Recent Developments of Transition Metal Compounds-Carbon Hybrid Electrodes for High Energy/Power Supercapacitors
Corresponding Author: Zhuangjun Fan
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 129
Abstract
Due to their rapid power delivery, fast charging, and long cycle life, supercapacitors have become an important energy storage technology recently. However, to meet the continuously increasing demands in the fields of portable electronics, transportation, and future robotic technologies, supercapacitors with higher energy densities without sacrificing high power densities and cycle stabilities are still challenged. Transition metal compounds (TMCs) possessing high theoretical capacitance are always used as electrode materials to improve the energy densities of supercapacitors. However, the power densities and cycle lives of such TMCs-based electrodes are still inferior due to their low intrinsic conductivity and large volume expansion during the charge/discharge process, which greatly impede their large-scale applications. Most recently, the ideal integrating of TMCs and conductive carbon skeletons is considered as an effective solution to solve the above challenges. Herein, we summarize the recent developments of TMCs/carbon hybrid electrodes which exhibit both high energy/power densities from the aspects of structural design strategies, including conductive carbon skeleton, interface engineering, and electronic structure. Furthermore, the remaining challenges and future perspectives are also highlighted so as to provide strategies for the high energy/power TMCs/carbon-based supercapacitors.
Highlights:
1 The development of transition metal compounds-carbon hybrid electrodes for high energy/power supercapacitors is summarized.
2 Effects of the conductive carbon skeleton, interfacial engineering, and electronic structure for transition metal compounds-carbon hybrid are discussed.
3 Some perspectives and issues in the future are provided.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008). https://doi.org/10.1038/nmat2297
- Y. Wang, L. Zhang, H. Hou, W. Xu, G. Duan et al., Recent progress in carbon-based materials for supercapacitor electrodes: a review. J. Mater. Sci. 56(1), 173–200 (2021). https://doi.org/10.1007/s10853-020-05157-6
- Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang et al., Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 118(18), 9233–9280 (2018). https://doi.org/10.1021/acs.chemrev.8b00252
- H. Wang, H. Dai, Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. Chem. Soc. Rev. 42(7), 3088–3113 (2013). https://doi.org/10.1039/c2cs35307e
- Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi et al., Electrochemical energy storage for green grid. Chem. Rev. 111(5), 3577–3613 (2011). https://doi.org/10.1021/cr100290v
- J.R. Miller, P. Simon, Materials science—electrochemical capacitors for energy management. Science 321(5889), 651–652 (2008). https://doi.org/10.1126/science.1158736
- F. Beguin, V. Presser, A. Balducci, E. Frackowiak, Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26(14), 2219–2251 (2014). https://doi.org/10.1002/adma.201304137
- A. Berrueta, A. Ursua, I. San Martin, A. Eftekhari, P. Sanchis, Supercapacitors: electrical characteristics, modeling, applications, and future trends. IEEE Access 7, 50869–50896 (2019). https://doi.org/10.1109/access.2019.2908558
- X. Zhao, B.M. Sanchez, P.J. Dobson, P.S. Grant, The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 3(3), 839–855 (2011). https://doi.org/10.1039/c0nr00594k
- Y. Wang, Y. Xia, Recent progress in supercapacitors: from materials design to system construction. Adv. Mater. 25(37), 5336–5342 (2013). https://doi.org/10.1002/adma.201301932
- J. Yan, Q. Wang, T. Wei, Z. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4(4), 14264 (2014). https://doi.org/10.1002/aenm.201300816
- P. Veerakumar, A. Sangili, S. Manavalan, P. Thanasekaran, K.-C. Lin, Research progress on porous carbon supported metal/metal oxide nanomaterials for supercapacitor electrode applications. Ind. Eng. Chem. Res. 59(14), 6347–6374 (2020). https://doi.org/10.1021/acs.iecr.9b06010
- K.A. Owusu, L. Qu, J. Li, Z. Wang, K. Zhao et al., Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nat. Commun. 8, 14264 (2017). https://doi.org/10.1038/ncomms14264
- L. Zheng, J. Song, X. Ye, Y. Wang, X. Shi et al., Construction of self-supported hierarchical nico-s nanosheet arrays for supercapacitors with ultrahigh specific capacitance. Nanoscale 12(25), 13811–13821 (2020). https://doi.org/10.1039/d0nr02976a
- P. Geng, S. Zheng, H. Tang, R. Zhu, L. Zhang et al., Transition metal sulfides based on graphene for electrochemical energy storage. Adv. Energy Mater. 8(15), 1703259 (2018). https://doi.org/10.1002/aenm.201703259
- T. Wang, H.C. Chen, F. Yu, X.S. Zhao, H. Wang, Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Mater. 16, 545–573 (2019). https://doi.org/10.1016/j.ensm.2018.09.007
- L. Hou, W. Yang, R. Li, X. Xu, P. Wang et al., Self-reconstruction strategy to synthesis of Ni/Co–OOH nanoflowers decorated with N, S co-doped carbon for high-performance energy storage. Chem. Eng. J. 396, 125323 (2020). https://doi.org/10.1016/j.cej.2020.125323
- Y. Jiang, J. Liu, Definitions of pseudocapacitive materials: a brief review. Energy Environ. Mater. 2(1), 30–37 (2019). https://doi.org/10.1002/eem2.12028
- Z. Qiu, Y. Wang, X. Bi, T. Zhou, J. Zhou et al., Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors. J. Power Sources 376, 82–90 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.077
- S. Kumar, G. Saeed, L. Zhu, K.N. Hui, N.H. Kim et al., 0d to 3d carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review. Chem. Eng. J. 403, 126352 (2021). https://doi.org/10.1016/j.cej.2020.126352
- P. Balaya, Size effects and nanostructured materials for energy applications. Energy Environ. Sci. 1(6), 645–654 (2008). https://doi.org/10.1039/b809078p
- Y. Son, M. Park, Y. Son, J.-S. Lee, J.-H. Jang et al., Quantum confinement and its related effects on the critical size of GeO2 nanoparticles anodes for lithium batteries. Nano Lett. 14(2), 1005–1010 (2014). https://doi.org/10.1021/nl404466v
- R.W. Mo, Z.Y. Lei, K.N. Sun, D. Rooney, Facile synthesis of anatase tio2 quantum-dot/graphenenanosheet composites with enhanced electrochemical performance for lithium-ion batteries. Adv. Mater. 26(13), 2084–2088 (2014). https://doi.org/10.1002/adma.201304338
- H. Xia, C. Hong, B. Li, B. Zhao, Z. Lin et al., Facile synthesis of hematite quantum-dot/functionalized graphene-sheet composites as advanced anode materials for asymmetric supercapacitors. Adv. Funct. Mater. 25(4), 627–635 (2015). https://doi.org/10.1002/adfm.201403554
- H.M. Jeong, K.M. Choi, T. Cheng, D.K. Lee, R. Zhou et al., Rescaling of metal oxide nanocrystals for energy storage having high capacitance and energy density with robust cycle life. Proc. Natl. Acad. Sci. USA 112(26), 7914–7919 (2015). https://doi.org/10.1073/pnas.1503546112
- V.C. Hoang, K. Dave, V.G. Gomes, Carbon quantum dot-based composites for energy storage and electrocatalysis: mechanism, applications and future prospects. Nano Energy 66, 104093 (2019). https://doi.org/10.1016/j.nanoen.2019.104093
- X. Yang, C. Cai, Y. Zou, C. Xiang, H. Chu et al., Co3O4-doped two-dimensional carbon nanosheet as an electrode material for high-performance asymmetric supercapacitors. Electrochim. Acta 335, 135611 (2020). https://doi.org/10.1016/j.electacta.2020.135611
- X.-M. Han, Y.-B. Wu, H.-Y. Zhao, J. Bi, B.-B. Wei, Preparation and supercapacitor properties of carbon-coated SnO2 hollow fibers. Acta Phys. Chim. Sin. 31(11), 2220–2228 (2015). https://doi.org/10.3866/pku.whxb201510131
- Y. Zhu, Z. Wu, M. Jing, H. Hou, Y. Yang et al., Porous NiCo2O4 spheres tuned through carbon quantum dots utilised as advanced materials for an asymmetric supercapacitor. J. Mater. Chem. A 3(2), 866–877 (2015). https://doi.org/10.1039/c4ta05507a
- H. Lv, X. Gao, Q. Xu, H. Liu, Y.-G. Wang et al., Carbon quantum dot-induced MnO2 nanowire formation and construction of a binder-free flexible membrane with excellent superhydrophilicity and enhanced supercapacitor performance. ACS Appl. Mater. Interfaces 9(46), 40394–40403 (2017). https://doi.org/10.1021/acsami.7b14761
- G. Wei, X. Xu, J. Liu, K. Du, J. Du et al., Carbon quantum dots decorated hierarchical Ni(OH)(2) with lamellar structure for outstanding supercapacitor. Mater. Lett. 186, 131–134 (2017). https://doi.org/10.1016/j.matlet.2016.09.126
- H. Jia, Y. Cai, J. Lin, H. Liang, J. Qi et al., Heterostructural graphene quantum dot/MnO2 nanosheets toward high-potential window electrodes for high-performance supercapacitors. Adv. Sci. 5(5), 1700887 (2018). https://doi.org/10.1002/advs.201700887
- A.B. Ganganboina, E.Y. Park, R.-A. Doong, Boosting the energy storage performance of V(2)O(5)nanosheets by intercalating conductive graphene quantum dots. Nanoscale 12(32), 16944–16955 (2020). https://doi.org/10.1039/d0nr04362a
- L. Hu, W. Chen, X. Xie, N. Liu, Y. Yang et al., Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading. ACS Nano 5(11), 8904–8913 (2011). https://doi.org/10.1021/nn203085j
