Graphene Quantum Dot-Mediated Atom-Layer Semiconductor Electrocatalyst for Hydrogen Evolution
Corresponding Author: Liang Wang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 217
Abstract
The hydrogen evolution reaction performance of semiconducting 2H-phase molybdenum disulfide (2H-MoS2) presents a significant hurdle in realizing its full potential applications. Here, we utilize theoretical calculations to predict possible functionalized graphene quantum dots (GQDs), which can enhance HER activity of bulk MoS2. Subsequently, we design a functionalized GQD-induced in-situ bottom-up strategy to fabricate near atom-layer 2H-MoS2 nanosheets mediated with GQDs (ALQD) by modulating the concentration of electron withdrawing/donating functional groups. Experimental results reveal that the introduction of a series of functionalized GQDs during the synthesis of ALQD plays a crucial role. Notably, the higher the concentration and strength of electron-withdrawing functional groups on GQDs, the thinner and more active the resulting ALQD are. Remarkably, the synthesized near atom-layer ALQD-SO3 demonstrate significantly improved HER performance. Our GQD-induced strategy provides a simple and efficient approach for expanding the catalytic application of MoS2. Furthermore, it holds substantial potential for developing nanosheets in other transition-metal dichalcogenide materials.
Highlights:
1 The functional groups on graphene quantum dots (GQDs) for boosting the formation of MoS2 nanosheets via theoretical calculations were predicted.
2 Near atom-layer-QD@SO3 with about 2 nm were synthesized using a functionalized GQD-induced in-situ bottom-up approach.
3 Mechanistic insight on the role of functionalized GQDs was elaborated, namely, electron-withdrawing group functionalized GQDs facilitate the formation of nanosheet architectures of MoS2 compared to electron-donating group.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch et al., Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100 (2007). https://doi.org/10.1126/science.1141483
- K.C. Knirsch, N.C. Berner, H.C. Nerl, C.S. Cucinotta, Z. Gholamvand et al., Basal-plane functionalization of chemically exfoliated molybdenum disulfide by diazonium salts. ACS Nano 9, 6018 (2015). https://doi.org/10.1021/acsnano.5b00965
- Z.Y. Wu, T. Liao, S. Wang, J.A. Mudiyanselage, A.S. Micallef et al., Conversion of catalytically inert 2D bismuth oxide nanosheets for effective electrochemical hydrogen evolution reaction catalysis via oxygen vacancy concentration modulation. Nano-Micro Lett. 14, 90 (2022). https://doi.org/10.1007/s40820-022-00832-6
- Y. An, A. Kuc, P. Petkov, M. Lozada-Hidalgo, T. Heine, On the chemistry and diffusion of hydrogen in the interstitial space of layered crystals h-BN, MoS2, and graphite. Small 15, 1901722 (2019). https://doi.org/10.1002/smll.201901722
- Y.L. Niu, X. Teng, S.Q. Gong, M.Z. Xu, S.G. Sun et al., Engineering two-phase bifunctional oxygen electrocatalysts with tunable and synergetic components for flexible Zn–air batteries. Nano-Micro Lett. 13, 126 (2021). https://doi.org/10.1007/s40820-021-00650-2
- X.Y. Chia, M. Pumera, Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal. 1, 909 (2018). https://doi.org/10.1038/s41929-018-0181-7
- M. Fan, L. Cui, X. He, X. Zou, Emerging heterogeneous supports for efficient electrocatalysis. Small Methods 6, e2200855 (2022). https://doi.org/10.1002/smtd.202200855
