces 9(18), 15484–15491 (2017). https://doi.org/10.1021/acsami.7b02394
Z. Liu, A. Daali, G.-L. Xu, M. Zhuang et al., Highly reversible sodiation/desodiation from a carbon-sandwiched SnS2 nanosheet anode for sodium ion batteries. Nano Lett. 20(5), 3844–3851 (2020). https://doi.org/10.1021/acs.nanolett.0c00964
X. Ou, L. Cao, X. Liang, F. Zheng et al., Fabrication of SnS2/Mn2SnS4/carbon heterostructures for sodium-ion batteries with high initial coulombic efficiency and cycling stability. ACS Nano 13(3), 3666–3676 (2019). https://doi.org/10.1021/acsnano.9b00375
X. Xiong, G. Wang, Y. Lin, Y. Wang et al., Enhancing sodium ion battery performance by strongly binding nanostructured Sb2S3 on sulfur-doped graphene sheets. ACS Nano 10(12), 10953–10959 (2016). https://doi.org/10.1021/acsnano.6b05653
L. Cao, X. Gao, B. Zhang, X. Ou et al., Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries. ACS Nano 14(3), 3610–3620 (2020). https://doi.org/10.1021/acsnano.0c00020
S. Dong, C. Li, X. Ge, Z. Li et al., ZnS-Sb2S3@C core-double shell polyhedron structure derived from metal–organic framework as anodes for high performance sodium ion batteries. ACS Nano 11(6), 6474–6482 (2017). https://doi.org/10.1021/acsnano.7b03321
Y. Huang, X. Hu, J. Li, J. Zhang et al., Rational construction of heterostructured core-shell Bi2S3@Co9S8 complex hollow particles toward high-performance Li- and Na-ion storage. Energy Storage Mater. 29, 121–130 (2020). https://doi.org/10.1016/j.ensm.2020.04.004
B. Qu, C. Ma, G. Ji, C. Xu et al., Layered SnS2-reduced graphene oxide composite: a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 26(23), 3854–3859 (2014). https://doi.org/10.1002/adma.201306314
X. Gao, X. Yang, M. Li, Q. Sun et al., Cobalt-doped SnS2 with dual active centers of synergistic absorption-catalysis effect for high-S loading Li-S batteries. Adv. Funct. Mater. 29(8), 1806724 (2019). https://doi.org/10.1002/adfm.201806724
M. Hu, H. Zhang, L. Yang, R. Lv, Ultrahigh rate sodium-ion storage of SnS/SnS2 heterostructures anchored on S-doped reduced graphene oxide by ion-assisted growth. Carbon 143, 21–29 (2019). https://doi.org/10.1016/j.carbon.2018.08.048
Y. Xu, W. Cao, Y. Yin, J. Sheng et al., Novel NaTi2(PO4)3 nanowire clusters as high performance cathodes for mg-na hybrid-ion batteries. Nano Energy 55, 526–533 (2019). https://doi.org/10.1016/j.nanoen.2018.10.064
J. Xie, Y. Zhu, N. Zhuang, X. Li et al., High-concentration ether-based electrolyte boosts the electrochemical performance of SnS2–reduced graphene oxide for K-ion batteries. J. Mater. Chem. A 7(33), 19332–19341 (2019). https://doi.org/10.1039/C9TA06418D
E.J. Pickering, N.G. Jones, High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 61(3), 183–202 (2016). https://doi.org/10.1080/09506608.2016.1180020
Y. Ma, Y. Ma, Q. Wang, S. Schweidler et al., High-entropy energy materials: Challenges and new opportunities. Energy Environ. Sci. 14, 2883–2905 (2021). https://doi.org/10.1039/D1EE00505G
J. Kim, M.S. Choi, K.H. Shin, M. Kota et al., Rational design of carbon nanomaterials for electrochemical sodium storage and capture. Adv. Mater. 31(34), 1803444 (2019). https://doi.org/10.1002/adma.201803444
P. Xiong, P. Bai, A. Li, B. Li et al., Bismuth nanoparticle@carbon composite anodes for ultralong cycle life and high-rate sodium-ion batteries. Adv. Mater. 31(48), 1904771 (2019). https://doi.org/10.1002/adma.201904771