- Z. Tang, C.-H. Tang, H. Gong, A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes. Adv. Funct. Mater. 22(6), 1272–1278 (2012). https://doi.org/10.1002/adfm.201102796
- Q. Li, J. Guo, D. Xu, J. Guo, X. Ou et al., Electrospun N-doped porous carbon nanofibers incorporated with nio nanoparticles as free-standing film electrodes for high-performance supercapacitors and CO2 capture. Small 14(15), 1704203 (2018). https://doi.org/10.1002/smll.201704203
- A. Meng, X. Yuan, T. Shen, J. Zhao, G. Song et al., Amorphous nickel sulfide nanoparticles anchored on N-doped graphene nanotubes with superior properties for high-performance supercapacitors and efficient oxygen evolution reaction. Nanoscale 12(7), 4655–4666 (2020). https://doi.org/10.1039/c9nr09654j
- J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei et al., Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater. 22(12), 2632–2641 (2012). https://doi.org/10.1002/adfm.201102839
- Y. Hu, C. Guan, Q. Ke, Z.F. Yow, C. Cheng et al., Hybrid Fe2O3 nanoparticle clusters/RGO paper as an effective negative electrode for flexible supercapacitors. Chem. Mater. 28(20), 7296–7303 (2016). https://doi.org/10.1021/acs.chemmater.6b02585
- T. Xiong, W.S.V. Lee, X. Huang, J.M. Xue, Mn3O4/reduced graphene oxide based supercapacitor with ultra-long cycling performance. J. Mater. Chem. A 5(25), 12762–12768 (2017). https://doi.org/10.1039/c7ta03319b
- Y. Jiang, C. He, S. Qiu, J. Zhang, X. Wang et al., Scalable mechanochemical coupling of homogeneous Co3O4 nanocrystals onto in -situ exfoliated graphene sheets for asymmetric supercapacitors. Chem. Eng. J. 397, 125503 (2020). https://doi.org/10.1016/j.cej.2020.125503
- L. Bao, T. Li, S. Chen, C. Peng, L. Li et al., 3d graphene frameworks/Co3O4 composites electrode for high-performance supercapacitor and enzymeless glucose detection. Small 13(5), 1602077 (2017). https://doi.org/10.1002/smll.201602077
- Y. Wu, Y. Yang, X. Zhao, Y. Tan, Y. Liu et al., A novel hierarchical porous 3d structured vanadium nitride/carbon membranes for high-performance supercapacitor negative electrodes. Nano-Micro Lett. 10(4), 63 (2018). https://doi.org/10.1007/s40820-018-0217-1
- S. Li, K. Yang, P. Ya, K. Ma, Z. Zhang et al., Three-dimensional porous carbon/Co3O4 composites derived from graphene/Co-MOF for high performance supercapacitor electrodes. Appl. Surf. Sci. 503, 144090 (2020). https://doi.org/10.1016/j.apsusc.2019.144090
- Y. Liu, N. Xin, Q. Yang, W. Shi, 3d cnts/graphene network conductive substrate supported mofs-derived CoZnNiS nanosheet arrays for ultra-high volumetric/gravimetric energy density hybrid supercapacitor. J. Colloid Interface Sci. 583, 288–298 (2020). https://doi.org/10.1016/j.jcis.2020.08.128
- T. Shen, L. Yang, M.E. Pam, Y. Shi, H.Y. Yang, Quantum dot-carbonaceous nanohybrid composites: preparation and application in electrochemical energy storage. J. Mater. Chem. A 8(43), 22488–22506 (2020). https://doi.org/10.1039/d0ta07674k
- Z. Zhang, J. Zhang, N. Chen, L. Qu, Graphene quantum dots: An emerging material for energy-related applications and beyond. Energy Environ. Sci. 5(10), 8869–8890 (2012). https://doi.org/10.1039/c2ee22982j
- Y. Zhu, X. Ji, C. Pan, Q. Sun, W. Song et al., A carbon quantum dot decorated RuO2 network: outstanding supercapacitances under ultrafast charge and discharge. Energy Environ. Sci. 6(12), 3665–3675 (2013). https://doi.org/10.1039/c3ee41776j
- Y. Huang, T. Shi, Y. Zhong, S. Cheng, S. Jiang et al., Graphene-quantum-dots induced NiCo2S4 with hierarchical-like hollow nanostructure for supercapacitors with enhanced electrochemical performance. Electrochim. Acta 269, 45–54 (2018). https://doi.org/10.1016/j.electacta.2018.02.145
- L. Liu, Z. Niu, J. Chen, Flexible supercapacitors based on carbon nanotubes. Chin. Chem. Lett. 29(4), 571–581 (2018). https://doi.org/10.1016/j.cclet.2018.01.013
- G. Nie, X. Zhao, Y. Luan, J. Jiang, Z. Kou et al., Key issues facing electrospun carbon nanofibers in energy applications: On-going approaches and challenges. Nanoscale 12(25), 13225–13248 (2020). https://doi.org/10.1039/d0nr03425h
- L. Jiang, Y. Qiu, P. Luo, Y. Yu, Nickel hydroxide-impregnated and -coated carbon nanotubes using an easily manipulated solvothermal route for supercapacitors. Ceram. Int. 42(10), 11634–11639 (2016). https://doi.org/10.1016/j.ceramint.2016.04.064
- S. Liu, Y. Yin, Y. Shen, K.S. Hui, Y.T. Chun et al., Phosphorus regulated cobalt oxide@nitrogen-doped carbon nanowires for flexible quasi-solid-state supercapacitors. Small 16(4), 1906458 (2020). https://doi.org/10.1002/smll.201906458
- A. Salman, S. Padmajan Sasikala, I.H. Kim, J.T. Kim, G.S. Lee et al., Tungsten nitride-coated graphene fibers for high-performance wearable supercapacitors. Nanoscale 12(39), 20239–20249 (2020). https://doi.org/10.1039/d0nr06636b
- B. Wang, T. Ruan, Y. Chen, F. Jin, L. Peng et al., Graphene-based composites for electrochemical energy storage. Energy Storage Mater. 24, 22–51 (2020). https://doi.org/10.1016/j.ensm.2019.08.004
- S. Korkmaz, I.A. Kariper, Graphene and graphene oxide based aerogels: synthesis, characteristics and supercapacitor applications. J. Energy Storage 27, 101038 (2020). https://doi.org/10.1016/j.est.2019.101038
- T. Palaniselvam, J.-B. Baek, Graphene based 2d-materials for supercapacitors. 2d Mater 2(3), 032002 (2015). https://doi.org/10.1088/2053-1583/2/3/032002
- M.S. Rahmanifar, M. Hemmati, A. Noori, M.F. El-Kady, M.F. Mousavi et al., Asymmetric supercapacitors: an alternative to activated carbon negative electrodes based on earth abundant elements. Mater. Today Energy 12, 26–36 (2019). https://doi.org/10.1016/j.mtener.2018.12.006
- X. Yang, C. Cheng, Y. Wang, L. Qiu, D. Li, Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341(6145), 534–537 (2013). https://doi.org/10.1126/science.1239089
- Z. Tang, X. Li, T. Sun, S. Shen, H. Xiu et al., Porous crumpled graphene with hierarchical pore structure and high surface utilization efficiency for supercapacitor. Microporous Mesoporous Mat. 272, 40–43 (2018). https://doi.org/10.1016/j.micromeso.2018.06.020
- Y. Xu, Z. Lin, X. Zhong, X. Huang, N.O. Weiss et al., Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 5, 4554 (2014). https://doi.org/10.1038/ncomms5554
- A.R. Thiruppathi, B. Sidhureddy, E. Boateng, D.V. Soldatov, A. Chen, Synthesis and electrochemical study of three-dimensional graphene-based nanomaterials for energy applications. Nanomaterials 10(7), 1295 (2020). https://doi.org/10.3390/nano10071295
- R.R. Salunkhe, Y.V. Kaneti, J. Kim, J.H. Kim, Y. Yamauchi, Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications. Acc. Chem. Res. 49(12), 2796–2806 (2016). https://doi.org/10.1021/acs.accounts.6b00460
- H. Jiang, P.S. Lee, C. Li, 3d carbon based nanostructures for advanced supercapacitors. Energy Environ. Sci. 6(1), 41–53 (2013). https://doi.org/10.1039/c2ee23284g
- J. Xu, Z. Tan, W. Zeng, G. Chen, S. Wu et al., A hierarchical carbon derived from sponge-templated activation of graphene oxide for high-performance supercapacitor electrodes. Adv. Mater. 28(26), 5222 (2016). https://doi.org/10.1002/adma.201600586
- J. Chen, J. Xu, S. Zhou, N. Zhao, C.-P. Wong, Nitrogen-doped hierarchically porous carbon foam: a free-standing electrode and mechanical support for high-performance supercapacitors. Nano Energy 25, 193–202 (2016). https://doi.org/10.1016/j.nanoen.2016.04.037
- J. Luo, H. Zhang, Z. Zhang, J. Yu, Z. Yang, In-built template synthesis of hierarchical porous carbon microcubes from biomass toward electrochemical energy storage. Carbon 155, 1–8 (2019). https://doi.org/10.1016/j.carbon.2019.08.044
- C. Leng, Z. Zhao, Y. Song, L. Sun, Z. Fan et al., 3D carbon frameworks for ultrafast charge/discharge rate supercapacitors with high energy-power density. Nano-Micro Lett. 13, 8 (2021). https://doi.org/10.1007/s40820-020-00535-w
- Y. Qing, Y. Jiang, H. Lin, L. Wang, A. Liu et al., Boosting the supercapacitor performance of activated carbon by constructing overall conductive networks using graphene quantum dots. J. Mater. Chem. A 7(11), 6021–6027 (2019). https://doi.org/10.1039/c8ta11620b
- G.M. Tomboc, B. Tesfaye Gadisa, M. Jun, N.K. Chaudhari, H. Kim et al., Carbon transition-metal oxide electrodes: understanding the role of surface engineering for high energy density supercapacitors. Chem. Asian J. 15(11), 1628–1647 (2020). https://doi.org/10.1002/asia.202000324
- B. Qu, C. Ma, G. Ji, C. Xu, J. Xu et al., Layered SnS2-reduced graphene oxide composite—a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 26(23), 3854–3859 (2014). https://doi.org/10.1002/adma.201306314
- X. Zhou, Z. Zhang, X. Lu, X. Lv, G. Ma et al., Sb2O3 nanoparticles anchored on graphene sheets via alcohol dissolution-reprecipitation method for excellent lithium-storage properties. ACS Appl. Mater. Interfaces 9(40), 34927–34936 (2017). https://doi.org/10.1021/acsami.7b10107
- L. Liu, J. Lang, P. Zhang, B. Hu, X. Yan, Facile synthesis of Fe2O3 nano-dots@nitrogen-doped graphene for supercapacitor electrode with ultralong cycle life in koh electrolyte. ACS Appl. Mater. Interfaces 8(14), 9335–9344 (2016). https://doi.org/10.1021/acsami.6b00225
