Sandwiching Sulfur into the Dents Between N, O Co-Doped Graphene Layered Blocks with Strong Physicochemical Confinements for Stable and High-Rate Li–S Batteries
Corresponding Author: Zhuangjun Fan
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 146
Abstract
The development of lithium–sulfur batteries (LSBs) is restricted by their poor cycle stability and rate performance due to the low conductivity of sulfur and severe shuttle effect. Herein, an N, O co-doped graphene layered block (NOGB) with many dents on the graphene sheets is designed as effective sulfur host for high-performance LSBs. The sulfur platelets are physically confined into the dents and closely contacted with the graphene scaffold, ensuring structural stability and high conductivity. The highly doped N and O atoms can prevent the shuttle effect of sulfur species by strong chemical adsorption. Moreover, the micropores on the graphene sheets enable fast Li+ transport through the blocks. As a result, the obtained NOGB/S composite with 76 wt% sulfur content shows a high capacity of 1413 mAh g−1 at 0.1 C, good rate performance of 433 mAh g−1 at 10 C, and remarkable stability with 526 mAh g−1 at after 1000 cycles at 1 C (average decay rate: 0.038% per cycle). Our design provides a comprehensive route for simultaneously improving the conductivity, ion transport kinetics, and preventing the shuttle effect in LSBs.
Highlights:
1 N, O co-doped graphene layered block (NOGB) was prepared as sulfur host for lithium–sulfur batteries.
2 The NOGB/S shows good rate performance due to robust electrochemical kinetics.
3 The strong physicochemical confinement leads to an improved cycling stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Ji, L.F. Nazar, Advances in Li–S batteries. J. Mater. Chem. 20(44), 9821–9826 (2010). https://doi.org/10.1039/b925751a
- M. Jana, R. Xu, X.-B. Cheng, J.S. Yeon, J.M. Park, J.-Q. Huang, Q. Zhang, H.S. Park, Rational design of two-dimensional nanomaterials for lithium–sulfur batteries. Energy Environ. Sci. (2019). https://doi.org/10.1039/c9ee02049g
- G. Li, S. Wang, Y. Zhang, M. Li, Z. Chen, J. Lu, Revisiting the role of polysulfides in lithium–sulfur batteries. Adv. Mater. 30(22), e1705590 (2018). https://doi.org/10.1002/adma.201705590
- Z. Chen, J. Chen, F. Bu, P.O. Agboola, I. Shakir, Y. Xu, Double-holey-heterostructure frameworks enable fast, stable and simultaneous ultrahigh gravimetric, areal, and volumetric lithium storage. ACS Nano 12, 12879–12887 (2018). https://doi.org/10.1021/acsnano.8b08071
- F. Liu, Q. Xiao, H.B. Wu, F. Sun, X. Liu et al., Regenerative polysulfide-scavenging layers enabling lithium-sulfur batteries with high energy density and prolonged cycling life. ACS Nano 11(3), 2697–2705 (2017). https://doi.org/10.1021/acsnano.6b07603
- Q. Li, Y. Song, R. Xu, L. Zhang, J. Gao et al., Biotemplating growth of nepenthes-like N-doped graphene as a bifunctional polysulfide scavenger for Li–S batteries. ACS Nano 12(10), 10240–10250 (2018). https://doi.org/10.1021/acsnano.8b05246
- Y. Pang, J.S. Wei, Y.G. Wang, Y.Y. Xia, Synergetic protective effect of the ultralight MWCNTs/NCQDs modified separator for highly stable lithium–sulfur batteries. Adv. Energy Mater. 8(10), 1702288 (2018). https://doi.org/10.1002/aenm.201702288
- Y.F. Yang, J.P. Zhang, Highly stable lithium–sulfur batteries based on laponite nanosheet-coated celgard separators. Adv. Energy Mater. 8(25), 1801778 (2018). https://doi.org/10.1002/aenm.201801778
- M. Liu, Q. Li, X. Qin, G. Liang, W. Han et al., Suppressing self-discharge and shuttle effect of lithium–sulfur batteries with V2O5-decorated carbon nanofiber interlayer. Small 13(12), 1602539 (2017). https://doi.org/10.1002/smll.201602539
- H. Pan, K.S. Han, M.H. Engelhard, R. Cao, J. Chen et al., Lean electrolyte batteries: addressing passivation in lithium-sulfur battery under lean electrolyte condition. Adv. Funct. Mater. 28(38), 1870275 (2018). https://doi.org/10.1002/adfm.201870275
