3D Carbon Frameworks for Ultrafast Charge/Discharge Rate Supercapacitors with High Energy-Power Density
Corresponding Author: Jieshan Qiu
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 8
Abstract
Carbon-based electric double layer capacitors (EDLCs) hold tremendous potentials due to their high-power performance and excellent cycle stability. However, the practical use of EDLCs is limited by the low energy density in aqueous electrolyte and sluggish diffusion kinetics in organic or/and ionic liquids electrolyte. Herein, 3D carbon frameworks (3DCFs) constructed by interconnected nanocages (10–20 nm) with an ultrathin wall of ca. 2 nm have been fabricated, which possess high specific surface area, hierarchical porosity and good conductive network. After deoxidization, the deoxidized 3DCF (3DCF-DO) exhibits a record low IR drop of 0.064 V at 100 A g−1 and ultrafast charge/discharge rate up to 10 V s−1. The related device can be charged up to 77.4% of its maximum capacitance in 0.65 s at 100 A g−1 in 6 M KOH. It has been found that the 3DCF-DO has a great affinity to EMIMBF4, resulting in a high specific capacitance of 174 F g−1 at 1 A g−1, and a high energy density of 34 Wh kg−1 at an ultrahigh power density of 150 kW kg−1 at 4 V after a fast charge in 1.11 s. This work provides a facile fabrication of novel 3D carbon frameworks for supercapacitors with ultrafast charge/discharge rate and high energy-power density.
Highlights:
1 3D carbon frameworks (3DCFs) constructed by interconnected nanocages show a high specific surface area, hierarchical porosity, and conductive network.
2 The deoxidization process removed most of surface oxygen-containing groups in 3DCFs that leads to fast ion diffusion kinetics, good electric conductivity, and limited side reactions.
3 The deoxidized 3DCFs exhibit an ultrafast charge/discharge rate as electrodes for SCs with high energy-power density in both aqueous and ionic liquids electrolytes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008). https://doi.org/10.1038/nmat2297
- Y. Wu, Y. Yang, X. Zhao, Y. Tan, Y. Liu, Z. Wang, F. Ran, A novel hierarchical porous 3D structured vanadium nitride/carbon membranes for high-performance supercapacitor negative electrodes. Nano-Micro Lett. 10, 63 (2018). https://doi.org/10.1007/s40820-018-0217-1
- Q. Wu, L. Yang, X. Wang, Z. Hu, From carbon-based nanotubes to nanocages for advanced energy conversion and storage. Acc. Chem. Res. 50, 435–444 (2017). https://doi.org/10.1021/acs.accounts.6b00541
- S. Kondrat, C.R. Pérez, V. Presser, Y. Gogotsi, A.A. Kornyshev, Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors. Energy Environ. Sci. 5, 6474–6480 (2012). https://doi.org/10.1039/c2ee03092f
- X. Wang, Y. Zhang, C. Zhi, X. Wang, D. Tang et al., Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nat. Commun. 4, 2905–2913 (2013). https://doi.org/10.1038/ncomms3905
- Y. Dong, M. Yu, Z. Wang, Y. Liu, X. Wang, Z. Zhao, J. Qiu, A top-down strategy toward 3D carbon nanosheet frameworks decorated with hollow nanostructures for superior lithium storage. Adv. Funct. Mater. 26, 7590–7598 (2016). https://doi.org/10.1002/adfm.201603659
- L. Lyu, K. Seong, J.M. Kim, W. Zhang, X. Jin et al., CNT/high mass loading MnO2/graphene-grafted carbon cloth electrodes for high-energy asymmetric supercapacitors. Nano-Micro Lett. 11, 88 (2019). https://doi.org/10.1007/s40820-019-0316-7