- Y. Ko, D. Shin, B. Koo, S.W. Lee, W.-S. Yoon et al., Ultrathin supercapacitor electrodes with high volumetric capacitance and stability using direct covalent-bonding between pseudocapacitive nanoparticles and conducting materials. Nano Energy 12, 612–625 (2015). https://doi.org/10.1016/j.nanoen.2015.01.002
- H. Jia, Z. Wang, C. Li, X. Si, X. Zheng et al., Designing oxygen bonding between reduced graphene oxide and multishelled Mn3O4 hollow spheres for enhanced performance of supercapacitors. J. Mater. Chem. A 7(12), 6686–6694 (2019). https://doi.org/10.1039/c8ta11482j
- S. Zhu, M. Wu, M.-H. Ge, H. Zhang, S.-K. Li et al., Design and construction of three-dimensional CuO/polyaniline/RGO ternary hierarchical architectures for high performance supercapacitors. J. Power Sources 306, 593–601 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.059
- J. Zhang, L. Su, L. Ma, D. Zhao, C. Qin et al., Preparation of inflorescence-like acnf/pani/nio composite with three-dimension nanostructure for high performance supercapacitors. J. Electroanal. Chem. 790, 40–49 (2017). https://doi.org/10.1016/j.jelechem.2017.02.047
- Q. Li, Y. Chen, J. Zhang, W. Tian, L. Wang et al., Spatially confined synthesis of vanadium nitride nanodots intercalated carbon nanosheets with ultrahigh volumetric capacitance and long life for flexible supercapacitors. Nano Energy 51, 128–136 (2018). https://doi.org/10.1016/j.nanoen.2018.06.053
- S.N. Tiruneh, B.K. Kang, H.W. Choi, S.B. Kwon, M.S. Kim et al., Millerite core-nitrogen-doped carbon hollow shell structure for electrochemical energy storage. Small 14(41), 1802933 (2018). https://doi.org/10.1002/smll.201802933
- F. Lai, J. Feng, R. Yan, G.-C. Wang, M. Antonietti et al., Breaking the limits of ionic liquid-based supercapacitors: mesoporous carbon electrodes functionalized with manganese oxide nanosplotches for dense, stable, and wide-temperature energy storage. Adv. Funct. Mater. 28(36), 1801298 (2018). https://doi.org/10.1002/adfm.201801298
- R. Paul, F. Du, L. Dai, Y. Ding, Z.L. Wang et al., 3d heteroatom-doped carbon nanomaterials as multifunctional metal-free catalysts for integrated energy devices. Adv. Mater. 31(13), 1805598 (2019). https://doi.org/10.1002/adma.201805598
- A. Gopalakrishnan, S. Badhulika, Effect of self-doped heteroatoms on the performance of biomass-derived carbon for supercapacitor applications. J. Power Sources 480, 228830 (2020). https://doi.org/10.1016/j.jpowsour.2020.228830
- X. Wang, C. Yang, J. Li, X.A. Chen, K. Yang et al., Insights of heteroatoms doping-enhanced bifunctionalities on carbon based energy storage and conversion. Adv. Funct. Mater. 31(11), 2009109 (2020). https://doi.org/10.1002/adfm.202009109
- K. Xiao, L.-X. Ding, G. Liu, H. Chen, S. Wang et al., Freestanding, hydrophilic nitrogen-doped carbon foams for highly compressible all solid-state supercapacitors. Adv. Mater. 28(28), 5997 (2016). https://doi.org/10.1002/adma.201601125
- D.P. Dubal, S. Abdel-Azeim, N.R. Chodankar, Y.-K. Han, Molybdenum nitride nanocrystals anchored on phosphorus-incorporated carbon fabric as a negative electrode for high-performance asymmetric pseudocapacitor. Iscience 16, 50 (2019). https://doi.org/10.1016/j.isci.2019.05.018
- M. Yang, Y. Zhong, X. Zhou, J. Ren, L. Su et al., Ultrasmall MnO@N-rich carbon nanosheets for high-power asymmetric supercapacitors. J. Mater. Chem. A 2(31), 12519–12525 (2014). https://doi.org/10.1039/c4ta02055c
- C. Miao, X. Xiao, Y. Gong, K. Zhu, K. Cheng et al., Facile synthesis of metal-organic framework-derived CoSe2 nanoparticles embedded in the N-doped carbon nanosheet array and application for supercapacitors. ACS Appl. Mater. Interfaces 12(8), 9365–9375 (2020). https://doi.org/10.1021/acsami.9b22606
- H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin et al., Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 11(6), 2472–2477 (2011). https://doi.org/10.1021/nl2009058
- Y. Wen, B. Wang, C. Huang, L. Wang, D. Hulicova-Jurcakova, Synthesis of phosphorus-doped graphene and its wide potential window in aqueous supercapacitors. Chem. Eur. J. 21(1), 80–85 (2015). https://doi.org/10.1002/chem.201404779
- J. Zhang, S. Ali, F. Liu, A. Ali, K. Wang et al., Phosphorus-doped carbon composites with rich graphene derived from phenol resin as supercapacitor electrode materials with high window potential and energy density. J. Electron. Mater. 48(7), 4196–4206 (2019). https://doi.org/10.1007/s11664-019-07188-5
- J. Li, W. Liu, D. Xiao, X. Wang, Oxygen-rich hierarchical porous carbon made from pomelo peel fiber as electrode material for supercapacitor. Appl. Surface Sci. 416, 918–924 (2017). https://doi.org/10.1016/j.apsusc.2017.04.162
- M. Krishnamoorthy, N. Jha, Oxygen-rich hierarchical porous graphene as an excellent electrode for supercapacitors, aqueous Al-ion battery, and capacitive deionization. ACS Sustain. Chem. Eng. 7(9), 8475–8489 (2019). https://doi.org/10.1021/acssuschemeng.9b00233
- S. Ghosh, S. Barg, S.M. Jeong, K. Ostrikov, Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors. Adv. Energy Mater. 10(32), 2001239 (2020). https://doi.org/10.1002/aenm.202001239
- Z. Liu, S. Zhang, L. Wang, T. Wei, Z. Qiu et al., High-efficiency utilization of carbon materials for supercapacitors. Nano Select. 1(2), 244–262 (2020). https://doi.org/10.1002/nano.202000011
- S. Zhao, W. Xu, Z. Yang, X. Zhang, Q. Zhang, One-pot hydrothermal synthesis of nitrogen and phosphorus co-doped graphene decorated with flower-like molybdenum sulfide for enhanced supercapacitor performance. Electrochim. Acta 331, 135265 (2020). https://doi.org/10.1016/j.electacta.2019.135265
- L. Zheng, L. Guan, J. Song, H. Zheng, Rational design of a sandwiched structure Ni(OH)(2) nanohybrid sustained by amino-functionalized graphene quantum dots for outstanding capacitance. Appl. Surface Sci. 480, 727–737 (2019). https://doi.org/10.1016/j.apsusc.2019.02.243
- L.-L. Jiang, X. Lu, C.-M. Xie, G.-J. Wan, H.-P. Zhang et al., Flexible, free-standing TiO2-graphene-polypyrrole composite films as electrodes for supercapacitors. J. Phys. Chem. C 119(8), 3903–3910 (2015). https://doi.org/10.1021/jp511022z
- A. Ehsani, A.A. Heidari, H.M. Shiri, Electrochemical pseudocapacitors based on ternary nanocomposite of conductive polymer/graphene/metal oxide: an introduction and review to it in recent studies. Chem. Record 19(5), 908–926 (2019). https://doi.org/10.1002/tcr.201800112
- Z. Xu, Z. Zhang, H. Yin, S. Hou, H. Lin et al., Investigation on the role of different conductive polymers in supercapacitors based on a zinc sulfide/reduced graphene oxide/conductive polymer ternary composite electrode. RSC Adv. 10(6), 3122–3129 (2020). https://doi.org/10.1039/c9ra07842h
- H. Lin, Q. Huang, J. Wang, J. Jiang, F. Liu et al., Self-assembled graphene/polyaniline/Co3O4 ternary hybrid aerogels for supercapacitors. Electrochim. Acta 191, 444–451 (2016). https://doi.org/10.1016/j.electacta.2015.12.143
- S.M. Zhu, H.A. Zhou, M. Hibino, I. Honma, M. Ichihara, Synthesis of MnO2 nanoparticles confined in ordered mesoporous carbon using a sonochemical method. Adv. Funct. Mater. 15(3), 381–386 (2005). https://doi.org/10.1002/adfm.200400222
- X. Cao, B. Zheng, W. Shi, J. Yang, Z. Fan et al., Reduced graphene oxide-wrapped MoO3 composites prepared by using metal-organic frameworks as precursor for all-solid-state flexible supercapacitors. Adv. Mater. 27(32), 4695–4701 (2015). https://doi.org/10.1002/adma.201501310
- J. Yang, X. Xu, X. Zhou, S. Jiang, W. Chen et al., Ultrasmall Co3O4 nanoparticles confined in P, N-doped carbon matrices for high-performance supercapacitors. J. Phys. Chem. C 124(17), 9225–9232 (2020). https://doi.org/10.1021/acs.jpcc.0c01539
- X. Lu, T. Liu, T. Zhai, G. Wang, M. Yu et al., Improving the cycling stability of metal-nitride supercapacitor electrodes with a thin carbon shell. Adv. Energy Mater. 4(4), 1300994 (2014). https://doi.org/10.1002/aenm.201300994
- S. Zhang, J. Wu, J. Wang, W. Qiao, D. Long et al., Constructing t-Nb2O5@carbon hollow core-shell nanostructures for high-rate hybrid supercapacitor. J. Power Sources 396, 88–94 (2018). https://doi.org/10.1016/j.jpowsour.2018.06.007
- M. Pan, W. Zeng, H. Quan, J. Cui, Y. Guo et al., Low-crystalline Ni/Co-oxyhydroxides nanoarrays on carbon cloth with high mass loading and hierarchical structure as cathode for supercapacitors. Electrochim. Acta 357, 136886 (2020). https://doi.org/10.1016/j.electacta.2020.136886
- J. Theerthagiri, R.A. Senthil, P. Nithyadharseni, S.J. Lee, G. Durai et al., Recent progress and emerging challenges of transition metal sulfides based composite electrodes for electrochemical supercapacitive energy storage. Ceram. Int. 46(10), 14317–14345 (2020). https://doi.org/10.1016/j.ceramint.2020.02.270
- M. Sun, B. Lan, L. Yu, F. Ye, W. Song et al., Manganese oxides with different crystalline structures: Facile hydrothermal synthesis and catalytic activities. Mater. Lett. 86, 18–20 (2012). https://doi.org/10.1016/j.matlet.2012.07.011