- Q. Fu, J. Han, X. Wang, P. Xu, T. Yao et al., 2D transition metal dichalcogenides: design, modulation, and challenges in electrocatalysis. Adv. Mater. 33, 07818 (2021). https://doi.org/10.1002/adma.201907818
- G.F. Qian, J.L. Chen, T.Q. Yu, L. Luo, S.B. Yin, N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet heterojunction for enhanced water electrolysis activity at high current density. Nano-Micro Lett. 13, 77 (2021). https://doi.org/10.1007/s40820-021-00607-5
- Y.J. Yang, Y.H. Yu, J. Li, Q.R. Chen, Y.L. Du et al., Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction. Nano-Micro Lett. 13, 160 (2021). https://doi.org/10.1007/s40820-021-00679-3
- Y. Cao, Roadmap and direction toward high-performance MoS2 hydrogen evolution catalysts. ACS Nano 15, 11014 (2021). https://doi.org/10.1021/acsnano.1c01879
- X. Zhang, F. Jia, S. Song, Recent advances in structural engineering of molybdenum disulfide for electrocatalytic hydrogen evolution reaction. Chem. Eng. J. 405, 127013 (2021). https://doi.org/10.1016/j.cej.2020.127013
- Y.F. Huang, R.J. Nielsen, W.A. Goddard, Reaction mechanism for the hydrogen evolution reaction on the basal plane sulfur vacancy site of MoS2 using grand canonical potential kinetics. J. Am. Chem. Soc. 140, 16773 (2018). https://doi.org/10.1021/jacs.8b10016
- K. Kang, S. Xie, L. Huang, Y. Han, P.Y. Huang et al., High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656 (2015). https://doi.org/10.1038/nature14417
- J. Shi, P. Yu, F. Liu, P. He, R. Wang et al., 3R MoS2 with broken inversion symmetry: a promising ultrathin nonlinear optical device. Adv. Mater. 29, 1701486 (2017). https://doi.org/10.1002/adma.201701486
- X.X. Han, X.L. Tong, X.C. Liu, A. Chen, X.D. Wen et al., Hydrogen evolution reaction on hybrid catalysts of vertical MoS2 nanosheets and hydrogenated graphene. ACS Catal. 8, 1828 (2018). https://doi.org/10.1021/acscatal.7b03316
- G.F. Qian, J.L. Chen, T.Q. Yu, J.C. Liu, L. Luo et al., Three-phase heterojunction NiMo-based nano-needle for water splitting at industrial alkaline condition. Nano-Micro Lett. 14, 20 (2022). https://doi.org/10.1007/s40820-021-00744-x
- H. Zhang, J.G. Gu, Y.L. Zhang, H.Z. Guo, S.N. Zhang et al., Graphene quantum dots modulate stress granule assembly and prevent abnormal phase transition of fused in sarcoma protein. ACS Nano 17, 10129–10141 (2023). https://doi.org/10.1002/adma.202209086
- L. Wang, B. Wu, W. Li, Z. Li, J. Zhan et al., Industrial production of ultra-stable sulfonated graphene quantum dots for golgi apparatus imaging. J. Mater. Chem. B 5, 5355 (2017). https://doi.org/10.1039/c7tb01348e
- T. Zhang, W. Li, K. Huang, H. Guo, Z. Li et al., Regulation of functional groups on graphene quantum dots directs selective CO2 to CH4 conversion. Nat. Commun. 12, 5265 (2021). https://doi.org/10.1038/s41467-021-25640-1
- L. Zhou, H.Z. Guo, Z.M. Wang, L. Wang, Achieving efficient incorporation of electron-withdrawing sites into carbon nitride nanosheets for boosting hydrogen generation. Carbon 213, 118249 (2023). https://doi.org/10.1016/j.carbon.2023.118249
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1997). https://doi.org/10.1103/PhysRevLett.78.1396
- S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787 (2006). https://doi.org/10.1002/jcc.20495
- A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J.K. Nørskov, How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311 (2010). https://doi.org/10.1039/C0EE00071J