- H. Xu, S. Wang, A. Manthiram, Hybrid lithium–sulfur batteries with an advanced gel cathode and stabilized lithium-metal anode. Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201800813
- S.S. Zhang, Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim. Acta 70, 344–348 (2012). https://doi.org/10.1016/j.electacta.2012.03.081
- M. Agostini, D.H. Lim, M. Sadd, J.Y. Hwang, S. Brutti et al., Rational design of low cost and high energy lithium batteries through tailored fluorine-free electrolyte and nanostructured S/C composite. Chemsuschem 11(17), 2981–2986 (2018). https://doi.org/10.1002/cssc.201801017
- H. Shi, W. Lv, C. Zhang, D.-W. Wang, G. Ling, Y. He, F. Kang, Q.-H. Yang, Functional carbons remedy the shuttling of polysulfides in lithium–sulfur batteries: confining, trapping, blocking, and breaking up. Adv. Funct. Mater. (2018). https://doi.org/10.1002/adfm.201800508
- Z. Zeng, X. Liu, Sulfur immobilization by “chemical anchor” to suppress the diffusion of polysulfides in lithium–sulfur batteries. Adv. Mater. Interfaces 5(4), 1701274 (2018). https://doi.org/10.1002/admi.201701274
- MathSciNet
- J. Lee, J. Oh, Y. Jeon, Y. Piao, Multi-heteroatom-doped hollow carbon attached on graphene using LiFePO4 nanoparticles as hard templates for high-performance lithium–sulfur batteries. ACS Appl. Mater. Interfaces. 10(31), 26485–26493 (2018). https://doi.org/10.1021/acsami.8b00925
- X. Ma, G. Ning, Y. Wang, X. Song, Z. Xiao, L. Hou, W. Yang, J. Gao, Y. Li, S-doped mesoporous graphene microspheres: a high performance reservoir material for Li–S batteries. Electrochim. Acta 269, 83–92 (2018). https://doi.org/10.1016/j.electacta.2018.02.163
- H. Tang, J. Yang, G. Zhang, C. Liu, H. Wang, Q. Zhao, J. Hu, Y. Duan, F. Pan, Self-assembled N-graphene nanohollows enabling ultrahigh energy density cathode for Li–S batteries. Nanoscale 10(1), 386–395 (2017). https://doi.org/10.1039/c7nr06731c
- P. Wu, L.H. Chen, S.S. Xiao, S. Yu, Z. Wang, Y. Li, B.L. Su, Insight into the positive effect of porous hierarchy in S/C cathodes on the electrochemical performance of Li–S batteries. Nanoscale 10(25), 11861–11868 (2018). https://doi.org/10.1039/c8nr03290d
- H. Wu, L. Xia, J. Ren, Q. Zheng, C. Xu, D. Lin, A high-efficiency N/P co-doped graphene/CNT@porous carbon hybrid matrix as a cathode host for high performance lithium–sulfur batteries. J. Mater. Chem. A 5(38), 20458–20472 (2017). https://doi.org/10.1039/c7ta06504c
- X.-Q. Zhang, B. He, W.-C. Li, A.-H. Lu, Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithium–sulfur battery cathodes. Nano Res. 11(3), 1238–1246 (2018). https://doi.org/10.1007/s12274-017-1737-6
- G. Li, W. Lei, D. Luo, Y. Deng, Z. Deng, D. Wang, A. Yu, Z. Chen, Stringed “tube on cube” nanohybrids as compact cathode matrix for high-loading and lean-electrolyte lithium–sulfur batteries. Energy Environ. Sci. 11, 2372–2381 (2018). https://doi.org/10.1039/c8ee01377b
- H. Zhang, Q. Gao, W. Qian, H. Xiao, Z. Li, L. Ma, X. Tian, Binary hierarchical porous graphene/pyrolytic carbon nanocomposite matrix loaded with sulfur as a high-performance Li–S battery cathode. ACS Appl. Mater. Interfaces. 10(22), 18726–18733 (2018). https://doi.org/10.1021/acsami.8b03806
- P. Shi, Y. Wang, X. Liang, Y. Sun, S. Cheng, C. Chen, H. Xiang, Simultaneously exfoliated boron-doped graphene sheets to encapsulate sulfur for applications in lithium–sulfur batteries. ACS Sustain. Chem. Eng. 6(8), 9661–9670 (2018). https://doi.org/10.1021/acssuschemeng.8b00378
- S. Liu, J. Li, X. Yan, Q. Su, Y. Lu et al., Superhierarchical cobalt-embedded nitrogen-doped porous carbon nanosheets as two-in-one hosts for high-performance lithium–sulfur batteries. Adv. Mater. 30(12), e1706895 (2018). https://doi.org/10.1002/adma.201706895
- H.-E. Wang, X. Li, N. Qin, X. Zhao, H. Cheng, G. Cao, W. Zhang, Sulfur-deficient MoS2 grown inside hollow mesoporous carbon as a functional polysulfide mediator. J. Mater. Chem. A 7(19), 12068–12074 (2019). https://doi.org/10.1039/c9ta01722d