- J. Wang, Q. Ma, Y. Wang, Z. Li, Z. Li, Q. Yuan, New insights into the structure–performance relationships of mesoporous materials in analytical science. Chem. Soc. Rev. 47, 8766 (2018). https://doi.org/10.1039/c8cs00658j
- J. Wang, Y. Cui, D. Wang, Design of hollow nanostructures for energy storage, conversion and production. Adv. Mater. 31, 1801993 (2018). https://doi.org/10.1002/adma.201801993
- K. Xie, X. Qin, X. Wang, Y. Wang, H. Tao et al., Carbon nanocages as supercapacitor electrode materials. Adv. Mater. 24, 347–352 (2012). https://doi.org/10.1002/adma.201103872
- L. Wang, T. Wei, L. Sheng, L. Jiang, X. Wu et al., “Brick-and-Mortar” sandwiched porous carbon building constructed by metal-organic framework and graphene: ultrafast charge/discharge rate up to 2 V s−1 for supercapacitors. Nano Energy 30, 84–92 (2016). https://doi.org/10.1016/j.nanoen.2016.09.042
- Z. Ling, Z. Wang, M. Zhang, C. Yu, G. Wang et al., Sustainable synthesis and assembly of biomass-derived B/N Co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors. Adv. Funct. Mater. 26, 111–119 (2015). https://doi.org/10.1002/adfm.201670001
- T. Lin, I. Chen, F. Liu, C. Yang, H. Bi, F. Xu, F. Huang, Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350, 1508–1513 (2015). https://doi.org/10.1126/science.aab3798
- Z. Pan, H. Zhi, Y. Qiu, J. Yang, L. Xing et al., Achieving commercial-level mass loading in ternary-doped holey graphene hydrogel electrodes for ultrahigh energy density supercapacitors. Nano Energy 46, 266 (2018). https://doi.org/10.1016/j.nanoen.2018.02.007
- Z. Liu, L. Jiang, L. Sheng, Q. Zhou, T. Wei, B. Zhang, Z. Fan, Oxygen clusters distributed in graphene with “paddy land” structure: ultrahigh capacitance and rate performance for supercapacitors. Adv. Funct. Mater. 28, 1705258 (2017). https://doi.org/10.1002/adfm.201705258
- X. Jiang, R. Li, M. Hu, Z. Hu, D. Golberg, Y. Bando, X. Wang, Zinc-tiered synthesis of 3D graphene for monolithic electrodes. Adv. Mater. 31, 11901186 (2019). https://doi.org/10.1002/adma.201901186
- J. Chmiola, C. Largeot, P. Taberna, P. Simon, Y. Gogotsi, Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory. Angew. Chem. Int. Ed. 120, 3340–3443 (2008). https://doi.org/10.1002/ange.200704894
- C. Largeot, C. Portet, J. Chmiola, P. Taberna, Y. Gogotsi, P. Simon, Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 130, 2730–2731 (2008). https://doi.org/10.1021/ja7106178
- F. Zhang, T. Liu, M. Li, M. Yu, Y. Luo, Y. Tong, Y. Li, Multiscale pore network boosts capacitance of carbon electrodes for ultrafast charging. Nano Lett. 17, 3097 (2017). https://doi.org/10.1021/acs.nanolett.7b00533
- W. Zhao, H. Zhang, J. Liu, L. Xu, H. Wu et al., Controlled air-etching synthesis of porous-carbon nanotube aerogels with ultrafast charging at 1000 A g−1. Small 40, 1802394 (2018). https://doi.org/10.1002/smll.201802394
- C. Liu, Y. Liu, T. Yi, C. Hu, Carbon materials for high-voltage supercapacitors. Carbon 145, 529–548 (2019). https://doi.org/10.1016/j.carbon.2018.12.009
- C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44, 7484 (2015). https://doi.org/10.1039/c5cs00303b
- K. Zhang, L. Zhang, X.S. Zhao, J. Wu, Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater. 22, 1392–1401 (2010). https://doi.org/10.1021/cm902876u
- N. Yang, S. Yu, J.V. Macpherson, Y. Einaga, H. Zhao, G. Zhao, Conductive diamond: synthesis, properties, and electrochemical applications. Chem. Soc. Rev. 48, 157–204 (2019). https://doi.org/10.1039/c7cs00757d