C. Li, S. Wang, G. Wang, S. Wang et al., NH4V4O10/RGO composite as a high-performance electrode material for hybrid capacitive deionization. Environ. Sci. Wat. Res. 6(2), 303–311 (2020). https://doi.org/10.1039/C9EW00499H
L. Shi, D. Li, P. Yao, J. Yu et al., SnS2 nanosheets coating on nanohollow cubic CoS2/C for ultralong life and high rate capability half/full sodium-ion batteries. Small 14(41), 1802716 (2018). https://doi.org/10.1002/smll.201802716
X. Wang, X. Li, Q. Li, H. Li et al., Improved electrochemical performance based on nanostructured SnS2@CoS2–RGO composite anode for sodium-ion batteries. Nano-Micro Lett. 10(3), 46 (2018). https://doi.org/10.1007/s40820-018-0200-x
X. Liu, Y. Xiang, Q. Li, Q. Zheng et al., SnS2-CoS2@C nanocubes as high initial coulombic efficiency and long-life anodes for sodium-ion batteries. Electrochim. Acta 387, 138525 (2021). https://doi.org/10.1016/j.electacta.2021.138525
P. Nørby, J. Overgaard, P.S. Christensen, B. Richter et al., (NH4)4Sn2S6·3H2O: crystal structure, thermal decomposition, and precursor for textured thin film. Chem. Mater. 26(15), 4494–4504 (2014). https://doi.org/10.1021/cm501681r
Z. Hu, L. Wang, K. Zhang, J. Wang et al., MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew. Chem. Int. Ed. 53(47), 12794–12798 (2014). https://doi.org/10.1002/anie.201407898
S. Huang, M. Wang, P. Jia, B. Wang et al., N-graphene motivated SnO2@SnS2 heterostructure quantum dots for high performance lithium/sodium storage. Energy Storage Mater. 20, 225–233 (2019). https://doi.org/10.1016/j.ensm.2018.11.024
Y. Yang, X.-A. Yang, D. Leng, S.-B. Wang et al., Fabrication of g-C3N4/SnS2/SnO2 nanocomposites for promoting photocatalytic reduction of aqueous Cr(VI) under visible light. Chem. Eng. J. 335, 491–500 (2018). https://doi.org/10.1016/j.cej.2017.10.173
S. Wang, F. Gong, S. Yang, J. Liao et al., Graphene oxide-template controlled cuboid-shaped high-capacity VS4 nanoparticles as anode for sodium-ion batteries. Adv. Funct. Mater. 28(34), 1801806 (2018). https://doi.org/10.1002/adfm.201801806
S. Li, P. Ge, F. Jiang, H. Shuai et al., The advance of nickel-cobalt-sulfide as ultra-fast/high sodium storage materials: the influences of morphology structure, phase evolution and interface property. Energy Storage Mater. 16, 267–280 (2019). https://doi.org/10.1016/j.ensm.2018.06.006
Y. Li, R. Zhang, W. Zhou, X. Wu et al., Hierarchical MoS2 hollow architectures with abundant mo vacancies for efficient sodium storage. ACS Nano 13(5), 5533–5540 (2019). https://doi.org/10.1021/acsnano.9b00383
J. Chen, L. Mohrhusen, G. Ali, S. Li et al., Electrochemical mechanism investigation of Cu2MoS4 hollow nanospheres for fast and stable sodium ion storage. Adv. Funct. Mater. 29(7), 1807753 (2019). https://doi.org/10.1002/adfm.201807753
G. Fang, Q. Wang, J. Zhou, Y. Lei et al., Metal organic framework-templated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction. ACS Nano 13(5), 5635–5645 (2019). https://doi.org/10.1021/acsnano.9b00816
Z. Ali, T. Tang, X. Huang, Y. Wang et al., Cobalt selenide decorated carbon spheres for excellent cycling performance of sodium ion batteries. Energy Storage Mater. 13, 19–28 (2018). https://doi.org/10.1016/j.ensm.2017.12.014