- J. He, G. Hartmann, M. Lee, G.S. Hwang, Y. Chen, A. Manthiram, Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li–S batteries. Energy Environ. Sci. 12(1), 344–350 (2019). https://doi.org/10.1039/c8ee03252a
- L. Meng, Y. Yao, J. Liu, Z. Wang, D. Qian, L. Zheng, B.-L. Su, H.-E. Wang, MoSe2 nanosheets as a functional host for lithium–sulfur batteries. J. Energy Chem. 47, 241–247 (2020). https://doi.org/10.1016/j.jechem.2020.02.003
- W. Dong, D. Wang, X. Li, Y. Yao, X. Zhao et al., Bronze TiO2 as a cathode host for lithium–sulfur batteries. J. Energy Chem. 48, 259–266 (2020). https://doi.org/10.1016/j.jechem.2020.01.022
- H.-E. Wang, K. Yin, N. Qin, X. Zhao, F.-J. Xia et al., Oxygen-deficient titanium dioxide as a functional host for lithium–sulfur batteries. J. Mater. Chem. A 7(17), 10346–10353 (2019). https://doi.org/10.1039/c9ta01598a
- Y. Wang, R. Zhang, J. Chen, H. Wu, S. Lu et al., Enhancing catalytic activity of titanium oxide in lithium–sulfur batteries by band engineering. Adv. Energy Mater. 9(24), 1900953 (2019). https://doi.org/10.1002/aenm.201900953
- G. Yuan, H. Jin, Y. Jin, L. Wu, Hybrids of MnO2 nanoparticles anchored on graphene sheets as efficient sulfur hosts for high-performance lithium sulfur batteries. J. Solid State Electrochem. 22(3), 693–703 (2017). https://doi.org/10.1007/s10008-017-3799-5
- Y. Zhang, X. Liu, L. Wu, W. Dong, F. Xia et al., A flexible, hierarchically porous PANI/MnO2 network with fast channels and an extraordinary chemical process for stable fast-charging lithium–sulfur batteries. J. Mater. Chem. A 8(5), 2741–2751 (2020). https://doi.org/10.1039/c9ta12135h
- T.Z. Hou, X. Chen, H.J. Peng, J.Q. Huang, B.Q. Li, Q. Zhang, B. Li, Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium–sulfur batteries. Small 12(24), 3283–3291 (2016). https://doi.org/10.1002/smll.201600809
- H. Yang, X. Zhang, W. Zhu, F. Wang, Y. Li, Q. Fan, H. Xiao, F. Zhang, Graphene oxide induced growth of nitrogen-doped carbon nanotubes as a 1D/2D composite for high-performance lithium–sulfur batteries. ChemElectroChem 6(4), 1115–1121 (2019). https://doi.org/10.1002/celc.201801445
- M. Zhang, C. Yu, J. Yang, C. Zhao, Z. Ling, J. Qiu, Nitrogen-doped tubular/porous carbon channels implanted on graphene frameworks for multiple confinement of sulfur and polysulfides. J. Mater. Chem. A 5(21), 10380–10386 (2017). https://doi.org/10.1039/c7ta01512g
- F. Pei, T. An, J. Zang, X. Zhao, X. Fang, M. Zheng, Q. Dong, N. Zheng, From hollow carbon spheres to N-doped hollow porous carbon bowls: rational design of hollow carbon host for Li–S batteries. Adv. Energy Mater. 6(8), 1502539 (2016). https://doi.org/10.1002/aenm.201502539
- L. Sheng, L. Jiang, T. Wei, Z. Fan, High volumetric energy density asymmetric supercapacitors based on well-balanced graphene and graphene–MnO2 electrodes with densely stacked architectures. Small 12(37), 5217–5227 (2016). https://doi.org/10.1002/smll.201601722
- Q.H. Zhou, J. Chang, Y.T. Jiang, T. Wei, L.Z. Sheng, Z.J. Fan, Fast charge rate supercapacitors based on nitrogen-doped aligned carbon nanosheet networks. Electrochim. Acta 251, 91–98 (2017). https://doi.org/10.1016/j.electacta.2017.08.106
- L.H. Zhang, J.M. Yue, T. Wei, Z. Liu, J.L. Zhou et al., Densely pillared holey-graphene block with high-level nitrogen doping enabling ultra-high volumetric capacity for lithium ion storage. Carbon 142, 327–336 (2019). https://doi.org/10.1016/j.carbon.2018.10.070
- J. Wang, X. Yan, Z. Zhang, H. Ying, R. Guo, W. Yang, W.Q. Han, Facile preparation of high-content N-doped CNT microspheres for high-performance lithium storage. Adv. Funct. Mater. 29(39), 1904819 (2019). https://doi.org/10.1002/adfm.201904819
- N. Wang, Z. Xu, X. Xu, T. Liao, B. Tang, Z. Bai, S. Dou, Synergistically enhanced interfacial interaction to polysulfide via N, O dual-doped highly porous carbon microrods for advanced lithium–sulfur batteries. ACS Appl. Mater. Interfaces. 10(16), 13573–13580 (2018). https://doi.org/10.1021/acsami.8b02084