- P.P. Ewald, Die berechnung optischer und elektrostatischer gitterpotentiale. Ann. Phys. (1920). https://doi.org/10.1002/andp.19213690304
- S. Nose, A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 100, 189 (2002). https://doi.org/10.1080/00268970110089117
- H. Hu, X. Zhang, X. Zhang, L. Wu, V.L. Zhang et al., Probing angle-resolved reflection signatures of intralayer and interlayer excitons in monolayer and bilayer MoS2. Nano Res. 16, 7844–7850 (2021). https://doi.org/10.1007/s12274-022-5292-4
- J. Zhang, W. Li, J. Wang, X. Pu, G. Zhang et al., Engineering p-band center of oxygen boosting h+ intercalation in δ-MnS2 for aqueous zinc ion batteries. Angew. Chem. Int. Ed. 62, e202215654 (2023). https://doi.org/10.1002/anie.202215654
- X. Hai, W. Zhou, K. Chang, H. Pang, H.M. Liu et al., Engineering the crystallinity of MoS2 monolayers for highly efficient solar hydrogen production. J. Mater. Chem. A 5, 8591 (2017). https://doi.org/10.1039/c7ta00953d
- Z.K. Liu, W.D. Hou, H.Z. Guo, Z.M. Wang, L. Wang et al., Functional group modulation in carbon quantum dots for accelerating photocatalytic CO2 reduction ACS Appl. Mater. Interfaces 15, 33868–33877 (2023). https://doi.org/10.1021/acsami.3c05440
- Y. Katagiri, T. Nakamura, A. Ishii, C. Ohata, M. Hasegawa et al., Gate-tunable atomically thin lateral MoS2 schottky junction patterned by electron beam. Nano Lett. 16, 3788 (2016). https://doi.org/10.1021/acs.nanolett.6b01186
- Y. Sun, Y.P. Zang, W.Z. Tian, X.J. Yu, J.Z. Qi et al., Plasma-induced large-area N, Pt-doping and phase engineering of MoS2 nanosheets for alkaline hydrogen evolution. Energy Environ. Sci. 15, 1201 (2022). https://doi.org/10.1039/d1ee03825g
- Y. Zhou, J.V. Pondick, J.L. Silva, J.M. Woods, D.J. Hynek et al., Unveiling the interfacial effects for enhanced hydrogen evolution reaction on MoS2/WTe2 hybrid structures. Small 15, 1900078 (2019). https://doi.org/10.1002/smll.201900078
- Y.F. Yu, G.H. Nam, Q.Y. He, X.J. Wu, K. Zhang et al., High phase-purity 1T’-MoS2- and 1T’-MoSe2- layered crystals. Nat. Chem. 10, 638 (2018). https://doi.org/10.1038/s41557-018-0035-6
- Z.F. Zhu, Y.S. Zou, W.D. Hu, Y.B. Li, Y. Gu et al., Near-infrared plasmonic 2D semimetals for applications in communication and biology. Adv. Funct. Mater. 26, 1793 (2016). https://doi.org/10.1002/adfm.201504884
- Y. Kang, S. Najmaei, Z. Liu, Y. Bao, Y. Wang et al., Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. Adv. Mater. 26, 6467 (2014). https://doi.org/10.1002/adma.201401802
- Y. Wang, T. Shi, Q.Y. Fan, Y. Liu, A. Zhang et al., Discovering surface structure and the mechanism of graphene oxide-triggered CeO2–WO3/TiO2 catalysts for no abatement with NH3. ACS Catal. 12, 8386 (2022). https://doi.org/10.1021/acscatal.2c01364
- S.P. Sasikala, Y. Singh, L. Bing, T. Yun, S.H. Koo et al., Longitudinal unzipping of 2D transition metal dichalcogenides. Nat. Commun. 11, 5032 (2020). https://doi.org/10.1038/s41467-020-18810-0
- H. Liu, Y. Zhao, Y.D. Liu, T.T. Liang, Y.H. Tian et al., Macroporous SnO2/MoS2 inverse opal hierarchitecture for highly efficient trace NO2 gas sensing. Chem. Commun. 59, 2931 (2023). https://doi.org/10.1039/d2cc06656d
- X. Wang, Y.W. Zhang, H.N. Si, Q.H. Zhang, J. Wu et al., Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J. Am. Chem. Soc. 142, 4298 (2020). https://doi.org/10.1021/jacs.9b12113