- S. Yu, N. Yang, M. Vogel, S. Mandal, O.A. Williams, S. Jiang, H. Schönherr, Battery-like supercapacitors from vertically aligned carbon nanofibers coated diamond: design and demonstrator. Adv. Energy Mater. 8, 1702947 (2018). https://doi.org/10.1002/aenm.201702947
- J. Xu, N. Yang, S. Heuser, S. Yu, A. Schulte, H. Schönherr, X. Jiang, Achieving ultrahigh energy densities of supercapacitors with porous titanium carbide/boron-doped diamond composite electrodes. Adv. Energy Mater. 9, 1803623 (2019). https://doi.org/10.1002/aenm.201803623
- K. Zhou, Y. He, Q. Xu, Q. Zhang, A. Zhou et al., A hydrogel of ultrathin pure polyaniline nanofibers: oxidant-templating preparation and supercapacitor application. ACS Nano 12, 5888–5894 (2018). https://doi.org/10.1021/acsnano.8b02055
- Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4, 1963–1970 (2010). https://doi.org/10.1016/j.electacta.2017.11.008
- Z. Sun, T. Liao, Y. Dou, S. Huang, M. Park, L. Jiang, S. Dou, Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat. Commun. 5, 3813 (2014). https://doi.org/10.1038/ncomms4813
- S.P. Lonkar, J. Raquez, P. Dubois, One-pot microwave-assisted synthesis of graphene/layered double hydroxide (LDH) nanohybrids. Nano-Micro Lett. 7, 332–340 (2015). https://doi.org/10.1007/s40820-015-0047-3
- X. Guo, G. Zhang, Q. Li, H. Xue, H. Pang, Non-noble metal-transition metal oxide materials for electrochemical energy storage. Energy Storage Mater. 15, 171 (2018). https://doi.org/10.1016/j.ensm.2018.04.002
- J. Yang, C. Yu, C. Hu, M. Wang, S. Li et al., Surface-confined fabrication of ultrathin nickel cobalt-layered double hydroxide nanosheets for high-performance supercapacitors. Adv. Funct. Mater. 28, 1803272 (2018). https://doi.org/10.1002/adfm.201803272
- Z. Xiao, Y. Mei, S. Yuan, H. Mei, B. Xu et al., Controlled hydrolysis of meta-organic frameworks: hierarchical Ni/Co-layered double hydroxide microspheres for high-performance supercapacitors. ACS Nano 13, 7024–7030 (2019). https://doi.org/10.1021/acsnano.9b02106
- Z. Li, H. Duan, M. Shao, J. Li, D. O’Hare, M. Wei, Z. Wang, Ordered-vacancy- induced cation intercalation into layered double hydroxides: a general approach for high-performance supercapacitors. Chem 4, 2168–2179 (2018). https://doi.org/10.1016/j.chempr.2018.06.007
- S. Chen, J. Wang, L. Fan, R. Ma, E. Zhang, Q. Liu, B. Lu, An ultrafast rechargeable hybrid sodium-based dual-ion capacitor based on hard carbon cathodes. Adv. Energy Mater. 8, 1800140 (2018). https://doi.org/10.1002/aenm.201800140
- H. Wang, C. Zhu, D. Chao, Q. Yan, H. Fan, Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv. Mater. 29, 1702093 (2017). https://doi.org/10.1002/adma.201702093
- Y. Luo, L. Liu, K. Lei, J. Shi, G. Xu, F. Li, J. Chen, A nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate. Chem. Sci. 10, 2048 (2019). https://doi.org/10.1039/c8sc04489a
- W. Guo, C. Yu, S. Li, X. Song, H. Huang et al., A universal converse voltage process for triggering transition metal hybrids in situ phase restriction toward ultrahigh-rate supercapacitors. Adv. Mater. 31, 1901241 (2019). https://doi.org/10.1002/adma.201901241
- Y. Shao, M. El-Kady, J. Sun, Y. Li, Q. Zhang et al., Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 118, 9233–9280 (2018). https://doi.org/10.1021/acs.chemrev.8b00252
- Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li, F. Wei, Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 21, 2366–2375 (2011). https://doi.org/10.1002/adfm.201100058
- K. Nomura, H. Nishihara, N. Kobayashi, T. Kyotani, 4.4 V supercapacitors based on super-stable mesoporous carbon sheet made of edge-free graphene walls. Energy Environ. Sci. 12, 1542 (2019). https://doi.org/10.1039/c8ee03184c
- F. Sun, X. Liu, H. Wu, L. Wang, J. Gao, H. Li, Y. Lu, In situ high-level nitrogen doping into carbon nanospheres and boosting of capacitive charge storage in both anode and cathode for a high-energy 4.5 V full-carbon lithium-ion capacitor. Nano Lett. 18, 3368 (2018). https://doi.org/10.1021/acs.nanolett.8b00134
- Y. Ahn, B. Kim, J. Ko, D. You, Z. Yin et al., All solid state flexible supercapacitors operating at 4 V with a cross-linked polymer–ionic liquid electrolyte. J. Mater. Chem. A 4, 4386–4391 (2016). https://doi.org/10.1039/c6ta00643d
- J. Li, N. Wang, J. Tian, W. Qian, W. Chu, Cross-coupled macro-mesoporous carbon network toward record high energy-power density supercapacitor at 4 V. Adv. Funct. Mater. 28, 1806153 (2018). https://doi.org/10.1002/adfm.201806153
- C. Cui, W. Qian, Y. Yu, C. Kong, B. Yu, L. Xiang, F. Wei, Highly electroconductive mesoporous graphene nanofibers and their capacitance performance at 4 V. J. Am. Chem. Soc. 136, 2256–2259 (2014). https://doi.org/10.1021/ja412219r
- Q. Wang, Y. Jun, Z. Fan, Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ. Sci. 9, 729–762 (2016). https://doi.org/10.1039/c5ee03109e
- J. Hou, C. Cao, F. Idrees, X. Ma, Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9, 2556–2564 (2015). https://doi.org/10.1021/nn506394r
- G. Zhao, C. Chen, D. Yu, L. Sun, C. Yang et al., One-step production of O–N–S Co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors. Nano Energy 47, 547 (2018). https://doi.org/10.1016/j.nanoen.2018.03.016
- B. Song, J. Zhao, M. Wang, J. Mullavey, Y. Zhu et al., Systematic study on structural and electronic properties of diamine/triamine functionalized graphene network for supercapacitor application. Nano Energy 31, 183–193 (2017). https://doi.org/10.1016/j.nanoen.2016.10.057
- H. Peng, B. Yao, X. Wei, T. Liu, T. Kou, P. Xiao, Y. Zhang, Pore and heteroatom engineered carbon foams for supercapacitors. Adv. Energy Mater. 9, 1803665 (2019). https://doi.org/10.1002/aenm.201803665
- D. Liu, K. Ni, J. Ye, J. Xie, Y. Zhu, L. Song, Tailoring the structure of carbon nanomaterials toward high-end energy applications. Adv. Mater. 30, 1802104 (2018). https://doi.org/10.1002/adma.201802104
- F. Wei, X. He, L. Ma, H. Zhang, N. Xiao, J. Qiu, 3D N, O-Codoped egg-box-like carbons with tuned channels for high areal capacitance supercapacitors. Nano-Micro Lett. 12, 82 (2020). https://doi.org/10.1007/s40820-020-00416-2
References
P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008). https://doi.org/10.1038/nmat2297
Y. Wu, Y. Yang, X. Zhao, Y. Tan, Y. Liu, Z. Wang, F. Ran, A novel hierarchical porous 3D structured vanadium nitride/carbon membranes for high-performance supercapacitor negative electrodes. Nano-Micro Lett. 10, 63 (2018). https://doi.org/10.1007/s40820-018-0217-1
Q. Wu, L. Yang, X. Wang, Z. Hu, From carbon-based nanotubes to nanocages for advanced energy conversion and storage. Acc. Chem. Res. 50, 435–444 (2017). https://doi.org/10.1021/acs.accounts.6b00541
S. Kondrat, C.R. Pérez, V. Presser, Y. Gogotsi, A.A. Kornyshev, Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors. Energy Environ. Sci. 5, 6474–6480 (2012). https://doi.org/10.1039/c2ee03092f