- S.-K. Park, J.-K. Lee, Y.C. Kang, Yolk-shell structured assembly of bamboo-like nitrogen-doped carbon nanotubes embedded with Co nanocrystals and their application as cathode material for Li–S batteries. Adv. Funct. Mater. 28(18), 1705264 (2018). https://doi.org/10.1002/adfm.201705264
- X. Zhu, W. Zhao, Y. Song, Q. Li, F. Ding, J. Sun, L. Zhang, Z. Liu, In situ assembly of 2D conductive vanadium disulfide with graphene as a high-sulfur-loading host for lithium–sulfur batteries. Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201800201
- J. Zhang, J.-Y. Li, W.-P. Wang, X.-H. Zhang, X.-H. Tan, W.-G. Chu, Y.-G. Guo, Microemulsion assisted assembly of 3D porous S/graphene@g-C3N4 hybrid sponge as free-standing cathodes for high energy density Li–S batteries. Adv. Energy Mater. 8(14), 1702839 (2018). https://doi.org/10.1002/aenm.201702839
- W. Ren, L. Xu, L. Zhu, X. Wang, X. Ma, D. Wang, Cobalt-doped vanadium nitride yolk-shell nanospheres @ carbon with physical and chemical synergistic effect for advanced Li–S batteries. ACS Appl. Mater. Interfaces. 10(14), 11642–11651 (2018). https://doi.org/10.1021/acsami.7b18955
- X. Zhou, J. Tian, Q. Wu, J. Hu, C. Li, N/O dual-doped hollow carbon microspheres constructed by holey nanosheet shells as large-grain cathode host for high loading Li–S batteries. Energy Storage Mater. 24, 644–654 (2020). https://doi.org/10.1016/j.ensm.2019.06.009
- Y. Wang, R. Zhang, Y.-C. Pang, X. Chen, J. Lang et al., Carbon@titanium nitride dual shell nanospheres as multi-functional hosts for lithium sulfur batteries. Energy Storage Mater. 16, 228–235 (2019). https://doi.org/10.1016/j.ensm.2018.05.019
- Z.X. Cao, R.R. Zhang, M.J. Shi, G.S. Zhu, M.G. Yang, H.S. Zhang, Y. Qiao, S.T. Yang, Rational design oxygen and sulfur dual-doped 3D hierarchical porous carbons for high-performance lithium–sulfur batteries. J. Electrochem. Soc. 165(2), A31–A39 (2018). https://doi.org/10.1149/2.0041802jes
- J.-Q. Huang, W.G. Chong, Q. Zheng, Z.-L. Xu, J. Cui, S. Yao, C. Wang, J.-K. Kim, Understanding the roles of activated porous carbon nanotubes as sulfur support and separator coating for lithium–sulfur batteries. Electrochim. Acta 268, 1–9 (2018). https://doi.org/10.1016/j.electacta.2018.02.096
- Q. Liu, J. Zhang, S.A. He, R. Zou, C. Xu et al., Stabilizing lithium-sulfur batteries through control of sulfur aggregation and polysulfide dissolution. Small (2018). https://doi.org/10.1002/smll.201703816
- H. Wu, L. Xia, J. Ren, Q. Zheng, F. Xie, W. Jie, C. Xu, D. Lin, A multidimensional and nitrogen-doped graphene/hierarchical porous carbon as a sulfur scaffold for high performance lithium sulfur batteries. Electrochim. Acta 278, 83–92 (2018). https://doi.org/10.1016/j.electacta.2018.05.032
- H. Xu, A. Manthiram, Hollow cobalt sulfide polyhedra-enabled long-life, high areal-capacity lithium–sulfur batteries. Nano Energy 33, 124–129 (2017). https://doi.org/10.1016/j.nanoen.2017.01.007
- F. Sun, H. Tang, B. Zhang, X. Li, C. Yin et al., PEO-linked MoS2–graphene nanocomposites with 2D polar–nonpolar amphoteric surfaces as sulfur hosts for high-performance Li–S batteries. ACS Sustainable Chem. Eng. 6(1), 974–982 (2017). https://doi.org/10.1021/acssuschemeng.7b03306
- Y. Zhang, J. Ren, Y. Zhao, T. Tan, F. Yin, Y. Wang, A porous 3D-rGO@MWCNT hybrid material as Li–S battery cathode. Beilstein J Nanotechnol. 10, 514–521 (2019). https://doi.org/10.3762/bjnano.10.52
- J. Li, C. Xue, B. Xi, H. Mao, Y. Qian, S. Xiong, Heteroatom dopings and hierarchical pores of graphene for synergistic improvement of lithium–sulfur battery performance. Inorg. Chem. Front. 5(5), 1053–1061 (2018). https://doi.org/10.1039/c8qi00160j
- F. Li, G. Hu, S. Li, C. Hou, J. Gao, Dual-confined sulfur cathodes based on SnO2-decorated MoS2 microboxes for long-life lithium–sulfur batteries. Electrochim. Acta 340, 135991 (2020). https://doi.org/10.1016/j.electacta.2020.135991