- W.F. Zhai, Y. Chen, Y.D. Liu, T. Sakthivel, Y.Y. Ma et al., Bimetal-incorporated black phosphorene with surface electron deficiency for efficient anti-reconstruction water electrolysis. Adv. Funct. Mater. 33, 2301565 (2023). https://doi.org/10.1002/adfm.202301565
- F. Guo, Y. Wang, T. Kang, C. Liu, Y. Shen et al., A Li-dual carbon composite as stable anode material for Li batteries. Energy Storage Mater. 15, 116 (2018). https://doi.org/10.1016/j.ensm.2018.03.018
- Y. Li, H. Zhang, T. Xu, Z. Lu, X. Wu et al., Under-water superaerophobic pine-shaped Pt nanoarray electrode for ultrahigh-performance. Adv. Funct. Mater. 25, 1737 (2015). https://doi.org/10.1002/adfm.201404250
- H.Z. Guo, X. Zhang, Z.Y. Chen, L. Zhang, L. Wang et al., High-energy short-wave blue light conversion films via carbon quantum dots for preventing retinal photochemical damage. Carbon 199, 431 (2022). https://doi.org/10.1016/j.carbon.2022.08.003
- Z.M. Wang, G. Li, W.D. Hou, H.Z. Guo, L. Wang et al., Insights into the use of Te-O pairs as active centers of carbon nanosheets for efficient electrochemical oxygen reduction. ACS Nano 17, 8671 (2023). https://doi.org/10.1021/acsnano.3c01662
- X. Ai, X. Zou, H. Chen, Y. Su, X. Feng et al., Transition-metal-boron intermetallics with strong interatomic d-sp orbital hybridization for high-performance electrocatalysis. Angew. Chem. Int. Ed. 59, 3961 (2020). https://doi.org/10.1002/anie.201915663
- Y.D. Liu, T. Sakthivel, F. Hu, Y.H. Tian, D.S. Wu et al., Enhancing the d/p-band center proximity with amorphous-crystalline interface coupling for boosted pH-robust water electrolysis. Adv. Energy. Mater. 13, 202203797 (2023). https://doi.org/10.1002/aenm.202203797
- K. Chen, Z.M. Wang, L. Wang, X.Z. Wu, B.J. Hu et al., Boron nanosheet-supported Rh catalysts for hydrogen evolution: a new territory for the strong metal-support interaction effect. Nano-Micro Lett. 13, 138 (2021). https://doi.org/10.1007/s40820-021-00662-y
- C. Wu, S. Ding, D. Liu, D. Li, S. Chen et al., A unique Ru-N4-P coordinated structure synergistically waking up the nonmetal p active site for hydrogen production. AAAS Res. (2020). https://doi.org/10.34133/2020/5860712
- J. Liu, T. Kong, H.M. Xiong, Mulberry-leaves-derived red-emissive carbon dots for feeding silkworms to produce brightly fluorescent silk. Adv. Mater. 34, e2200152 (2022). https://doi.org/10.1002/adma.202200152
- Q. He, D. Tian, H. Jiang, D. Cao, S. Wei et al., Achieving efficient alkaline hydrogen evolution reaction over a Ni5P4 catalyst incorporating single-atomic Ru sites. Adv. Mater. 32, e1906972 (2020). https://doi.org/10.1002/adma.201906972
- A. Radwan, H.H. Jin, D.P. He, S.C. Mu, Design engineering, synthesis protocols, and energy applications of MOF-Derived electrocatalysts. Nano-Micro Lett. 13, 132 (2021). https://doi.org/10.1007/s40820-021-00656-w
- M.M. Fan, Z.M. Wang, K. Sun, A. Wang, Y.Y. Zhao et al., N-B-OH site-activated graphene quantum dots for boosting electrochemical hydrogen peroxide production. Adv. Mater. 35, 2209086 (2023). https://doi.org/10.1002/adma.22209086
- X.Y. Shen, Z.M. Wang, H.Z. Guo, Z.D. Lei, Z. Liu et al., Solvent engineering of oxygen-enriched carbon dots for efficient electrochemical hydrogen peroxide production. Small (2023). https://doi.org/10.1002/smll.2303156
- T.B. Song, Z.H. Huang, X.R. Zhang, J.W. Ni, H.M. Xiong, Nitrogen-doped and sulfonated carbon dots as a multifunctional additive to realize highly reversible aqueous Zinc-ion batteries. Small (2023). https://doi.org/10.1002/smll.202205558