X. Wang, Y. Zhang, C. Zhi, X. Wang, D. Tang et al., Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nat. Commun. 4, 2905–2913 (2013). https://doi.org/10.1038/ncomms3905
Y. Dong, M. Yu, Z. Wang, Y. Liu, X. Wang, Z. Zhao, J. Qiu, A top-down strategy toward 3D carbon nanosheet frameworks decorated with hollow nanostructures for superior lithium storage. Adv. Funct. Mater. 26, 7590–7598 (2016). https://doi.org/10.1002/adfm.201603659
L. Lyu, K. Seong, J.M. Kim, W. Zhang, X. Jin et al., CNT/high mass loading MnO2/graphene-grafted carbon cloth electrodes for high-energy asymmetric supercapacitors. Nano-Micro Lett. 11, 88 (2019). https://doi.org/10.1007/s40820-019-0316-7
J. Wang, Q. Ma, Y. Wang, Z. Li, Z. Li, Q. Yuan, New insights into the structure–performance relationships of mesoporous materials in analytical science. Chem. Soc. Rev. 47, 8766 (2018). https://doi.org/10.1039/c8cs00658j
J. Wang, Y. Cui, D. Wang, Design of hollow nanostructures for energy storage, conversion and production. Adv. Mater. 31, 1801993 (2018). https://doi.org/10.1002/adma.201801993
K. Xie, X. Qin, X. Wang, Y. Wang, H. Tao et al., Carbon nanocages as supercapacitor electrode materials. Adv. Mater. 24, 347–352 (2012). https://doi.org/10.1002/adma.201103872
L. Wang, T. Wei, L. Sheng, L. Jiang, X. Wu et al., “Brick-and-Mortar” sandwiched porous carbon building constructed by metal-organic framework and graphene: ultrafast charge/discharge rate up to 2 V s−1 for supercapacitors. Nano Energy 30, 84–92 (2016). https://doi.org/10.1016/j.nanoen.2016.09.042
Z. Ling, Z. Wang, M. Zhang, C. Yu, G. Wang et al., Sustainable synthesis and assembly of biomass-derived B/N Co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors. Adv. Funct. Mater. 26, 111–119 (2015). https://doi.org/10.1002/adfm.201670001
T. Lin, I. Chen, F. Liu, C. Yang, H. Bi, F. Xu, F. Huang, Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350, 1508–1513 (2015). https://doi.org/10.1126/science.aab3798
Z. Pan, H. Zhi, Y. Qiu, J. Yang, L. Xing et al., Achieving commercial-level mass loading in ternary-doped holey graphene hydrogel electrodes for ultrahigh energy density supercapacitors. Nano Energy 46, 266 (2018). https://doi.org/10.1016/j.nanoen.2018.02.007
Z. Liu, L. Jiang, L. Sheng, Q. Zhou, T. Wei, B. Zhang, Z. Fan, Oxygen clusters distributed in graphene with “paddy land” structure: ultrahigh capacitance and rate performance for supercapacitors. Adv. Funct. Mater. 28, 1705258 (2017). https://doi.org/10.1002/adfm.201705258
X. Jiang, R. Li, M. Hu, Z. Hu, D. Golberg, Y. Bando, X. Wang, Zinc-tiered synthesis of 3D graphene for monolithic electrodes. Adv. Mater. 31, 11901186 (2019). https://doi.org/10.1002/adma.201901186
J. Chmiola, C. Largeot, P. Taberna, P. Simon, Y. Gogotsi, Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory. Angew. Chem. Int. Ed. 120, 3340–3443 (2008). https://doi.org/10.1002/ange.200704894
C. Largeot, C. Portet, J. Chmiola, P. Taberna, Y. Gogotsi, P. Simon, Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 130, 2730–2731 (2008). https://doi.org/10.1021/ja7106178
F. Zhang, T. Liu, M. Li, M. Yu, Y. Luo, Y. Tong, Y. Li, Multiscale pore network boosts capacitance of carbon electrodes for ultrafast charging. Nano Lett. 17, 3097 (2017). https://doi.org/10.1021/acs.nanolett.7b00533