- T. Chen, Z. Zhang, B. Cheng, R. Chen, Y. Hu, L. Ma, G. Zhu, J. Liu, Z. Jin, Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium–sulfur batteries. J. Am. Chem. Soc. 139(36), 12710–12715 (2017). https://doi.org/10.1021/jacs.7b06973
- L. Lai, J.R. Potts, D. Zhan, L. Wang, C.K. Poh et al., Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 5(7), 7936 (2012). https://doi.org/10.1039/c2ee21802j
- J. Zhang, M. Huang, B. Xi, K. Mi, A. Yuan, S. Xiong, Systematic study of effect on enhancing specific capacity and electrochemical behaviors of lithium–sulfur batteries. Adv. Energy Mater. 8(2), 1701330 (2018). https://doi.org/10.1002/aenm.201701330
- D. Cheng, Y. Zhao, X. Tang, T. An, X. Wang, H. Zhou, D. Zhang, T. Fan, Densely integrated Co, N-codoped graphene @ carbon nanotube porous hybrids for high-performance lithium–sulfur batteries. Carbon 149, 750–759 (2019). https://doi.org/10.1016/j.carbon.2019.04.108
References
X. Ji, L.F. Nazar, Advances in Li–S batteries. J. Mater. Chem. 20(44), 9821–9826 (2010). https://doi.org/10.1039/b925751a
M. Jana, R. Xu, X.-B. Cheng, J.S. Yeon, J.M. Park, J.-Q. Huang, Q. Zhang, H.S. Park, Rational design of two-dimensional nanomaterials for lithium–sulfur batteries. Energy Environ. Sci. (2019). https://doi.org/10.1039/c9ee02049g
G. Li, S. Wang, Y. Zhang, M. Li, Z. Chen, J. Lu, Revisiting the role of polysulfides in lithium–sulfur batteries. Adv. Mater. 30(22), e1705590 (2018). https://doi.org/10.1002/adma.201705590
Z. Chen, J. Chen, F. Bu, P.O. Agboola, I. Shakir, Y. Xu, Double-holey-heterostructure frameworks enable fast, stable and simultaneous ultrahigh gravimetric, areal, and volumetric lithium storage. ACS Nano 12, 12879–12887 (2018). https://doi.org/10.1021/acsnano.8b08071
F. Liu, Q. Xiao, H.B. Wu, F. Sun, X. Liu et al., Regenerative polysulfide-scavenging layers enabling lithium-sulfur batteries with high energy density and prolonged cycling life. ACS Nano 11(3), 2697–2705 (2017). https://doi.org/10.1021/acsnano.6b07603
Q. Li, Y. Song, R. Xu, L. Zhang, J. Gao et al., Biotemplating growth of nepenthes-like N-doped graphene as a bifunctional polysulfide scavenger for Li–S batteries. ACS Nano 12(10), 10240–10250 (2018). https://doi.org/10.1021/acsnano.8b05246
Y. Pang, J.S. Wei, Y.G. Wang, Y.Y. Xia, Synergetic protective effect of the ultralight MWCNTs/NCQDs modified separator for highly stable lithium–sulfur batteries. Adv. Energy Mater. 8(10), 1702288 (2018). https://doi.org/10.1002/aenm.201702288
Y.F. Yang, J.P. Zhang, Highly stable lithium–sulfur batteries based on laponite nanosheet-coated celgard separators. Adv. Energy Mater. 8(25), 1801778 (2018). https://doi.org/10.1002/aenm.201801778
M. Liu, Q. Li, X. Qin, G. Liang, W. Han et al., Suppressing self-discharge and shuttle effect of lithium–sulfur batteries with V2O5-decorated carbon nanofiber interlayer. Small 13(12), 1602539 (2017). https://doi.org/10.1002/smll.201602539
H. Pan, K.S. Han, M.H. Engelhard, R. Cao, J. Chen et al., Lean electrolyte batteries: addressing passivation in lithium-sulfur battery under lean electrolyte condition. Adv. Funct. Mater. 28(38), 1870275 (2018). https://doi.org/10.1002/adfm.201870275
H. Xu, S. Wang, A. Manthiram, Hybrid lithium–sulfur batteries with an advanced gel cathode and stabilized lithium-metal anode. Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201800813
S.S. Zhang, Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim. Acta 70, 344–348 (2012). https://doi.org/10.1016/j.electacta.2012.03.081
M. Agostini, D.H. Lim, M. Sadd, J.Y. Hwang, S. Brutti et al., Rational design of low cost and high energy lithium batteries through tailored fluorine-free electrolyte and nanostructured S/C composite. Chemsuschem 11(17), 2981–2986 (2018). https://doi.org/10.1002/cssc.201801017
H. Shi, W. Lv, C. Zhang, D.-W. Wang, G. Ling, Y. He, F. Kang, Q.-H. Yang, Functional carbons remedy the shuttling of polysulfides in lithium–sulfur batteries: confining, trapping, blocking, and breaking up. Adv. Funct. Mater. (2018). https://doi.org/10.1002/adfm.201800508