- G.D. Fu, X.M. Kang, Y. Zhang, X.Q. Yang, L. Wang et al., Coordination effect-promoted durable Ni(OH)2 for energy-saving hydrogen evolution from water/methanol Co-electrocatalysis. Nano-Micro Lett. 14, 200 (2022). https://doi.org/10.1007/s40820-022-00940-3
- J. Zhou, J. Lin, H. Sims, C. Jiang, C. Cong et al., Synthesis of Co-doped MoS2 monolayers with enhanced valley splitting. Adv. Mater. 32, e1906536 (2020). https://doi.org/10.1002/adma.201906536
- R.M. Yadav, Z. Li, T. Zhang, O. Sahin, S. Roy et al., Amine-functionalized carbon nanodot electrocatalysts converting carbon dioxide to methane. Adv. Mater. 34, e2105690 (2022). https://doi.org/10.1002/adma.202105690
- H.M. Jiang, L.T. Yan, S. Zhang, Y.C. Zhao, X. Yang et al., Electrochemical surface restructuring of phosphorus-doped carbon@MoP electrocatalysts for hydrogen evolution. Nano-Micro Lett. 13, 215 (2021). https://doi.org/10.1007/s40820-021-00737-w
References
T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch et al., Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100 (2007). https://doi.org/10.1126/science.1141483
K.C. Knirsch, N.C. Berner, H.C. Nerl, C.S. Cucinotta, Z. Gholamvand et al., Basal-plane functionalization of chemically exfoliated molybdenum disulfide by diazonium salts. ACS Nano 9, 6018 (2015). https://doi.org/10.1021/acsnano.5b00965
Z.Y. Wu, T. Liao, S. Wang, J.A. Mudiyanselage, A.S. Micallef et al., Conversion of catalytically inert 2D bismuth oxide nanosheets for effective electrochemical hydrogen evolution reaction catalysis via oxygen vacancy concentration modulation. Nano-Micro Lett. 14, 90 (2022). https://doi.org/10.1007/s40820-022-00832-6
Y. An, A. Kuc, P. Petkov, M. Lozada-Hidalgo, T. Heine, On the chemistry and diffusion of hydrogen in the interstitial space of layered crystals h-BN, MoS2, and graphite. Small 15, 1901722 (2019). https://doi.org/10.1002/smll.201901722
Y.L. Niu, X. Teng, S.Q. Gong, M.Z. Xu, S.G. Sun et al., Engineering two-phase bifunctional oxygen electrocatalysts with tunable and synergetic components for flexible Zn–air batteries. Nano-Micro Lett. 13, 126 (2021). https://doi.org/10.1007/s40820-021-00650-2
X.Y. Chia, M. Pumera, Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal. 1, 909 (2018). https://doi.org/10.1038/s41929-018-0181-7
M. Fan, L. Cui, X. He, X. Zou, Emerging heterogeneous supports for efficient electrocatalysis. Small Methods 6, e2200855 (2022). https://doi.org/10.1002/smtd.202200855
Q. Fu, J. Han, X. Wang, P. Xu, T. Yao et al., 2D transition metal dichalcogenides: design, modulation, and challenges in electrocatalysis. Adv. Mater. 33, 07818 (2021). https://doi.org/10.1002/adma.201907818
G.F. Qian, J.L. Chen, T.Q. Yu, L. Luo, S.B. Yin, N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet heterojunction for enhanced water electrolysis activity at high current density. Nano-Micro Lett. 13, 77 (2021). https://doi.org/10.1007/s40820-021-00607-5
Y.J. Yang, Y.H. Yu, J. Li, Q.R. Chen, Y.L. Du et al., Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction. Nano-Micro Lett. 13, 160 (2021). https://doi.org/10.1007/s40820-021-00679-3
Y. Cao, Roadmap and direction toward high-performance MoS2 hydrogen evolution catalysts. ACS Nano 15, 11014 (2021). https://doi.org/10.1021/acsnano.1c01879