- X. Ma, P. Zhang, Y. Zhao, Y. Liu, J. Li et al., Role of n doping on the electrochemical performances of ZnCo2O4 quantum dots/reduced graphene oxide composite nanosheets. Chem. Eng. J. 327, 1000–1010 (2017). https://doi.org/10.1016/j.cej.2017.06.084
- I. Shakir, A. Rasheed, S. Haider, M.F.A. Aboud, The impact of Cu2+ and Mg2+ onto the electrochemical energy storage properties of nanocrystalline Co0.8Ni0.2Fe2O4 particles and their hybrids with graphene. Ceram. Int. 45(14), 18099–18105 (2019). https://doi.org/10.1016/j.ceramint.2019.05.066
- D. Majumdar, Review on current progress of MnO2-based ternary nanocomposites for supercapacitor applications. ChemElectroChem 8(2), 291–336 (2020). https://doi.org/10.1002/celc.202001371
- J.H. Zhong, A.L. Wang, G.R. Li, J.W. Wang, Y.N. Ou et al., Co3O4/Ni(OH)(2) composite mesoporous nanosheet networks as a promising electrode for supercapacitor applications. J. Mater. Chem. 22(12), 5656–5665 (2012). https://doi.org/10.1039/c2jm15863a
- C. Xu, Z. Li, C. Yang, P. Zou, B. Xie et al., An ultralong, highly oriented nickel-nanowire-array electrode scaffold for high-performance compressible pseudocapacitors. Adv. Mater. 28(21), 4105–4110 (2016). https://doi.org/10.1002/adma.201505644
- X. Zang, C. Shen, E. Kao, R. Warren, R. Zhang et al., Titanium disulfide coated carbon nanotube hybrid electrodes enable high energy density symmetric pseudocapacitors. Adv. Mater. 30(5), 1704754 (2018). https://doi.org/10.1002/adma.201704754
- C. Wang, L. Zhang, M. Li, J. Zhang, Y. Chen et al., Sub-nanometer, ultrafine alpha-Fe2O3 sheets realized by controlled crystallization kinetics for stable, high-performance energy storage. Chem. Eur. J. 25(19), 5005–5013 (2019). https://doi.org/10.1002/chem.201805593
- W. Liu, H. Niu, J. Yang, K. Cheng, K. Ye et al., Ternary transition metal sulfides embedded in graphene nanosheets as both the anode and cathode for high-performance asymmetric supercapacitors. Chem. Mater. 30(3), 1055–1068 (2018). https://doi.org/10.1021/acs.chemmater.7b04976
- S. Wang, Z. Xiao, S. Zhai, H. Wang, W. Cai et al., Construction of strawberry-like Ni3S2@Co9S8 heteronanoparticle-embedded biomass-derived 3d n-doped hierarchical porous carbon for ultrahigh energy density supercapacitors. J. Mater. Chem. A 7(29), 17345–17356 (2019). https://doi.org/10.1039/c9ta05145g
- Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen et al., High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photonics 9(4), 259–266 (2015). https://doi.org/10.1038/nphoton.2015.36
- T. Shen, J. Yuan, X. Zhong, J. Tian, Dip-coated colloidal quantum-dot films for high-performance broadband photodetectors. J. Mater. Chem. C 7(21), 6266–6272 (2019). https://doi.org/10.1039/c9tc00079h
- H. Moon, C. Lee, W. Lee, J. Kim, H. Chae, Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications. Adv. Mater. 31(34), 1804294 (2019). https://doi.org/10.1002/adma.201804294
- J. Zhou, Y. Yang, C.-Y. Zhang, Toward biocompatible semiconductor quantum dots: from biosynthesis and bioconjugation to biomedical application. Chem. Rev. 115(21), 11669–11717 (2015). https://doi.org/10.1021/acs.chemrev.5b00049
- P. Wu, Y. Xu, J. Zhan, Y. Li, H. Xue et al., The research development of quantum dots in electrochemical energy storage. Small 14(42), 1801479 (2018). https://doi.org/10.1002/smll.201801479
- S. Liu, J. Zhou, Z. Cai, G. Fang, Y. Cai et al., Nb2O5 quantum dots embedded in mof derived nitrogen-doped porous carbon for advanced hybrid supercapacitor applications. J. Mater. Chem. A 4(45), 17838–17847 (2016). https://doi.org/10.1039/c6ta07856g
- E. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui, Y. Gogotsi, Energy storage: The future enabled by nanomaterials. Science 366(6468), 969 (2019). https://doi.org/10.1126/science.aan8285
- S. Liu, Y. Yin, D. Ni, K.S. Hui, M. Ma et al., New insight into the effect of fluorine doping and oxygen vacancies on electrochemical performance of Co2MnO4 for flexible quasi-solid-state asymmetric supercapacitors. Energy Storage Mater. 22, 384–396 (2019). https://doi.org/10.1016/j.ensm.2019.02.014
- Q. Chen, J. Jin, Z. Kou, J. Jiang, Y. Fu et al., Cobalt-doping in hierarchical Ni(3)S(2)nanorod arrays enables high areal capacitance. J. Mater. Chem. A 8(26), 13114–13120 (2020). https://doi.org/10.1039/d0ta04483k
- J. Zhang, Y. Wang, H.-J. Liao, T.-Y. Yang, Z. Chen et al., Hierarchical mn-doped Fe2O3@RGO hollow core-shell spheres for high-performance hybrid capacitor. Mater. Today Energy 17, 100388 (2020). https://doi.org/10.1016/j.mtener.2020.100388
- S. Pang, L. Gong, N. Du, H. Luo, K. Yu et al., Formation of high-performance Cu-WOx@C tribasic composite electrode for aqueous symmetric supercapacitor. Mater. Today Energy 13, 239–248 (2019). https://doi.org/10.1016/j.mtener.2019.05.016
- W. Liu, Z. Zhang, Y. Zhang, Y. Zheng, N. Liu et al., Interior and exterior decoration of transition metal oxide through Cu0/Cu+ Co-doping strategy for high-performance supercapacitor. Nano-Micro Lett. 13, 61 (2021). https://doi.org/10.1007/s40820-021-00590-x
- B. Zhao, L. Zhang, Q. Zhang, D. Chen, Y. Cheng et al., Rational design of nickel hydroxide-based nanocrystals on graphene for ultrafast energy storage. Adv. Energy Mater. 8(9), 1702247 (2018). https://doi.org/10.1002/aenm.201702247
- A.M. Mohamed, A.O.A. El Naga, T. Zaki, H.B. Hassan, N.K. Allam, Bimetallic co-w-s chalcogenides confined in n, s-codoped porous carbon matrix derived from metal-organic frameworks for highly stable electrochemical supercapacitors. ACS Appl. Energy Mater. 3(8), 8064–8074 (2020). https://doi.org/10.1021/acsaem.0c01513
- M. Yu, Z. Wang, C. Hou, Z. Wang, C. Liang et al., Nitrogen-doped Co3O4 mesoporous nanowire arrays as an additive-free air-cathode for flexible solid-state zinc-air batteries. Adv. Mater. 29(15), 1602868 (2017). https://doi.org/10.1002/adma.201602868
- S. Liu, D. Gao, J. Li, K. San Hui, Y. Yin et al., Phosphorus dual-site driven Cos2@S, N co-doped porous carbon nanosheets for flexible quasi-solid-state supercapacitors. J. Mater. Chem. A 7(46), 26618–26630 (2019). https://doi.org/10.1039/c9ta09646a
- Z. Hu, Z. Wu, C. Han, J. He, Z. Ni et al., Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem. Soc. Rev. 47(9), 3100–3128 (2018). https://doi.org/10.1039/c8cs00024g
- X. Zhang, X. Liu, Y. Zeng, Y. Tong, X. Lu, Oxygen defects in promoting the electrochemical performance of metal oxides for supercapacitors: Recent advances and challenges. Small Methods 4(6), 1900823 (2020). https://doi.org/10.1002/smtd.201900823
- D. Yao, F. Wang, W. Lei, Y. Hua, X. Xia et al., Oxygen vacancies boosting ultra-stability of mesoporous ZnO-CoO@n-doped carbon microspheres for asymmetric supercapacitors. Sci. China Mater. 63(10), 2013–2027 (2020). https://doi.org/10.1007/s40843-020-1357-9
- L. Su, S. Lei, L. Liu, L. Liu, Y. Zhang et al., Sprinkling MnFe2O4 quantum dots on nitrogen-doped graphene sheets: The formation mechanism and application for high-performance supercapacitor electrodes. J. Mater. Chem. A 6(21), 9997–10007 (2018). https://doi.org/10.1039/c8ta02982b
- H. Zeng, M.H. Oubla, X. Zhong, N. Alonso-Vante, F. Du et al., Rational defect and anion chemistries in Co3O4 for enhanced oxygen evolution reaction. Appl. Catal. B-Environ. 281, 119535 (2021). https://doi.org/10.1016/j.apcatb.2020.119535
- C. Ren, X. Jia, W. Zhang, D. Hou, Z. Xia et al., Hierarchical porous integrated Co1-xS/CoFe2O4@RGO nanoflowers fabricated via temperature-controlled in situ calcining sulfurization of multivariate CoFe-MOF-74@RGO for high-performance supercapacitor. Adv. Funct. Mater. 30(45), 2004519 (2020). https://doi.org/10.1002/adfm.202004519
- H.-S. Kim, J.B. Cook, H. Lin, J.S. Ko, S.H. Tolbert et al., Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nat. Mater. 16(4), 454 (2017). https://doi.org/10.1038/nmat4810
- J. Yang, X. Xiao, P. Chen, K. Zhu, K. Cheng et al., Creating oxygen-vacancies in MoO3-x nanobelts toward high volumetric energy-density asymmetric supercapacitors with long lifespan. Nano Energy 58, 455–465 (2019). https://doi.org/10.1016/j.nanoen.2019.01.071
- S. Yang, Y. Liu, Y. Hao, X. Yang, W.A. Goddard et al., Oxygen-vacancy abundant ultrafine Co3O4/graphene composites for high-rate supercapacitor electrodes. Adv. Sci. 5(4), 1700659 (2018). https://doi.org/10.1002/advs.201700659
- Q.-L. Wu, S.-X. Zhao, L. Yu, X.-X. Zheng, Y.-F. Wang et al., Oxygen vacancy-enriched MoO3-x nanobelts for asymmetric supercapacitors with excellent room/low temperature performance. J. Mater. Chem. A 7(21), 13205–13214 (2019). https://doi.org/10.1039/c9ta03471d
- X. Zheng, G. Wang, F. Huang, H. Liu, C. Gong et al., Liquid phase exfoliated hexagonal boron nitride/graphene heterostructure based electrode toward asymmetric supercapacitor application. Front. Chem. 7, 00544 (2019). https://doi.org/10.3389/fchem.2019.00544
- Z. Gao, C. Chen, J. Chang, L. Chen, P. Wang et al., Porous Co3S4@Ni3S4 heterostructure arrays electrode with vertical electrons and ions channels for efficient hybrid supercapacitor. Chem. Eng. J. 343, 572–582 (2018). https://doi.org/10.1016/j.cej.2018.03.042