Z. Zeng, X. Liu, Sulfur immobilization by “chemical anchor” to suppress the diffusion of polysulfides in lithium–sulfur batteries. Adv. Mater. Interfaces 5(4), 1701274 (2018). https://doi.org/10.1002/admi.201701274
MathSciNet
J. Lee, J. Oh, Y. Jeon, Y. Piao, Multi-heteroatom-doped hollow carbon attached on graphene using LiFePO4 nanoparticles as hard templates for high-performance lithium–sulfur batteries. ACS Appl. Mater. Interfaces. 10(31), 26485–26493 (2018). https://doi.org/10.1021/acsami.8b00925
X. Ma, G. Ning, Y. Wang, X. Song, Z. Xiao, L. Hou, W. Yang, J. Gao, Y. Li, S-doped mesoporous graphene microspheres: a high performance reservoir material for Li–S batteries. Electrochim. Acta 269, 83–92 (2018). https://doi.org/10.1016/j.electacta.2018.02.163
H. Tang, J. Yang, G. Zhang, C. Liu, H. Wang, Q. Zhao, J. Hu, Y. Duan, F. Pan, Self-assembled N-graphene nanohollows enabling ultrahigh energy density cathode for Li–S batteries. Nanoscale 10(1), 386–395 (2017). https://doi.org/10.1039/c7nr06731c
P. Wu, L.H. Chen, S.S. Xiao, S. Yu, Z. Wang, Y. Li, B.L. Su, Insight into the positive effect of porous hierarchy in S/C cathodes on the electrochemical performance of Li–S batteries. Nanoscale 10(25), 11861–11868 (2018). https://doi.org/10.1039/c8nr03290d
H. Wu, L. Xia, J. Ren, Q. Zheng, C. Xu, D. Lin, A high-efficiency N/P co-doped graphene/CNT@porous carbon hybrid matrix as a cathode host for high performance lithium–sulfur batteries. J. Mater. Chem. A 5(38), 20458–20472 (2017). https://doi.org/10.1039/c7ta06504c
X.-Q. Zhang, B. He, W.-C. Li, A.-H. Lu, Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithium–sulfur battery cathodes. Nano Res. 11(3), 1238–1246 (2018). https://doi.org/10.1007/s12274-017-1737-6
G. Li, W. Lei, D. Luo, Y. Deng, Z. Deng, D. Wang, A. Yu, Z. Chen, Stringed “tube on cube” nanohybrids as compact cathode matrix for high-loading and lean-electrolyte lithium–sulfur batteries. Energy Environ. Sci. 11, 2372–2381 (2018). https://doi.org/10.1039/c8ee01377b
H. Zhang, Q. Gao, W. Qian, H. Xiao, Z. Li, L. Ma, X. Tian, Binary hierarchical porous graphene/pyrolytic carbon nanocomposite matrix loaded with sulfur as a high-performance Li–S battery cathode. ACS Appl. Mater. Interfaces. 10(22), 18726–18733 (2018). https://doi.org/10.1021/acsami.8b03806
P. Shi, Y. Wang, X. Liang, Y. Sun, S. Cheng, C. Chen, H. Xiang, Simultaneously exfoliated boron-doped graphene sheets to encapsulate sulfur for applications in lithium–sulfur batteries. ACS Sustain. Chem. Eng. 6(8), 9661–9670 (2018). https://doi.org/10.1021/acssuschemeng.8b00378
S. Liu, J. Li, X. Yan, Q. Su, Y. Lu et al., Superhierarchical cobalt-embedded nitrogen-doped porous carbon nanosheets as two-in-one hosts for high-performance lithium–sulfur batteries. Adv. Mater. 30(12), e1706895 (2018). https://doi.org/10.1002/adma.201706895
H.-E. Wang, X. Li, N. Qin, X. Zhao, H. Cheng, G. Cao, W. Zhang, Sulfur-deficient MoS2 grown inside hollow mesoporous carbon as a functional polysulfide mediator. J. Mater. Chem. A 7(19), 12068–12074 (2019). https://doi.org/10.1039/c9ta01722d
J. He, G. Hartmann, M. Lee, G.S. Hwang, Y. Chen, A. Manthiram, Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li–S batteries. Energy Environ. Sci. 12(1), 344–350 (2019). https://doi.org/10.1039/c8ee03252a
L. Meng, Y. Yao, J. Liu, Z. Wang, D. Qian, L. Zheng, B.-L. Su, H.-E. Wang, MoSe2 nanosheets as a functional host for lithium–sulfur batteries. J. Energy Chem. 47, 241–247 (2020). https://doi.org/10.1016/j.jechem.2020.02.003
W. Dong, D. Wang, X. Li, Y. Yao, X. Zhao et al., Bronze TiO2 as a cathode host for lithium–sulfur batteries. J. Energy Chem. 48, 259–266 (2020). https://doi.org/10.1016/j.jechem.2020.01.022
H.-E. Wang, K. Yin, N. Qin, X. Zhao, F.-J. Xia et al., Oxygen-deficient titanium dioxide as a functional host for lithium–sulfur batteries. J. Mater. Chem. A 7(17), 10346–10353 (2019). https://doi.org/10.1039/c9ta01598a