X. Zhang, F. Jia, S. Song, Recent advances in structural engineering of molybdenum disulfide for electrocatalytic hydrogen evolution reaction. Chem. Eng. J. 405, 127013 (2021). https://doi.org/10.1016/j.cej.2020.127013
Y.F. Huang, R.J. Nielsen, W.A. Goddard, Reaction mechanism for the hydrogen evolution reaction on the basal plane sulfur vacancy site of MoS2 using grand canonical potential kinetics. J. Am. Chem. Soc. 140, 16773 (2018). https://doi.org/10.1021/jacs.8b10016
K. Kang, S. Xie, L. Huang, Y. Han, P.Y. Huang et al., High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656 (2015). https://doi.org/10.1038/nature14417
J. Shi, P. Yu, F. Liu, P. He, R. Wang et al., 3R MoS2 with broken inversion symmetry: a promising ultrathin nonlinear optical device. Adv. Mater. 29, 1701486 (2017). https://doi.org/10.1002/adma.201701486
X.X. Han, X.L. Tong, X.C. Liu, A. Chen, X.D. Wen et al., Hydrogen evolution reaction on hybrid catalysts of vertical MoS2 nanosheets and hydrogenated graphene. ACS Catal. 8, 1828 (2018). https://doi.org/10.1021/acscatal.7b03316
G.F. Qian, J.L. Chen, T.Q. Yu, J.C. Liu, L. Luo et al., Three-phase heterojunction NiMo-based nano-needle for water splitting at industrial alkaline condition. Nano-Micro Lett. 14, 20 (2022). https://doi.org/10.1007/s40820-021-00744-x
H. Zhang, J.G. Gu, Y.L. Zhang, H.Z. Guo, S.N. Zhang et al., Graphene quantum dots modulate stress granule assembly and prevent abnormal phase transition of fused in sarcoma protein. ACS Nano 17, 10129–10141 (2023). https://doi.org/10.1002/adma.202209086
L. Wang, B. Wu, W. Li, Z. Li, J. Zhan et al., Industrial production of ultra-stable sulfonated graphene quantum dots for golgi apparatus imaging. J. Mater. Chem. B 5, 5355 (2017). https://doi.org/10.1039/c7tb01348e
T. Zhang, W. Li, K. Huang, H. Guo, Z. Li et al., Regulation of functional groups on graphene quantum dots directs selective CO2 to CH4 conversion. Nat. Commun. 12, 5265 (2021). https://doi.org/10.1038/s41467-021-25640-1
L. Zhou, H.Z. Guo, Z.M. Wang, L. Wang, Achieving efficient incorporation of electron-withdrawing sites into carbon nitride nanosheets for boosting hydrogen generation. Carbon 213, 118249 (2023). https://doi.org/10.1016/j.carbon.2023.118249
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1997). https://doi.org/10.1103/PhysRevLett.78.1396
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787 (2006). https://doi.org/10.1002/jcc.20495
A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J.K. Nørskov, How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311 (2010). https://doi.org/10.1039/C0EE00071J
P.P. Ewald, Die berechnung optischer und elektrostatischer gitterpotentiale. Ann. Phys. (1920). https://doi.org/10.1002/andp.19213690304
S. Nose, A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 100, 189 (2002). https://doi.org/10.1080/00268970110089117
H. Hu, X. Zhang, X. Zhang, L. Wu, V.L. Zhang et al., Probing angle-resolved reflection signatures of intralayer and interlayer excitons in monolayer and bilayer MoS2. Nano Res. 16, 7844–7850 (2021). https://doi.org/10.1007/s12274-022-5292-4
J. Zhang, W. Li, J. Wang, X. Pu, G. Zhang et al., Engineering p-band center of oxygen boosting h+ intercalation in δ-MnS2 for aqueous zinc ion batteries. Angew. Chem. Int. Ed. 62, e202215654 (2023). https://doi.org/10.1002/anie.202215654
X. Hai, W. Zhou, K. Chang, H. Pang, H.M. Liu et al., Engineering the crystallinity of MoS2 monolayers for highly efficient solar hydrogen production. J. Mater. Chem. A 5, 8591 (2017). https://doi.org/10.1039/c7ta00953d