- S. Saha, P. Samanta, N.C. Murmu, T. Kuila, A review on the heterostructure nanomaterials for supercapacitor application. J. Energy Storage 17, 181–202 (2018). https://doi.org/10.1016/j.est.2018.03.006
- J.-C. Liu, Z.-H. Huang, T.-Y. Ma, Aqueous supercapacitor with ultrahigh voltage window beyond 2.0 volt. Small Struct. 1(1), 2000020 (2020). https://doi.org/10.1002/sstr.202000020
- L. Wan, C. He, D. Chen, J. Liu, Y. Zhang et al., In situ grown NiFeP@NiCo2S4 nanosheet arrays on carbon cloth for asymmetric supercapacitors. Chem. Eng. J. 399, 125778 (2020). https://doi.org/10.1016/j.cej.2020.125778
- Y. Yan, A. Li, C. Lu, T. Zhai, S. Lu et al., Double-layered yolk-shell microspheres with NiCo2S4-Ni9S8-C hetero-interfaces as advanced battery-type electrode for hybrid supercapacitors. Chem. Eng. J. 396, 125316 (2020). https://doi.org/10.1016/j.cej.2020.125316
- T. Dang, D. Wei, G. Zhang, L. Wang, Q. Li et al., Homologous NiCoP/CoP hetero-nanosheets supported on N-doped carbon nanotubes for high-rate hybrid supercapacitors. Electrochim. Acta 341, 135988 (2020). https://doi.org/10.1016/j.electacta.2020.135988
References
P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008). https://doi.org/10.1038/nmat2297
Y. Wang, L. Zhang, H. Hou, W. Xu, G. Duan et al., Recent progress in carbon-based materials for supercapacitor electrodes: a review. J. Mater. Sci. 56(1), 173–200 (2021). https://doi.org/10.1007/s10853-020-05157-6
Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang et al., Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 118(18), 9233–9280 (2018). https://doi.org/10.1021/acs.chemrev.8b00252
H. Wang, H. Dai, Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. Chem. Soc. Rev. 42(7), 3088–3113 (2013). https://doi.org/10.1039/c2cs35307e
Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi et al., Electrochemical energy storage for green grid. Chem. Rev. 111(5), 3577–3613 (2011). https://doi.org/10.1021/cr100290v
J.R. Miller, P. Simon, Materials science—electrochemical capacitors for energy management. Science 321(5889), 651–652 (2008). https://doi.org/10.1126/science.1158736
F. Beguin, V. Presser, A. Balducci, E. Frackowiak, Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26(14), 2219–2251 (2014). https://doi.org/10.1002/adma.201304137
A. Berrueta, A. Ursua, I. San Martin, A. Eftekhari, P. Sanchis, Supercapacitors: electrical characteristics, modeling, applications, and future trends. IEEE Access 7, 50869–50896 (2019). https://doi.org/10.1109/access.2019.2908558
X. Zhao, B.M. Sanchez, P.J. Dobson, P.S. Grant, The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 3(3), 839–855 (2011). https://doi.org/10.1039/c0nr00594k
Y. Wang, Y. Xia, Recent progress in supercapacitors: from materials design to system construction. Adv. Mater. 25(37), 5336–5342 (2013). https://doi.org/10.1002/adma.201301932
J. Yan, Q. Wang, T. Wei, Z. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4(4), 14264 (2014). https://doi.org/10.1002/aenm.201300816
P. Veerakumar, A. Sangili, S. Manavalan, P. Thanasekaran, K.-C. Lin, Research progress on porous carbon supported metal/metal oxide nanomaterials for supercapacitor electrode applications. Ind. Eng. Chem. Res. 59(14), 6347–6374 (2020). https://doi.org/10.1021/acs.iecr.9b06010
K.A. Owusu, L. Qu, J. Li, Z. Wang, K. Zhao et al., Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nat. Commun. 8, 14264 (2017). https://doi.org/10.1038/ncomms14264
L. Zheng, J. Song, X. Ye, Y. Wang, X. Shi et al., Construction of self-supported hierarchical nico-s nanosheet arrays for supercapacitors with ultrahigh specific capacitance. Nanoscale 12(25), 13811–13821 (2020). https://doi.org/10.1039/d0nr02976a
P. Geng, S. Zheng, H. Tang, R. Zhu, L. Zhang et al., Transition metal sulfides based on graphene for electrochemical energy storage. Adv. Energy Mater. 8(15), 1703259 (2018). https://doi.org/10.1002/aenm.201703259
T. Wang, H.C. Chen, F. Yu, X.S. Zhao, H. Wang, Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Mater. 16, 545–573 (2019). https://doi.org/10.1016/j.ensm.2018.09.007
L. Hou, W. Yang, R. Li, X. Xu, P. Wang et al., Self-reconstruction strategy to synthesis of Ni/Co–OOH nanoflowers decorated with N, S co-doped carbon for high-performance energy storage. Chem. Eng. J. 396, 125323 (2020). https://doi.org/10.1016/j.cej.2020.125323
Y. Jiang, J. Liu, Definitions of pseudocapacitive materials: a brief review. Energy Environ. Mater. 2(1), 30–37 (2019). https://doi.org/10.1002/eem2.12028
Z. Qiu, Y. Wang, X. Bi, T. Zhou, J. Zhou et al., Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors. J. Power Sources 376, 82–90 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.077
S. Kumar, G. Saeed, L. Zhu, K.N. Hui, N.H. Kim et al., 0d to 3d carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review. Chem. Eng. J. 403, 126352 (2021). https://doi.org/10.1016/j.cej.2020.126352
P. Balaya, Size effects and nanostructured materials for energy applications. Energy Environ. Sci. 1(6), 645–654 (2008). https://doi.org/10.1039/b809078p
Y. Son, M. Park, Y. Son, J.-S. Lee, J.-H. Jang et al., Quantum confinement and its related effects on the critical size of GeO2 nanoparticles anodes for lithium batteries. Nano Lett. 14(2), 1005–1010 (2014). https://doi.org/10.1021/nl404466v
R.W. Mo, Z.Y. Lei, K.N. Sun, D. Rooney, Facile synthesis of anatase tio2 quantum-dot/graphenenanosheet composites with enhanced electrochemical performance for lithium-ion batteries. Adv. Mater. 26(13), 2084–2088 (2014). https://doi.org/10.1002/adma.201304338
H. Xia, C. Hong, B. Li, B. Zhao, Z. Lin et al., Facile synthesis of hematite quantum-dot/functionalized graphene-sheet composites as advanced anode materials for asymmetric supercapacitors. Adv. Funct. Mater. 25(4), 627–635 (2015). https://doi.org/10.1002/adfm.201403554
H.M. Jeong, K.M. Choi, T. Cheng, D.K. Lee, R. Zhou et al., Rescaling of metal oxide nanocrystals for energy storage having high capacitance and energy density with robust cycle life. Proc. Natl. Acad. Sci. USA 112(26), 7914–7919 (2015). https://doi.org/10.1073/pnas.1503546112
V.C. Hoang, K. Dave, V.G. Gomes, Carbon quantum dot-based composites for energy storage and electrocatalysis: mechanism, applications and future prospects. Nano Energy 66, 104093 (2019). https://doi.org/10.1016/j.nanoen.2019.104093
X. Yang, C. Cai, Y. Zou, C. Xiang, H. Chu et al., Co3O4-doped two-dimensional carbon nanosheet as an electrode material for high-performance asymmetric supercapacitors. Electrochim. Acta 335, 135611 (2020). https://doi.org/10.1016/j.electacta.2020.135611
X.-M. Han, Y.-B. Wu, H.-Y. Zhao, J. Bi, B.-B. Wei, Preparation and supercapacitor properties of carbon-coated SnO2 hollow fibers. Acta Phys. Chim. Sin. 31(11), 2220–2228 (2015). https://doi.org/10.3866/pku.whxb201510131
Y. Zhu, Z. Wu, M. Jing, H. Hou, Y. Yang et al., Porous NiCo2O4 spheres tuned through carbon quantum dots utilised as advanced materials for an asymmetric supercapacitor. J. Mater. Chem. A 3(2), 866–877 (2015). https://doi.org/10.1039/c4ta05507a
H. Lv, X. Gao, Q. Xu, H. Liu, Y.-G. Wang et al., Carbon quantum dot-induced MnO2 nanowire formation and construction of a binder-free flexible membrane with excellent superhydrophilicity and enhanced supercapacitor performance. ACS Appl. Mater. Interfaces 9(46), 40394–40403 (2017). https://doi.org/10.1021/acsami.7b14761
G. Wei, X. Xu, J. Liu, K. Du, J. Du et al., Carbon quantum dots decorated hierarchical Ni(OH)(2) with lamellar structure for outstanding supercapacitor. Mater. Lett. 186, 131–134 (2017). https://doi.org/10.1016/j.matlet.2016.09.126
H. Jia, Y. Cai, J. Lin, H. Liang, J. Qi et al., Heterostructural graphene quantum dot/MnO2 nanosheets toward high-potential window electrodes for high-performance supercapacitors. Adv. Sci. 5(5), 1700887 (2018). https://doi.org/10.1002/advs.201700887
A.B. Ganganboina, E.Y. Park, R.-A. Doong, Boosting the energy storage performance of V(2)O(5)nanosheets by intercalating conductive graphene quantum dots. Nanoscale 12(32), 16944–16955 (2020). https://doi.org/10.1039/d0nr04362a
L. Hu, W. Chen, X. Xie, N. Liu, Y. Yang et al., Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading. ACS Nano 5(11), 8904–8913 (2011). https://doi.org/10.1021/nn203085j
Z. Tang, C.-H. Tang, H. Gong, A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes. Adv. Funct. Mater. 22(6), 1272–1278 (2012). https://doi.org/10.1002/adfm.201102796
Q. Li, J. Guo, D. Xu, J. Guo, X. Ou et al., Electrospun N-doped porous carbon nanofibers incorporated with nio nanoparticles as free-standing film electrodes for high-performance supercapacitors and CO2 capture. Small 14(15), 1704203 (2018). https://doi.org/10.1002/smll.201704203
A. Meng, X. Yuan, T. Shen, J. Zhao, G. Song et al., Amorphous nickel sulfide nanoparticles anchored on N-doped graphene nanotubes with superior properties for high-performance supercapacitors and efficient oxygen evolution reaction. Nanoscale 12(7), 4655–4666 (2020). https://doi.org/10.1039/c9nr09654j