Y. Wang, R. Zhang, J. Chen, H. Wu, S. Lu et al., Enhancing catalytic activity of titanium oxide in lithium–sulfur batteries by band engineering. Adv. Energy Mater. 9(24), 1900953 (2019). https://doi.org/10.1002/aenm.201900953
G. Yuan, H. Jin, Y. Jin, L. Wu, Hybrids of MnO2 nanoparticles anchored on graphene sheets as efficient sulfur hosts for high-performance lithium sulfur batteries. J. Solid State Electrochem. 22(3), 693–703 (2017). https://doi.org/10.1007/s10008-017-3799-5
Y. Zhang, X. Liu, L. Wu, W. Dong, F. Xia et al., A flexible, hierarchically porous PANI/MnO2 network with fast channels and an extraordinary chemical process for stable fast-charging lithium–sulfur batteries. J. Mater. Chem. A 8(5), 2741–2751 (2020). https://doi.org/10.1039/c9ta12135h
T.Z. Hou, X. Chen, H.J. Peng, J.Q. Huang, B.Q. Li, Q. Zhang, B. Li, Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium–sulfur batteries. Small 12(24), 3283–3291 (2016). https://doi.org/10.1002/smll.201600809
H. Yang, X. Zhang, W. Zhu, F. Wang, Y. Li, Q. Fan, H. Xiao, F. Zhang, Graphene oxide induced growth of nitrogen-doped carbon nanotubes as a 1D/2D composite for high-performance lithium–sulfur batteries. ChemElectroChem 6(4), 1115–1121 (2019). https://doi.org/10.1002/celc.201801445
M. Zhang, C. Yu, J. Yang, C. Zhao, Z. Ling, J. Qiu, Nitrogen-doped tubular/porous carbon channels implanted on graphene frameworks for multiple confinement of sulfur and polysulfides. J. Mater. Chem. A 5(21), 10380–10386 (2017). https://doi.org/10.1039/c7ta01512g
F. Pei, T. An, J. Zang, X. Zhao, X. Fang, M. Zheng, Q. Dong, N. Zheng, From hollow carbon spheres to N-doped hollow porous carbon bowls: rational design of hollow carbon host for Li–S batteries. Adv. Energy Mater. 6(8), 1502539 (2016). https://doi.org/10.1002/aenm.201502539
L. Sheng, L. Jiang, T. Wei, Z. Fan, High volumetric energy density asymmetric supercapacitors based on well-balanced graphene and graphene–MnO2 electrodes with densely stacked architectures. Small 12(37), 5217–5227 (2016). https://doi.org/10.1002/smll.201601722
Q.H. Zhou, J. Chang, Y.T. Jiang, T. Wei, L.Z. Sheng, Z.J. Fan, Fast charge rate supercapacitors based on nitrogen-doped aligned carbon nanosheet networks. Electrochim. Acta 251, 91–98 (2017). https://doi.org/10.1016/j.electacta.2017.08.106
L.H. Zhang, J.M. Yue, T. Wei, Z. Liu, J.L. Zhou et al., Densely pillared holey-graphene block with high-level nitrogen doping enabling ultra-high volumetric capacity for lithium ion storage. Carbon 142, 327–336 (2019). https://doi.org/10.1016/j.carbon.2018.10.070
J. Wang, X. Yan, Z. Zhang, H. Ying, R. Guo, W. Yang, W.Q. Han, Facile preparation of high-content N-doped CNT microspheres for high-performance lithium storage. Adv. Funct. Mater. 29(39), 1904819 (2019). https://doi.org/10.1002/adfm.201904819
N. Wang, Z. Xu, X. Xu, T. Liao, B. Tang, Z. Bai, S. Dou, Synergistically enhanced interfacial interaction to polysulfide via N, O dual-doped highly porous carbon microrods for advanced lithium–sulfur batteries. ACS Appl. Mater. Interfaces. 10(16), 13573–13580 (2018). https://doi.org/10.1021/acsami.8b02084
S.-K. Park, J.-K. Lee, Y.C. Kang, Yolk-shell structured assembly of bamboo-like nitrogen-doped carbon nanotubes embedded with Co nanocrystals and their application as cathode material for Li–S batteries. Adv. Funct. Mater. 28(18), 1705264 (2018). https://doi.org/10.1002/adfm.201705264
X. Zhu, W. Zhao, Y. Song, Q. Li, F. Ding, J. Sun, L. Zhang, Z. Liu, In situ assembly of 2D conductive vanadium disulfide with graphene as a high-sulfur-loading host for lithium–sulfur batteries. Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201800201
J. Zhang, J.-Y. Li, W.-P. Wang, X.-H. Zhang, X.-H. Tan, W.-G. Chu, Y.-G. Guo, Microemulsion assisted assembly of 3D porous S/graphene@g-C3N4 hybrid sponge as free-standing cathodes for high energy density Li–S batteries. Adv. Energy Mater. 8(14), 1702839 (2018). https://doi.org/10.1002/aenm.201702839