W. Zhao, H. Zhang, J. Liu, L. Xu, H. Wu et al., Controlled air-etching synthesis of porous-carbon nanotube aerogels with ultrafast charging at 1000 A g−1. Small 40, 1802394 (2018). https://doi.org/10.1002/smll.201802394
C. Liu, Y. Liu, T. Yi, C. Hu, Carbon materials for high-voltage supercapacitors. Carbon 145, 529–548 (2019). https://doi.org/10.1016/j.carbon.2018.12.009
C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44, 7484 (2015). https://doi.org/10.1039/c5cs00303b
K. Zhang, L. Zhang, X.S. Zhao, J. Wu, Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater. 22, 1392–1401 (2010). https://doi.org/10.1021/cm902876u
N. Yang, S. Yu, J.V. Macpherson, Y. Einaga, H. Zhao, G. Zhao, Conductive diamond: synthesis, properties, and electrochemical applications. Chem. Soc. Rev. 48, 157–204 (2019). https://doi.org/10.1039/c7cs00757d
S. Yu, N. Yang, M. Vogel, S. Mandal, O.A. Williams, S. Jiang, H. Schönherr, Battery-like supercapacitors from vertically aligned carbon nanofibers coated diamond: design and demonstrator. Adv. Energy Mater. 8, 1702947 (2018). https://doi.org/10.1002/aenm.201702947
J. Xu, N. Yang, S. Heuser, S. Yu, A. Schulte, H. Schönherr, X. Jiang, Achieving ultrahigh energy densities of supercapacitors with porous titanium carbide/boron-doped diamond composite electrodes. Adv. Energy Mater. 9, 1803623 (2019). https://doi.org/10.1002/aenm.201803623
K. Zhou, Y. He, Q. Xu, Q. Zhang, A. Zhou et al., A hydrogel of ultrathin pure polyaniline nanofibers: oxidant-templating preparation and supercapacitor application. ACS Nano 12, 5888–5894 (2018). https://doi.org/10.1021/acsnano.8b02055
Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4, 1963–1970 (2010). https://doi.org/10.1016/j.electacta.2017.11.008
Z. Sun, T. Liao, Y. Dou, S. Huang, M. Park, L. Jiang, S. Dou, Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat. Commun. 5, 3813 (2014). https://doi.org/10.1038/ncomms4813
S.P. Lonkar, J. Raquez, P. Dubois, One-pot microwave-assisted synthesis of graphene/layered double hydroxide (LDH) nanohybrids. Nano-Micro Lett. 7, 332–340 (2015). https://doi.org/10.1007/s40820-015-0047-3
X. Guo, G. Zhang, Q. Li, H. Xue, H. Pang, Non-noble metal-transition metal oxide materials for electrochemical energy storage. Energy Storage Mater. 15, 171 (2018). https://doi.org/10.1016/j.ensm.2018.04.002
J. Yang, C. Yu, C. Hu, M. Wang, S. Li et al., Surface-confined fabrication of ultrathin nickel cobalt-layered double hydroxide nanosheets for high-performance supercapacitors. Adv. Funct. Mater. 28, 1803272 (2018). https://doi.org/10.1002/adfm.201803272
Z. Xiao, Y. Mei, S. Yuan, H. Mei, B. Xu et al., Controlled hydrolysis of meta-organic frameworks: hierarchical Ni/Co-layered double hydroxide microspheres for high-performance supercapacitors. ACS Nano 13, 7024–7030 (2019). https://doi.org/10.1021/acsnano.9b02106
Z. Li, H. Duan, M. Shao, J. Li, D. O’Hare, M. Wei, Z. Wang, Ordered-vacancy- induced cation intercalation into layered double hydroxides: a general approach for high-performance supercapacitors. Chem 4, 2168–2179 (2018). https://doi.org/10.1016/j.chempr.2018.06.007
S. Chen, J. Wang, L. Fan, R. Ma, E. Zhang, Q. Liu, B. Lu, An ultrafast rechargeable hybrid sodium-based dual-ion capacitor based on hard carbon cathodes. Adv. Energy Mater. 8, 1800140 (2018). https://doi.org/10.1002/aenm.201800140
H. Wang, C. Zhu, D. Chao, Q. Yan, H. Fan, Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv. Mater. 29, 1702093 (2017). https://doi.org/10.1002/adma.201702093