J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei et al., Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater. 22(12), 2632–2641 (2012). https://doi.org/10.1002/adfm.201102839
Y. Hu, C. Guan, Q. Ke, Z.F. Yow, C. Cheng et al., Hybrid Fe2O3 nanoparticle clusters/RGO paper as an effective negative electrode for flexible supercapacitors. Chem. Mater. 28(20), 7296–7303 (2016). https://doi.org/10.1021/acs.chemmater.6b02585
T. Xiong, W.S.V. Lee, X. Huang, J.M. Xue, Mn3O4/reduced graphene oxide based supercapacitor with ultra-long cycling performance. J. Mater. Chem. A 5(25), 12762–12768 (2017). https://doi.org/10.1039/c7ta03319b
Y. Jiang, C. He, S. Qiu, J. Zhang, X. Wang et al., Scalable mechanochemical coupling of homogeneous Co3O4 nanocrystals onto in -situ exfoliated graphene sheets for asymmetric supercapacitors. Chem. Eng. J. 397, 125503 (2020). https://doi.org/10.1016/j.cej.2020.125503
L. Bao, T. Li, S. Chen, C. Peng, L. Li et al., 3d graphene frameworks/Co3O4 composites electrode for high-performance supercapacitor and enzymeless glucose detection. Small 13(5), 1602077 (2017). https://doi.org/10.1002/smll.201602077
Y. Wu, Y. Yang, X. Zhao, Y. Tan, Y. Liu et al., A novel hierarchical porous 3d structured vanadium nitride/carbon membranes for high-performance supercapacitor negative electrodes. Nano-Micro Lett. 10(4), 63 (2018). https://doi.org/10.1007/s40820-018-0217-1
S. Li, K. Yang, P. Ya, K. Ma, Z. Zhang et al., Three-dimensional porous carbon/Co3O4 composites derived from graphene/Co-MOF for high performance supercapacitor electrodes. Appl. Surf. Sci. 503, 144090 (2020). https://doi.org/10.1016/j.apsusc.2019.144090
Y. Liu, N. Xin, Q. Yang, W. Shi, 3d cnts/graphene network conductive substrate supported mofs-derived CoZnNiS nanosheet arrays for ultra-high volumetric/gravimetric energy density hybrid supercapacitor. J. Colloid Interface Sci. 583, 288–298 (2020). https://doi.org/10.1016/j.jcis.2020.08.128
T. Shen, L. Yang, M.E. Pam, Y. Shi, H.Y. Yang, Quantum dot-carbonaceous nanohybrid composites: preparation and application in electrochemical energy storage. J. Mater. Chem. A 8(43), 22488–22506 (2020). https://doi.org/10.1039/d0ta07674k
Z. Zhang, J. Zhang, N. Chen, L. Qu, Graphene quantum dots: An emerging material for energy-related applications and beyond. Energy Environ. Sci. 5(10), 8869–8890 (2012). https://doi.org/10.1039/c2ee22982j
Y. Zhu, X. Ji, C. Pan, Q. Sun, W. Song et al., A carbon quantum dot decorated RuO2 network: outstanding supercapacitances under ultrafast charge and discharge. Energy Environ. Sci. 6(12), 3665–3675 (2013). https://doi.org/10.1039/c3ee41776j
Y. Huang, T. Shi, Y. Zhong, S. Cheng, S. Jiang et al., Graphene-quantum-dots induced NiCo2S4 with hierarchical-like hollow nanostructure for supercapacitors with enhanced electrochemical performance. Electrochim. Acta 269, 45–54 (2018). https://doi.org/10.1016/j.electacta.2018.02.145
L. Liu, Z. Niu, J. Chen, Flexible supercapacitors based on carbon nanotubes. Chin. Chem. Lett. 29(4), 571–581 (2018). https://doi.org/10.1016/j.cclet.2018.01.013
G. Nie, X. Zhao, Y. Luan, J. Jiang, Z. Kou et al., Key issues facing electrospun carbon nanofibers in energy applications: On-going approaches and challenges. Nanoscale 12(25), 13225–13248 (2020). https://doi.org/10.1039/d0nr03425h
L. Jiang, Y. Qiu, P. Luo, Y. Yu, Nickel hydroxide-impregnated and -coated carbon nanotubes using an easily manipulated solvothermal route for supercapacitors. Ceram. Int. 42(10), 11634–11639 (2016). https://doi.org/10.1016/j.ceramint.2016.04.064
S. Liu, Y. Yin, Y. Shen, K.S. Hui, Y.T. Chun et al., Phosphorus regulated cobalt oxide@nitrogen-doped carbon nanowires for flexible quasi-solid-state supercapacitors. Small 16(4), 1906458 (2020). https://doi.org/10.1002/smll.201906458
A. Salman, S. Padmajan Sasikala, I.H. Kim, J.T. Kim, G.S. Lee et al., Tungsten nitride-coated graphene fibers for high-performance wearable supercapacitors. Nanoscale 12(39), 20239–20249 (2020). https://doi.org/10.1039/d0nr06636b
B. Wang, T. Ruan, Y. Chen, F. Jin, L. Peng et al., Graphene-based composites for electrochemical energy storage. Energy Storage Mater. 24, 22–51 (2020). https://doi.org/10.1016/j.ensm.2019.08.004
S. Korkmaz, I.A. Kariper, Graphene and graphene oxide based aerogels: synthesis, characteristics and supercapacitor applications. J. Energy Storage 27, 101038 (2020). https://doi.org/10.1016/j.est.2019.101038
T. Palaniselvam, J.-B. Baek, Graphene based 2d-materials for supercapacitors. 2d Mater 2(3), 032002 (2015). https://doi.org/10.1088/2053-1583/2/3/032002
M.S. Rahmanifar, M. Hemmati, A. Noori, M.F. El-Kady, M.F. Mousavi et al., Asymmetric supercapacitors: an alternative to activated carbon negative electrodes based on earth abundant elements. Mater. Today Energy 12, 26–36 (2019). https://doi.org/10.1016/j.mtener.2018.12.006
X. Yang, C. Cheng, Y. Wang, L. Qiu, D. Li, Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341(6145), 534–537 (2013). https://doi.org/10.1126/science.1239089
Z. Tang, X. Li, T. Sun, S. Shen, H. Xiu et al., Porous crumpled graphene with hierarchical pore structure and high surface utilization efficiency for supercapacitor. Microporous Mesoporous Mat. 272, 40–43 (2018). https://doi.org/10.1016/j.micromeso.2018.06.020
Y. Xu, Z. Lin, X. Zhong, X. Huang, N.O. Weiss et al., Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 5, 4554 (2014). https://doi.org/10.1038/ncomms5554
A.R. Thiruppathi, B. Sidhureddy, E. Boateng, D.V. Soldatov, A. Chen, Synthesis and electrochemical study of three-dimensional graphene-based nanomaterials for energy applications. Nanomaterials 10(7), 1295 (2020). https://doi.org/10.3390/nano10071295
R.R. Salunkhe, Y.V. Kaneti, J. Kim, J.H. Kim, Y. Yamauchi, Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications. Acc. Chem. Res. 49(12), 2796–2806 (2016). https://doi.org/10.1021/acs.accounts.6b00460
H. Jiang, P.S. Lee, C. Li, 3d carbon based nanostructures for advanced supercapacitors. Energy Environ. Sci. 6(1), 41–53 (2013). https://doi.org/10.1039/c2ee23284g
J. Xu, Z. Tan, W. Zeng, G. Chen, S. Wu et al., A hierarchical carbon derived from sponge-templated activation of graphene oxide for high-performance supercapacitor electrodes. Adv. Mater. 28(26), 5222 (2016). https://doi.org/10.1002/adma.201600586
J. Chen, J. Xu, S. Zhou, N. Zhao, C.-P. Wong, Nitrogen-doped hierarchically porous carbon foam: a free-standing electrode and mechanical support for high-performance supercapacitors. Nano Energy 25, 193–202 (2016). https://doi.org/10.1016/j.nanoen.2016.04.037
J. Luo, H. Zhang, Z. Zhang, J. Yu, Z. Yang, In-built template synthesis of hierarchical porous carbon microcubes from biomass toward electrochemical energy storage. Carbon 155, 1–8 (2019). https://doi.org/10.1016/j.carbon.2019.08.044
C. Leng, Z. Zhao, Y. Song, L. Sun, Z. Fan et al., 3D carbon frameworks for ultrafast charge/discharge rate supercapacitors with high energy-power density. Nano-Micro Lett. 13, 8 (2021). https://doi.org/10.1007/s40820-020-00535-w
Y. Qing, Y. Jiang, H. Lin, L. Wang, A. Liu et al., Boosting the supercapacitor performance of activated carbon by constructing overall conductive networks using graphene quantum dots. J. Mater. Chem. A 7(11), 6021–6027 (2019). https://doi.org/10.1039/c8ta11620b
G.M. Tomboc, B. Tesfaye Gadisa, M. Jun, N.K. Chaudhari, H. Kim et al., Carbon transition-metal oxide electrodes: understanding the role of surface engineering for high energy density supercapacitors. Chem. Asian J. 15(11), 1628–1647 (2020). https://doi.org/10.1002/asia.202000324
B. Qu, C. Ma, G. Ji, C. Xu, J. Xu et al., Layered SnS2-reduced graphene oxide composite—a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 26(23), 3854–3859 (2014). https://doi.org/10.1002/adma.201306314
X. Zhou, Z. Zhang, X. Lu, X. Lv, G. Ma et al., Sb2O3 nanoparticles anchored on graphene sheets via alcohol dissolution-reprecipitation method for excellent lithium-storage properties. ACS Appl. Mater. Interfaces 9(40), 34927–34936 (2017). https://doi.org/10.1021/acsami.7b10107
L. Liu, J. Lang, P. Zhang, B. Hu, X. Yan, Facile synthesis of Fe2O3 nano-dots@nitrogen-doped graphene for supercapacitor electrode with ultralong cycle life in koh electrolyte. ACS Appl. Mater. Interfaces 8(14), 9335–9344 (2016). https://doi.org/10.1021/acsami.6b00225
Y. Ko, D. Shin, B. Koo, S.W. Lee, W.-S. Yoon et al., Ultrathin supercapacitor electrodes with high volumetric capacitance and stability using direct covalent-bonding between pseudocapacitive nanoparticles and conducting materials. Nano Energy 12, 612–625 (2015). https://doi.org/10.1016/j.nanoen.2015.01.002
H. Jia, Z. Wang, C. Li, X. Si, X. Zheng et al., Designing oxygen bonding between reduced graphene oxide and multishelled Mn3O4 hollow spheres for enhanced performance of supercapacitors. J. Mater. Chem. A 7(12), 6686–6694 (2019). https://doi.org/10.1039/c8ta11482j
S. Zhu, M. Wu, M.-H. Ge, H. Zhang, S.-K. Li et al., Design and construction of three-dimensional CuO/polyaniline/RGO ternary hierarchical architectures for high performance supercapacitors. J. Power Sources 306, 593–601 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.059