Z.K. Liu, W.D. Hou, H.Z. Guo, Z.M. Wang, L. Wang et al., Functional group modulation in carbon quantum dots for accelerating photocatalytic CO2 reduction ACS Appl. Mater. Interfaces 15, 33868–33877 (2023). https://doi.org/10.1021/acsami.3c05440
Y. Katagiri, T. Nakamura, A. Ishii, C. Ohata, M. Hasegawa et al., Gate-tunable atomically thin lateral MoS2 schottky junction patterned by electron beam. Nano Lett. 16, 3788 (2016). https://doi.org/10.1021/acs.nanolett.6b01186
Y. Sun, Y.P. Zang, W.Z. Tian, X.J. Yu, J.Z. Qi et al., Plasma-induced large-area N, Pt-doping and phase engineering of MoS2 nanosheets for alkaline hydrogen evolution. Energy Environ. Sci. 15, 1201 (2022). https://doi.org/10.1039/d1ee03825g
Y. Zhou, J.V. Pondick, J.L. Silva, J.M. Woods, D.J. Hynek et al., Unveiling the interfacial effects for enhanced hydrogen evolution reaction on MoS2/WTe2 hybrid structures. Small 15, 1900078 (2019). https://doi.org/10.1002/smll.201900078
Y.F. Yu, G.H. Nam, Q.Y. He, X.J. Wu, K. Zhang et al., High phase-purity 1T’-MoS2- and 1T’-MoSe2- layered crystals. Nat. Chem. 10, 638 (2018). https://doi.org/10.1038/s41557-018-0035-6
Z.F. Zhu, Y.S. Zou, W.D. Hu, Y.B. Li, Y. Gu et al., Near-infrared plasmonic 2D semimetals for applications in communication and biology. Adv. Funct. Mater. 26, 1793 (2016). https://doi.org/10.1002/adfm.201504884
Y. Kang, S. Najmaei, Z. Liu, Y. Bao, Y. Wang et al., Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. Adv. Mater. 26, 6467 (2014). https://doi.org/10.1002/adma.201401802
Y. Wang, T. Shi, Q.Y. Fan, Y. Liu, A. Zhang et al., Discovering surface structure and the mechanism of graphene oxide-triggered CeO2–WO3/TiO2 catalysts for no abatement with NH3. ACS Catal. 12, 8386 (2022). https://doi.org/10.1021/acscatal.2c01364
S.P. Sasikala, Y. Singh, L. Bing, T. Yun, S.H. Koo et al., Longitudinal unzipping of 2D transition metal dichalcogenides. Nat. Commun. 11, 5032 (2020). https://doi.org/10.1038/s41467-020-18810-0
H. Liu, Y. Zhao, Y.D. Liu, T.T. Liang, Y.H. Tian et al., Macroporous SnO2/MoS2 inverse opal hierarchitecture for highly efficient trace NO2 gas sensing. Chem. Commun. 59, 2931 (2023). https://doi.org/10.1039/d2cc06656d
X. Wang, Y.W. Zhang, H.N. Si, Q.H. Zhang, J. Wu et al., Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J. Am. Chem. Soc. 142, 4298 (2020). https://doi.org/10.1021/jacs.9b12113
W.F. Zhai, Y. Chen, Y.D. Liu, T. Sakthivel, Y.Y. Ma et al., Bimetal-incorporated black phosphorene with surface electron deficiency for efficient anti-reconstruction water electrolysis. Adv. Funct. Mater. 33, 2301565 (2023). https://doi.org/10.1002/adfm.202301565
F. Guo, Y. Wang, T. Kang, C. Liu, Y. Shen et al., A Li-dual carbon composite as stable anode material for Li batteries. Energy Storage Mater. 15, 116 (2018). https://doi.org/10.1016/j.ensm.2018.03.018
Y. Li, H. Zhang, T. Xu, Z. Lu, X. Wu et al., Under-water superaerophobic pine-shaped Pt nanoarray electrode for ultrahigh-performance. Adv. Funct. Mater. 25, 1737 (2015). https://doi.org/10.1002/adfm.201404250
H.Z. Guo, X. Zhang, Z.Y. Chen, L. Zhang, L. Wang et al., High-energy short-wave blue light conversion films via carbon quantum dots for preventing retinal photochemical damage. Carbon 199, 431 (2022). https://doi.org/10.1016/j.carbon.2022.08.003