W. Ren, L. Xu, L. Zhu, X. Wang, X. Ma, D. Wang, Cobalt-doped vanadium nitride yolk-shell nanospheres @ carbon with physical and chemical synergistic effect for advanced Li–S batteries. ACS Appl. Mater. Interfaces. 10(14), 11642–11651 (2018). https://doi.org/10.1021/acsami.7b18955
X. Zhou, J. Tian, Q. Wu, J. Hu, C. Li, N/O dual-doped hollow carbon microspheres constructed by holey nanosheet shells as large-grain cathode host for high loading Li–S batteries. Energy Storage Mater. 24, 644–654 (2020). https://doi.org/10.1016/j.ensm.2019.06.009
Y. Wang, R. Zhang, Y.-C. Pang, X. Chen, J. Lang et al., Carbon@titanium nitride dual shell nanospheres as multi-functional hosts for lithium sulfur batteries. Energy Storage Mater. 16, 228–235 (2019). https://doi.org/10.1016/j.ensm.2018.05.019
Z.X. Cao, R.R. Zhang, M.J. Shi, G.S. Zhu, M.G. Yang, H.S. Zhang, Y. Qiao, S.T. Yang, Rational design oxygen and sulfur dual-doped 3D hierarchical porous carbons for high-performance lithium–sulfur batteries. J. Electrochem. Soc. 165(2), A31–A39 (2018). https://doi.org/10.1149/2.0041802jes
J.-Q. Huang, W.G. Chong, Q. Zheng, Z.-L. Xu, J. Cui, S. Yao, C. Wang, J.-K. Kim, Understanding the roles of activated porous carbon nanotubes as sulfur support and separator coating for lithium–sulfur batteries. Electrochim. Acta 268, 1–9 (2018). https://doi.org/10.1016/j.electacta.2018.02.096
Q. Liu, J. Zhang, S.A. He, R. Zou, C. Xu et al., Stabilizing lithium-sulfur batteries through control of sulfur aggregation and polysulfide dissolution. Small (2018). https://doi.org/10.1002/smll.201703816
H. Wu, L. Xia, J. Ren, Q. Zheng, F. Xie, W. Jie, C. Xu, D. Lin, A multidimensional and nitrogen-doped graphene/hierarchical porous carbon as a sulfur scaffold for high performance lithium sulfur batteries. Electrochim. Acta 278, 83–92 (2018). https://doi.org/10.1016/j.electacta.2018.05.032
H. Xu, A. Manthiram, Hollow cobalt sulfide polyhedra-enabled long-life, high areal-capacity lithium–sulfur batteries. Nano Energy 33, 124–129 (2017). https://doi.org/10.1016/j.nanoen.2017.01.007
F. Sun, H. Tang, B. Zhang, X. Li, C. Yin et al., PEO-linked MoS2–graphene nanocomposites with 2D polar–nonpolar amphoteric surfaces as sulfur hosts for high-performance Li–S batteries. ACS Sustainable Chem. Eng. 6(1), 974–982 (2017). https://doi.org/10.1021/acssuschemeng.7b03306
Y. Zhang, J. Ren, Y. Zhao, T. Tan, F. Yin, Y. Wang, A porous 3D-rGO@MWCNT hybrid material as Li–S battery cathode. Beilstein J Nanotechnol. 10, 514–521 (2019). https://doi.org/10.3762/bjnano.10.52
J. Li, C. Xue, B. Xi, H. Mao, Y. Qian, S. Xiong, Heteroatom dopings and hierarchical pores of graphene for synergistic improvement of lithium–sulfur battery performance. Inorg. Chem. Front. 5(5), 1053–1061 (2018). https://doi.org/10.1039/c8qi00160j
F. Li, G. Hu, S. Li, C. Hou, J. Gao, Dual-confined sulfur cathodes based on SnO2-decorated MoS2 microboxes for long-life lithium–sulfur batteries. Electrochim. Acta 340, 135991 (2020). https://doi.org/10.1016/j.electacta.2020.135991
T. Chen, Z. Zhang, B. Cheng, R. Chen, Y. Hu, L. Ma, G. Zhu, J. Liu, Z. Jin, Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium–sulfur batteries. J. Am. Chem. Soc. 139(36), 12710–12715 (2017). https://doi.org/10.1021/jacs.7b06973
L. Lai, J.R. Potts, D. Zhan, L. Wang, C.K. Poh et al., Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 5(7), 7936 (2012). https://doi.org/10.1039/c2ee21802j
J. Zhang, M. Huang, B. Xi, K. Mi, A. Yuan, S. Xiong, Systematic study of effect on enhancing specific capacity and electrochemical behaviors of lithium–sulfur batteries. Adv. Energy Mater. 8(2), 1701330 (2018). https://doi.org/10.1002/aenm.201701330
D. Cheng, Y. Zhao, X. Tang, T. An, X. Wang, H. Zhou, D. Zhang, T. Fan, Densely integrated Co, N-codoped graphene @ carbon nanotube porous hybrids for high-performance lithium–sulfur batteries. Carbon 149, 750–759 (2019). https://doi.org/10.1016/j.carbon.2019.04.108