J. Zhang, L. Su, L. Ma, D. Zhao, C. Qin et al., Preparation of inflorescence-like acnf/pani/nio composite with three-dimension nanostructure for high performance supercapacitors. J. Electroanal. Chem. 790, 40–49 (2017). https://doi.org/10.1016/j.jelechem.2017.02.047
Q. Li, Y. Chen, J. Zhang, W. Tian, L. Wang et al., Spatially confined synthesis of vanadium nitride nanodots intercalated carbon nanosheets with ultrahigh volumetric capacitance and long life for flexible supercapacitors. Nano Energy 51, 128–136 (2018). https://doi.org/10.1016/j.nanoen.2018.06.053
S.N. Tiruneh, B.K. Kang, H.W. Choi, S.B. Kwon, M.S. Kim et al., Millerite core-nitrogen-doped carbon hollow shell structure for electrochemical energy storage. Small 14(41), 1802933 (2018). https://doi.org/10.1002/smll.201802933
F. Lai, J. Feng, R. Yan, G.-C. Wang, M. Antonietti et al., Breaking the limits of ionic liquid-based supercapacitors: mesoporous carbon electrodes functionalized with manganese oxide nanosplotches for dense, stable, and wide-temperature energy storage. Adv. Funct. Mater. 28(36), 1801298 (2018). https://doi.org/10.1002/adfm.201801298
R. Paul, F. Du, L. Dai, Y. Ding, Z.L. Wang et al., 3d heteroatom-doped carbon nanomaterials as multifunctional metal-free catalysts for integrated energy devices. Adv. Mater. 31(13), 1805598 (2019). https://doi.org/10.1002/adma.201805598
A. Gopalakrishnan, S. Badhulika, Effect of self-doped heteroatoms on the performance of biomass-derived carbon for supercapacitor applications. J. Power Sources 480, 228830 (2020). https://doi.org/10.1016/j.jpowsour.2020.228830
X. Wang, C. Yang, J. Li, X.A. Chen, K. Yang et al., Insights of heteroatoms doping-enhanced bifunctionalities on carbon based energy storage and conversion. Adv. Funct. Mater. 31(11), 2009109 (2020). https://doi.org/10.1002/adfm.202009109
K. Xiao, L.-X. Ding, G. Liu, H. Chen, S. Wang et al., Freestanding, hydrophilic nitrogen-doped carbon foams for highly compressible all solid-state supercapacitors. Adv. Mater. 28(28), 5997 (2016). https://doi.org/10.1002/adma.201601125
D.P. Dubal, S. Abdel-Azeim, N.R. Chodankar, Y.-K. Han, Molybdenum nitride nanocrystals anchored on phosphorus-incorporated carbon fabric as a negative electrode for high-performance asymmetric pseudocapacitor. Iscience 16, 50 (2019). https://doi.org/10.1016/j.isci.2019.05.018
M. Yang, Y. Zhong, X. Zhou, J. Ren, L. Su et al., Ultrasmall MnO@N-rich carbon nanosheets for high-power asymmetric supercapacitors. J. Mater. Chem. A 2(31), 12519–12525 (2014). https://doi.org/10.1039/c4ta02055c
C. Miao, X. Xiao, Y. Gong, K. Zhu, K. Cheng et al., Facile synthesis of metal-organic framework-derived CoSe2 nanoparticles embedded in the N-doped carbon nanosheet array and application for supercapacitors. ACS Appl. Mater. Interfaces 12(8), 9365–9375 (2020). https://doi.org/10.1021/acsami.9b22606
H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin et al., Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 11(6), 2472–2477 (2011). https://doi.org/10.1021/nl2009058
Y. Wen, B. Wang, C. Huang, L. Wang, D. Hulicova-Jurcakova, Synthesis of phosphorus-doped graphene and its wide potential window in aqueous supercapacitors. Chem. Eur. J. 21(1), 80–85 (2015). https://doi.org/10.1002/chem.201404779
J. Zhang, S. Ali, F. Liu, A. Ali, K. Wang et al., Phosphorus-doped carbon composites with rich graphene derived from phenol resin as supercapacitor electrode materials with high window potential and energy density. J. Electron. Mater. 48(7), 4196–4206 (2019). https://doi.org/10.1007/s11664-019-07188-5
J. Li, W. Liu, D. Xiao, X. Wang, Oxygen-rich hierarchical porous carbon made from pomelo peel fiber as electrode material for supercapacitor. Appl. Surface Sci. 416, 918–924 (2017). https://doi.org/10.1016/j.apsusc.2017.04.162
M. Krishnamoorthy, N. Jha, Oxygen-rich hierarchical porous graphene as an excellent electrode for supercapacitors, aqueous Al-ion battery, and capacitive deionization. ACS Sustain. Chem. Eng. 7(9), 8475–8489 (2019). https://doi.org/10.1021/acssuschemeng.9b00233
S. Ghosh, S. Barg, S.M. Jeong, K. Ostrikov, Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors. Adv. Energy Mater. 10(32), 2001239 (2020). https://doi.org/10.1002/aenm.202001239
Z. Liu, S. Zhang, L. Wang, T. Wei, Z. Qiu et al., High-efficiency utilization of carbon materials for supercapacitors. Nano Select. 1(2), 244–262 (2020). https://doi.org/10.1002/nano.202000011
S. Zhao, W. Xu, Z. Yang, X. Zhang, Q. Zhang, One-pot hydrothermal synthesis of nitrogen and phosphorus co-doped graphene decorated with flower-like molybdenum sulfide for enhanced supercapacitor performance. Electrochim. Acta 331, 135265 (2020). https://doi.org/10.1016/j.electacta.2019.135265
L. Zheng, L. Guan, J. Song, H. Zheng, Rational design of a sandwiched structure Ni(OH)(2) nanohybrid sustained by amino-functionalized graphene quantum dots for outstanding capacitance. Appl. Surface Sci. 480, 727–737 (2019). https://doi.org/10.1016/j.apsusc.2019.02.243
L.-L. Jiang, X. Lu, C.-M. Xie, G.-J. Wan, H.-P. Zhang et al., Flexible, free-standing TiO2-graphene-polypyrrole composite films as electrodes for supercapacitors. J. Phys. Chem. C 119(8), 3903–3910 (2015). https://doi.org/10.1021/jp511022z
A. Ehsani, A.A. Heidari, H.M. Shiri, Electrochemical pseudocapacitors based on ternary nanocomposite of conductive polymer/graphene/metal oxide: an introduction and review to it in recent studies. Chem. Record 19(5), 908–926 (2019). https://doi.org/10.1002/tcr.201800112
Z. Xu, Z. Zhang, H. Yin, S. Hou, H. Lin et al., Investigation on the role of different conductive polymers in supercapacitors based on a zinc sulfide/reduced graphene oxide/conductive polymer ternary composite electrode. RSC Adv. 10(6), 3122–3129 (2020). https://doi.org/10.1039/c9ra07842h
H. Lin, Q. Huang, J. Wang, J. Jiang, F. Liu et al., Self-assembled graphene/polyaniline/Co3O4 ternary hybrid aerogels for supercapacitors. Electrochim. Acta 191, 444–451 (2016). https://doi.org/10.1016/j.electacta.2015.12.143
S.M. Zhu, H.A. Zhou, M. Hibino, I. Honma, M. Ichihara, Synthesis of MnO2 nanoparticles confined in ordered mesoporous carbon using a sonochemical method. Adv. Funct. Mater. 15(3), 381–386 (2005). https://doi.org/10.1002/adfm.200400222
X. Cao, B. Zheng, W. Shi, J. Yang, Z. Fan et al., Reduced graphene oxide-wrapped MoO3 composites prepared by using metal-organic frameworks as precursor for all-solid-state flexible supercapacitors. Adv. Mater. 27(32), 4695–4701 (2015). https://doi.org/10.1002/adma.201501310
J. Yang, X. Xu, X. Zhou, S. Jiang, W. Chen et al., Ultrasmall Co3O4 nanoparticles confined in P, N-doped carbon matrices for high-performance supercapacitors. J. Phys. Chem. C 124(17), 9225–9232 (2020). https://doi.org/10.1021/acs.jpcc.0c01539
X. Lu, T. Liu, T. Zhai, G. Wang, M. Yu et al., Improving the cycling stability of metal-nitride supercapacitor electrodes with a thin carbon shell. Adv. Energy Mater. 4(4), 1300994 (2014). https://doi.org/10.1002/aenm.201300994
S. Zhang, J. Wu, J. Wang, W. Qiao, D. Long et al., Constructing t-Nb2O5@carbon hollow core-shell nanostructures for high-rate hybrid supercapacitor. J. Power Sources 396, 88–94 (2018). https://doi.org/10.1016/j.jpowsour.2018.06.007
M. Pan, W. Zeng, H. Quan, J. Cui, Y. Guo et al., Low-crystalline Ni/Co-oxyhydroxides nanoarrays on carbon cloth with high mass loading and hierarchical structure as cathode for supercapacitors. Electrochim. Acta 357, 136886 (2020). https://doi.org/10.1016/j.electacta.2020.136886
J. Theerthagiri, R.A. Senthil, P. Nithyadharseni, S.J. Lee, G. Durai et al., Recent progress and emerging challenges of transition metal sulfides based composite electrodes for electrochemical supercapacitive energy storage. Ceram. Int. 46(10), 14317–14345 (2020). https://doi.org/10.1016/j.ceramint.2020.02.270
M. Sun, B. Lan, L. Yu, F. Ye, W. Song et al., Manganese oxides with different crystalline structures: Facile hydrothermal synthesis and catalytic activities. Mater. Lett. 86, 18–20 (2012). https://doi.org/10.1016/j.matlet.2012.07.011
X. Ma, P. Zhang, Y. Zhao, Y. Liu, J. Li et al., Role of n doping on the electrochemical performances of ZnCo2O4 quantum dots/reduced graphene oxide composite nanosheets. Chem. Eng. J. 327, 1000–1010 (2017). https://doi.org/10.1016/j.cej.2017.06.084
I. Shakir, A. Rasheed, S. Haider, M.F.A. Aboud, The impact of Cu2+ and Mg2+ onto the electrochemical energy storage properties of nanocrystalline Co0.8Ni0.2Fe2O4 particles and their hybrids with graphene. Ceram. Int. 45(14), 18099–18105 (2019). https://doi.org/10.1016/j.ceramint.2019.05.066
D. Majumdar, Review on current progress of MnO2-based ternary nanocomposites for supercapacitor applications. ChemElectroChem 8(2), 291–336 (2020). https://doi.org/10.1002/celc.202001371
J.H. Zhong, A.L. Wang, G.R. Li, J.W. Wang, Y.N. Ou et al., Co3O4/Ni(OH)(2) composite mesoporous nanosheet networks as a promising electrode for supercapacitor applications. J. Mater. Chem. 22(12), 5656–5665 (2012). https://doi.org/10.1039/c2jm15863a