Z.M. Wang, G. Li, W.D. Hou, H.Z. Guo, L. Wang et al., Insights into the use of Te-O pairs as active centers of carbon nanosheets for efficient electrochemical oxygen reduction. ACS Nano 17, 8671 (2023). https://doi.org/10.1021/acsnano.3c01662
X. Ai, X. Zou, H. Chen, Y. Su, X. Feng et al., Transition-metal-boron intermetallics with strong interatomic d-sp orbital hybridization for high-performance electrocatalysis. Angew. Chem. Int. Ed. 59, 3961 (2020). https://doi.org/10.1002/anie.201915663
Y.D. Liu, T. Sakthivel, F. Hu, Y.H. Tian, D.S. Wu et al., Enhancing the d/p-band center proximity with amorphous-crystalline interface coupling for boosted pH-robust water electrolysis. Adv. Energy. Mater. 13, 202203797 (2023). https://doi.org/10.1002/aenm.202203797
K. Chen, Z.M. Wang, L. Wang, X.Z. Wu, B.J. Hu et al., Boron nanosheet-supported Rh catalysts for hydrogen evolution: a new territory for the strong metal-support interaction effect. Nano-Micro Lett. 13, 138 (2021). https://doi.org/10.1007/s40820-021-00662-y
C. Wu, S. Ding, D. Liu, D. Li, S. Chen et al., A unique Ru-N4-P coordinated structure synergistically waking up the nonmetal p active site for hydrogen production. AAAS Res. (2020). https://doi.org/10.34133/2020/5860712
J. Liu, T. Kong, H.M. Xiong, Mulberry-leaves-derived red-emissive carbon dots for feeding silkworms to produce brightly fluorescent silk. Adv. Mater. 34, e2200152 (2022). https://doi.org/10.1002/adma.202200152
Q. He, D. Tian, H. Jiang, D. Cao, S. Wei et al., Achieving efficient alkaline hydrogen evolution reaction over a Ni5P4 catalyst incorporating single-atomic Ru sites. Adv. Mater. 32, e1906972 (2020). https://doi.org/10.1002/adma.201906972
A. Radwan, H.H. Jin, D.P. He, S.C. Mu, Design engineering, synthesis protocols, and energy applications of MOF-Derived electrocatalysts. Nano-Micro Lett. 13, 132 (2021). https://doi.org/10.1007/s40820-021-00656-w
M.M. Fan, Z.M. Wang, K. Sun, A. Wang, Y.Y. Zhao et al., N-B-OH site-activated graphene quantum dots for boosting electrochemical hydrogen peroxide production. Adv. Mater. 35, 2209086 (2023). https://doi.org/10.1002/adma.22209086
X.Y. Shen, Z.M. Wang, H.Z. Guo, Z.D. Lei, Z. Liu et al., Solvent engineering of oxygen-enriched carbon dots for efficient electrochemical hydrogen peroxide production. Small (2023). https://doi.org/10.1002/smll.2303156
T.B. Song, Z.H. Huang, X.R. Zhang, J.W. Ni, H.M. Xiong, Nitrogen-doped and sulfonated carbon dots as a multifunctional additive to realize highly reversible aqueous Zinc-ion batteries. Small (2023). https://doi.org/10.1002/smll.202205558
G.D. Fu, X.M. Kang, Y. Zhang, X.Q. Yang, L. Wang et al., Coordination effect-promoted durable Ni(OH)2 for energy-saving hydrogen evolution from water/methanol Co-electrocatalysis. Nano-Micro Lett. 14, 200 (2022). https://doi.org/10.1007/s40820-022-00940-3
J. Zhou, J. Lin, H. Sims, C. Jiang, C. Cong et al., Synthesis of Co-doped MoS2 monolayers with enhanced valley splitting. Adv. Mater. 32, e1906536 (2020). https://doi.org/10.1002/adma.201906536
R.M. Yadav, Z. Li, T. Zhang, O. Sahin, S. Roy et al., Amine-functionalized carbon nanodot electrocatalysts converting carbon dioxide to methane. Adv. Mater. 34, e2105690 (2022). https://doi.org/10.1002/adma.202105690
H.M. Jiang, L.T. Yan, S. Zhang, Y.C. Zhao, X. Yang et al., Electrochemical surface restructuring of phosphorus-doped carbon@MoP electrocatalysts for hydrogen evolution. Nano-Micro Lett. 13, 215 (2021). https://doi.org/10.1007/s40820-021-00737-w