Y. Luo, L. Liu, K. Lei, J. Shi, G. Xu, F. Li, J. Chen, A nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate. Chem. Sci. 10, 2048 (2019). https://doi.org/10.1039/c8sc04489a
W. Guo, C. Yu, S. Li, X. Song, H. Huang et al., A universal converse voltage process for triggering transition metal hybrids in situ phase restriction toward ultrahigh-rate supercapacitors. Adv. Mater. 31, 1901241 (2019). https://doi.org/10.1002/adma.201901241
Y. Shao, M. El-Kady, J. Sun, Y. Li, Q. Zhang et al., Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 118, 9233–9280 (2018). https://doi.org/10.1021/acs.chemrev.8b00252
Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li, F. Wei, Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 21, 2366–2375 (2011). https://doi.org/10.1002/adfm.201100058
K. Nomura, H. Nishihara, N. Kobayashi, T. Kyotani, 4.4 V supercapacitors based on super-stable mesoporous carbon sheet made of edge-free graphene walls. Energy Environ. Sci. 12, 1542 (2019). https://doi.org/10.1039/c8ee03184c
F. Sun, X. Liu, H. Wu, L. Wang, J. Gao, H. Li, Y. Lu, In situ high-level nitrogen doping into carbon nanospheres and boosting of capacitive charge storage in both anode and cathode for a high-energy 4.5 V full-carbon lithium-ion capacitor. Nano Lett. 18, 3368 (2018). https://doi.org/10.1021/acs.nanolett.8b00134
Y. Ahn, B. Kim, J. Ko, D. You, Z. Yin et al., All solid state flexible supercapacitors operating at 4 V with a cross-linked polymer–ionic liquid electrolyte. J. Mater. Chem. A 4, 4386–4391 (2016). https://doi.org/10.1039/c6ta00643d
J. Li, N. Wang, J. Tian, W. Qian, W. Chu, Cross-coupled macro-mesoporous carbon network toward record high energy-power density supercapacitor at 4 V. Adv. Funct. Mater. 28, 1806153 (2018). https://doi.org/10.1002/adfm.201806153
C. Cui, W. Qian, Y. Yu, C. Kong, B. Yu, L. Xiang, F. Wei, Highly electroconductive mesoporous graphene nanofibers and their capacitance performance at 4 V. J. Am. Chem. Soc. 136, 2256–2259 (2014). https://doi.org/10.1021/ja412219r
Q. Wang, Y. Jun, Z. Fan, Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ. Sci. 9, 729–762 (2016). https://doi.org/10.1039/c5ee03109e
J. Hou, C. Cao, F. Idrees, X. Ma, Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9, 2556–2564 (2015). https://doi.org/10.1021/nn506394r
G. Zhao, C. Chen, D. Yu, L. Sun, C. Yang et al., One-step production of O–N–S Co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors. Nano Energy 47, 547 (2018). https://doi.org/10.1016/j.nanoen.2018.03.016
B. Song, J. Zhao, M. Wang, J. Mullavey, Y. Zhu et al., Systematic study on structural and electronic properties of diamine/triamine functionalized graphene network for supercapacitor application. Nano Energy 31, 183–193 (2017). https://doi.org/10.1016/j.nanoen.2016.10.057
H. Peng, B. Yao, X. Wei, T. Liu, T. Kou, P. Xiao, Y. Zhang, Pore and heteroatom engineered carbon foams for supercapacitors. Adv. Energy Mater. 9, 1803665 (2019). https://doi.org/10.1002/aenm.201803665
D. Liu, K. Ni, J. Ye, J. Xie, Y. Zhu, L. Song, Tailoring the structure of carbon nanomaterials toward high-end energy applications. Adv. Mater. 30, 1802104 (2018). https://doi.org/10.1002/adma.201802104
F. Wei, X. He, L. Ma, H. Zhang, N. Xiao, J. Qiu, 3D N, O-Codoped egg-box-like carbons with tuned channels for high areal capacitance supercapacitors. Nano-Micro Lett. 12, 82 (2020). https://doi.org/10.1007/s40820-020-00416-2