C. Xu, Z. Li, C. Yang, P. Zou, B. Xie et al., An ultralong, highly oriented nickel-nanowire-array electrode scaffold for high-performance compressible pseudocapacitors. Adv. Mater. 28(21), 4105–4110 (2016). https://doi.org/10.1002/adma.201505644
X. Zang, C. Shen, E. Kao, R. Warren, R. Zhang et al., Titanium disulfide coated carbon nanotube hybrid electrodes enable high energy density symmetric pseudocapacitors. Adv. Mater. 30(5), 1704754 (2018). https://doi.org/10.1002/adma.201704754
C. Wang, L. Zhang, M. Li, J. Zhang, Y. Chen et al., Sub-nanometer, ultrafine alpha-Fe2O3 sheets realized by controlled crystallization kinetics for stable, high-performance energy storage. Chem. Eur. J. 25(19), 5005–5013 (2019). https://doi.org/10.1002/chem.201805593
W. Liu, H. Niu, J. Yang, K. Cheng, K. Ye et al., Ternary transition metal sulfides embedded in graphene nanosheets as both the anode and cathode for high-performance asymmetric supercapacitors. Chem. Mater. 30(3), 1055–1068 (2018). https://doi.org/10.1021/acs.chemmater.7b04976
S. Wang, Z. Xiao, S. Zhai, H. Wang, W. Cai et al., Construction of strawberry-like Ni3S2@Co9S8 heteronanoparticle-embedded biomass-derived 3d n-doped hierarchical porous carbon for ultrahigh energy density supercapacitors. J. Mater. Chem. A 7(29), 17345–17356 (2019). https://doi.org/10.1039/c9ta05145g
Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen et al., High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photonics 9(4), 259–266 (2015). https://doi.org/10.1038/nphoton.2015.36
T. Shen, J. Yuan, X. Zhong, J. Tian, Dip-coated colloidal quantum-dot films for high-performance broadband photodetectors. J. Mater. Chem. C 7(21), 6266–6272 (2019). https://doi.org/10.1039/c9tc00079h
H. Moon, C. Lee, W. Lee, J. Kim, H. Chae, Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications. Adv. Mater. 31(34), 1804294 (2019). https://doi.org/10.1002/adma.201804294
J. Zhou, Y. Yang, C.-Y. Zhang, Toward biocompatible semiconductor quantum dots: from biosynthesis and bioconjugation to biomedical application. Chem. Rev. 115(21), 11669–11717 (2015). https://doi.org/10.1021/acs.chemrev.5b00049
P. Wu, Y. Xu, J. Zhan, Y. Li, H. Xue et al., The research development of quantum dots in electrochemical energy storage. Small 14(42), 1801479 (2018). https://doi.org/10.1002/smll.201801479
S. Liu, J. Zhou, Z. Cai, G. Fang, Y. Cai et al., Nb2O5 quantum dots embedded in mof derived nitrogen-doped porous carbon for advanced hybrid supercapacitor applications. J. Mater. Chem. A 4(45), 17838–17847 (2016). https://doi.org/10.1039/c6ta07856g
E. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui, Y. Gogotsi, Energy storage: The future enabled by nanomaterials. Science 366(6468), 969 (2019). https://doi.org/10.1126/science.aan8285
S. Liu, Y. Yin, D. Ni, K.S. Hui, M. Ma et al., New insight into the effect of fluorine doping and oxygen vacancies on electrochemical performance of Co2MnO4 for flexible quasi-solid-state asymmetric supercapacitors. Energy Storage Mater. 22, 384–396 (2019). https://doi.org/10.1016/j.ensm.2019.02.014
Q. Chen, J. Jin, Z. Kou, J. Jiang, Y. Fu et al., Cobalt-doping in hierarchical Ni(3)S(2)nanorod arrays enables high areal capacitance. J. Mater. Chem. A 8(26), 13114–13120 (2020). https://doi.org/10.1039/d0ta04483k
J. Zhang, Y. Wang, H.-J. Liao, T.-Y. Yang, Z. Chen et al., Hierarchical mn-doped Fe2O3@RGO hollow core-shell spheres for high-performance hybrid capacitor. Mater. Today Energy 17, 100388 (2020). https://doi.org/10.1016/j.mtener.2020.100388
S. Pang, L. Gong, N. Du, H. Luo, K. Yu et al., Formation of high-performance Cu-WOx@C tribasic composite electrode for aqueous symmetric supercapacitor. Mater. Today Energy 13, 239–248 (2019). https://doi.org/10.1016/j.mtener.2019.05.016
W. Liu, Z. Zhang, Y. Zhang, Y. Zheng, N. Liu et al., Interior and exterior decoration of transition metal oxide through Cu0/Cu+ Co-doping strategy for high-performance supercapacitor. Nano-Micro Lett. 13, 61 (2021). https://doi.org/10.1007/s40820-021-00590-x
B. Zhao, L. Zhang, Q. Zhang, D. Chen, Y. Cheng et al., Rational design of nickel hydroxide-based nanocrystals on graphene for ultrafast energy storage. Adv. Energy Mater. 8(9), 1702247 (2018). https://doi.org/10.1002/aenm.201702247
A.M. Mohamed, A.O.A. El Naga, T. Zaki, H.B. Hassan, N.K. Allam, Bimetallic co-w-s chalcogenides confined in n, s-codoped porous carbon matrix derived from metal-organic frameworks for highly stable electrochemical supercapacitors. ACS Appl. Energy Mater. 3(8), 8064–8074 (2020). https://doi.org/10.1021/acsaem.0c01513
M. Yu, Z. Wang, C. Hou, Z. Wang, C. Liang et al., Nitrogen-doped Co3O4 mesoporous nanowire arrays as an additive-free air-cathode for flexible solid-state zinc-air batteries. Adv. Mater. 29(15), 1602868 (2017). https://doi.org/10.1002/adma.201602868
S. Liu, D. Gao, J. Li, K. San Hui, Y. Yin et al., Phosphorus dual-site driven Cos2@S, N co-doped porous carbon nanosheets for flexible quasi-solid-state supercapacitors. J. Mater. Chem. A 7(46), 26618–26630 (2019). https://doi.org/10.1039/c9ta09646a
Z. Hu, Z. Wu, C. Han, J. He, Z. Ni et al., Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem. Soc. Rev. 47(9), 3100–3128 (2018). https://doi.org/10.1039/c8cs00024g
X. Zhang, X. Liu, Y. Zeng, Y. Tong, X. Lu, Oxygen defects in promoting the electrochemical performance of metal oxides for supercapacitors: Recent advances and challenges. Small Methods 4(6), 1900823 (2020). https://doi.org/10.1002/smtd.201900823
D. Yao, F. Wang, W. Lei, Y. Hua, X. Xia et al., Oxygen vacancies boosting ultra-stability of mesoporous ZnO-CoO@n-doped carbon microspheres for asymmetric supercapacitors. Sci. China Mater. 63(10), 2013–2027 (2020). https://doi.org/10.1007/s40843-020-1357-9
L. Su, S. Lei, L. Liu, L. Liu, Y. Zhang et al., Sprinkling MnFe2O4 quantum dots on nitrogen-doped graphene sheets: The formation mechanism and application for high-performance supercapacitor electrodes. J. Mater. Chem. A 6(21), 9997–10007 (2018). https://doi.org/10.1039/c8ta02982b
H. Zeng, M.H. Oubla, X. Zhong, N. Alonso-Vante, F. Du et al., Rational defect and anion chemistries in Co3O4 for enhanced oxygen evolution reaction. Appl. Catal. B-Environ. 281, 119535 (2021). https://doi.org/10.1016/j.apcatb.2020.119535
C. Ren, X. Jia, W. Zhang, D. Hou, Z. Xia et al., Hierarchical porous integrated Co1-xS/CoFe2O4@RGO nanoflowers fabricated via temperature-controlled in situ calcining sulfurization of multivariate CoFe-MOF-74@RGO for high-performance supercapacitor. Adv. Funct. Mater. 30(45), 2004519 (2020). https://doi.org/10.1002/adfm.202004519
H.-S. Kim, J.B. Cook, H. Lin, J.S. Ko, S.H. Tolbert et al., Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nat. Mater. 16(4), 454 (2017). https://doi.org/10.1038/nmat4810
J. Yang, X. Xiao, P. Chen, K. Zhu, K. Cheng et al., Creating oxygen-vacancies in MoO3-x nanobelts toward high volumetric energy-density asymmetric supercapacitors with long lifespan. Nano Energy 58, 455–465 (2019). https://doi.org/10.1016/j.nanoen.2019.01.071
S. Yang, Y. Liu, Y. Hao, X. Yang, W.A. Goddard et al., Oxygen-vacancy abundant ultrafine Co3O4/graphene composites for high-rate supercapacitor electrodes. Adv. Sci. 5(4), 1700659 (2018). https://doi.org/10.1002/advs.201700659
Q.-L. Wu, S.-X. Zhao, L. Yu, X.-X. Zheng, Y.-F. Wang et al., Oxygen vacancy-enriched MoO3-x nanobelts for asymmetric supercapacitors with excellent room/low temperature performance. J. Mater. Chem. A 7(21), 13205–13214 (2019). https://doi.org/10.1039/c9ta03471d
X. Zheng, G. Wang, F. Huang, H. Liu, C. Gong et al., Liquid phase exfoliated hexagonal boron nitride/graphene heterostructure based electrode toward asymmetric supercapacitor application. Front. Chem. 7, 00544 (2019). https://doi.org/10.3389/fchem.2019.00544
Z. Gao, C. Chen, J. Chang, L. Chen, P. Wang et al., Porous Co3S4@Ni3S4 heterostructure arrays electrode with vertical electrons and ions channels for efficient hybrid supercapacitor. Chem. Eng. J. 343, 572–582 (2018). https://doi.org/10.1016/j.cej.2018.03.042
S. Saha, P. Samanta, N.C. Murmu, T. Kuila, A review on the heterostructure nanomaterials for supercapacitor application. J. Energy Storage 17, 181–202 (2018). https://doi.org/10.1016/j.est.2018.03.006
J.-C. Liu, Z.-H. Huang, T.-Y. Ma, Aqueous supercapacitor with ultrahigh voltage window beyond 2.0 volt. Small Struct. 1(1), 2000020 (2020). https://doi.org/10.1002/sstr.202000020
L. Wan, C. He, D. Chen, J. Liu, Y. Zhang et al., In situ grown NiFeP@NiCo2S4 nanosheet arrays on carbon cloth for asymmetric supercapacitors. Chem. Eng. J. 399, 125778 (2020). https://doi.org/10.1016/j.cej.2020.125778
Y. Yan, A. Li, C. Lu, T. Zhai, S. Lu et al., Double-layered yolk-shell microspheres with NiCo2S4-Ni9S8-C hetero-interfaces as advanced battery-type electrode for hybrid supercapacitors. Chem. Eng. J. 396, 125316 (2020). https://doi.org/10.1016/j.cej.2020.125316
T. Dang, D. Wei, G. Zhang, L. Wang, Q. Li et al., Homologous NiCoP/CoP hetero-nanosheets supported on N-doped carbon nanotubes for high-rate hybrid supercapacitors. Electrochim. Acta 341, 135988 (2020). https://doi.org/10.1016/j.electacta.2020.135988