Y. Jiang, G. Zou, H. Hou, J. Li et al., Composition engineering boosts voltage windows for advanced sodium-ion batteries. ACS Nano 13(9), 10787–10797 (2019). https://doi.org/10.1021/acsnano.9b05614
G. Fang, Z. Wu, J. Zhou, C. Zhu et al., Observation of pseudocapacitive effect and fast ion diffusion in bimetallic sulfides as an advanced sodium-ion battery anode. Adv. Energy Mater. 8(19), 1703155 (2018). https://doi.org/10.1002/aenm.201703155
M. Hadouchi, N. Yaqoob, P. Kaghazchi, M. Tang et al., Fast sodium intercalation in Na3.41£0.59FeV(PO4)3: a novel sodium-deficient nasicon cathode for sodium-ion batteries. Energy Storage Mater. 35, 192–202 (2021). https://doi.org/10.1016/j.ensm.2020.11.010
J. Zhang, Y. Liu, X. Zhao, L. He et al., A novel NASICON-type Na4MnCr(PO4)3 demonstrating the energy density record of phosphate cathodes for sodium-ion batteries. Adv. Mater. 32(11), 1906348 (2020). https://doi.org/10.1002/adma.201906348
J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111(40), 14925–14931 (2007). https://doi.org/10.1021/jp074464w
C. An, Y. Yuan, B. Zhang, L. Tang et al., Graphene wrapped FeSe2 nano-microspheres with high pseudocapacitive contribution for enhanced Na-ion storage. Adv. Energy Mater. 9(18), 1900356 (2019). https://doi.org/10.1002/aenm.201900356
Y. Tang, X. Li, H. Lv, W. Wang et al., High-energy aqueous magnesium hybrid full batteries enabled by carrier-hosting potential compensation. Angew. Chem. Int. Ed. 133(10), 5503–5512 (2021). https://doi.org/10.1002/anie.202013315
X. Liu, K. Zhang, K. Lei, F. Li et al., Facile synthesis and electrochemical sodium storage of CoS2 micro/nano-structures. Nano Res. 9(1), 198–206 (2016). https://doi.org/10.1007/s12274-016-0981-5
K. Zhang, Z. Hu, X. Liu, Z. Tao et al., FeSe2 microspheres as a high-performance anode material for na-ion batteries. Adv. Mater. 27(21), 3305–3309 (2015). https://doi.org/10.1002/adma.201500196
L. Liang, Y. Xu, C. Wang, L. Wen et al., Large-scale highly ordered sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries. Energy Environ. Sci. 8(10), 2954–2962 (2015). https://doi.org/10.1039/C5EE00878F
P. Xue, N. Wang, Z. Fang, Z. Lu et al., Rayleigh-instability-induced bismuth nanorod@nitrogen-doped carbon nanotubes as a long cycling and high rate anode for sodium-ion batteries. Nano Lett. 19(3), 1998–2004 (2019). https://doi.org/10.1021/acs.nanolett.8b05189
N. Wang, Z. Bai, Y. Qian, J. Yang, Double-walled Sb@TiO2−x nanotubes as a superior high-rate and ultralong-lifespan anode material for Na-ion and Li-ion batteries. Adv. Mater. 28(21), 4126–4133 (2016). https://doi.org/10.1002/adma.201505918
J. Pan, S. Chen, Q. Fu, Y. Sun et al., Layered-structure sbpo4/reduced graphene oxide: an advanced anode material for sodium ion batteries. ACS Nano 12(12), 12869–12878 (2018). https://doi.org/10.1021/acsnano.8b08065
Q. Gui, D. Ba, Z. Zhao, Y. Mao et al., Synergistic coupling of ether electrolyte and 3d electrode enables titanates with extraordinary coulombic efficiency and rate performance for sodium-ion capacitors. Small Methods 3(2), 1800371 (2019). https://doi.org/10.1002/smtd.201800371
H. Yuan, F. Ma, X. Wei, J.-L. Lan et al., Ionic-conducting and robust multilayered solid electrolyte interphases for greatly improved rate and cycling capabilities of sodium ion full cells. Adv. Energy Mater. 10(37), 2001418 (2020). https://doi.org/10.1002/aenm.202001418