Flexible Waterproof Piezoresistive Pressure Sensors with Wide Linear Working Range Based on Conductive Fabrics
Corresponding Author: Yang Lu
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 159
Abstract
Developing flexible sensors with high working performance holds intense interest for diverse applications in leveraging the Internet-of-things (IoT) infrastructures. For flexible piezoresistive sensors, traditionally most efforts are focused on tailoring the sensing materials to enhance the contact resistance variation for improving the sensitivity and working range, and it, however, remains challenging to simultaneously achieve flexible sensor with a linear working range over a high-pressure region (> 100 kPa) and keep a reliable sensitivity. Herein, we devised a laser-engraved silver-coated fabric as “soft” sensor electrode material to markedly advance the flexible sensor’s linear working range to a level of 800 kPa with a high sensitivity of 6.4 kPa−1 yet a fast response time of only 4 ms as well as long-time durability, which was rarely reported before. The integrated sensor successfully routed the wireless signal of pulse rate to the portable smartphone, further demonstrating its potential as a reliable electronic. Along with the rationally building the electrode instead of merely focusing on sensing materials capable of significantly improving the sensor’s performance, we expect that this design concept and sensor system could potentially pave the way for developing more advanced wearable electronics in the future.
Highlights:
1 The laser-engraved method was introduced to fabricate the electrode for the sensor.
2 The sensor showed a wide linear working range, superior sensitivity, and fast response time and also exhibited excellent viability in a wet situation.
3 Wireless integrated network sensors successfully monitored the health states.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Lee, J.Y. Oh, H. Cho, C.W. Joo, H. Yoon et al., Ultraflexible and transparent electroluminescent skin for real-time and super-resolution imaging of pressure distribution. Nat. Commun. 11, 1–11 (2020). https://doi.org/10.1038/s41467-020-14485-9
- S. Sundaram, P. Kellnhofer, Y. Li, J.Y. Zhu, A. Torralba, W. Matusik, Learning the signatures of the human grasp using a scalable tactile glove. Nature 569, 698–702 (2019). https://doi.org/10.1038/s41586-019-1234-z
- Z. Liang, J. Cheng, Q. Zhao, X. Zhao, Z. Han, Y. Chen, Y. Ma, X. Feng, High-performance flexible tactile sensor enabling intelligent haptic perception for a soft prosthetic hand. Adv. Mater. Technol. 4, 1900317 (2019). https://doi.org/10.1002/admt.201900317
- B. Liang, Z. Zhang, W. Chen, D. Lu, L. Yang et al., Direct patterning of carbon nanotube via stamp contact printing process for stretchable and sensitive sensing devices. Nano-Micro Lett. 11, 92 (2019). https://doi.org/10.1007/s40820-019-0323-8
- R.M. Torrente-Rodríguez, J. Tu, Y. Yang, J. Min, M. Wang et al., Investigation of cortisol dynamics in human sweat using a graphene-based wireless mhealth system. Matter 2, 921–937 (2020). https://doi.org/10.1016/j.matt.2020.01.021
- C. Wang, X. Hou, M. Cui, J. Yu, X. Fan et al., An ultra-sensitive and wide measuring range pressure sensor with paper-based CNT film/interdigitated structure. Sci. China Mater. 63, 403–412 (2020). https://doi.org/10.1007/s40843-019-1173-3
- Y. Yang, Y. Song, X. Bo, J. Min, O.S. Pak et al., A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 38, 217–224 (2020). https://doi.org/10.1038/s41587-019-0321-x
- T. Ha, J. Tran, S. Liu, H. Jang, H. Jeong et al., A chest-laminated ultrathin and stretchable e-tattoo for the measurement of electrocardiogram, seismocardiogram, and cardiac time intervals. Adv. Sci. 6, 1900290 (2019). https://doi.org/10.1002/advs.201900290
- R. Shi, Z. Lou, S. Chen, G. Shen, Flexible and transparent capacitive pressure sensor with patterned microstructured composite rubber dielectric for wearable touch keyboard application. Sci. China Mater. 61, 1587–1595 (2018). https://doi.org/10.1007/s40843-018-9267-3
- S. Chen, Z. Lou, D. Chen, Z. Chen, K. Jiang, G. Shen, Highly flexible strain sensor based on ZnO nanowires and P(VDF-TrFE) fibers for wearable electronic device. Sci. China Mater. 59, 173–181 (2016). https://doi.org/10.1007/s40843-016-0128-8
- Q.J. Sun, X.H. Zhao, Y. Zhou, C.C. Yeung, W. Wu et al., Fingertip-skin-inspired highly sensitive and multifunctional sensor with hierarchically structured conductive graphite/polydimethylsiloxane foams. Adv. Funct. Mater. 29, 1808829 (2019). https://doi.org/10.1002/adfm.201808829
- T. Zhang, Z. Li, K. Li, X. Yang, Flexible pressure sensors with wide linearity range and high sensitivity based on selective laser sintering 3D printing. Adv. Mater. Technol. 4, 1900679 (2019). https://doi.org/10.1002/admt.201900679
- Y. Lee, J. Park, S. Cho, Y.E. Shin, H. Lee et al., Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range. ACS Nano 12, 4045–4054 (2018). https://doi.org/10.1021/acsnano.8b01805
- Z. Wang, X. Guan, H. Huang, H. Wang, W. Lin, Z. Peng, Full 3D printing of stretchable piezoresistive sensor with hierarchical porosity and multimodulus architecture. Adv. Funct. Mater. 29, 1807569 (2019). https://doi.org/10.1002/adfm.201807569
- Y. Li, Y.A. Samad, K. Liao, From cotton to wearable pressure sensor. J. Mater. Chem. A 3, 2181–2187 (2015). https://doi.org/10.1039/c4ta05810k
- E. Davoodi, H. Montazerian, R. Haghniaz, A. Rashidi, S. Ahadian et al., 3D-printed ultra-robust surface-doped porous silicone sensors for wearable biomonitoring. ACS Nano 14, 1520–1532 (2020). https://doi.org/10.1021/acsnano.9b06283
- Y. Huang, X. Fan, S.C. Chen, N. Zhao, Emerging technologies of flexible pressure sensors: materials, modeling, devices, and manufacturing. Adv. Funct. Mater. 29, 1808509 (2019). https://doi.org/10.1002/adfm.201808509
- N. Luo, Y. Huang, J. Liu, S.C. Chen, C.P. Wong, N. Zhao, Hollow-structured graphene–silicone-composite-based piezoresistive sensors: decoupled property tuning and bending reliability. Adv. Mater. 29, 1702675 (2017). https://doi.org/10.1002/adma.201702675
- W. Cheng, J. Wang, Z. Ma, K. Yan, Y. Wang, H. Wang, Flexible pressure sensor with high sensitivity and low hysteresis based on a hierarchically microstructured electrode. IEEE Electron Device Lett. 39, 288–291 (2018). https://doi.org/10.1109/LED.2017.2784538
- H. Chang, S. Kim, T.H. Kang, S.W. Lee, G.T. Yang, K.Y. Lee, H. Yi, Wearable piezoresistive sensors with ultrawide pressure range and circuit compatibility based on conductive-island-bridging nanonetworks. ACS Appl. Mater. Interfaces 11, 32291–32300 (2019). https://doi.org/10.1021/acsami.9b10194
- K. Wang, Z. Lou, L. Wang, L. Zhao, S. Zhao et al., Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano 13, 9139–9147 (2019). https://doi.org/10.1021/acsnano.9b03454
- C. Zhang, W. Bin Ye, K. Zhou, H.Y. Chen, J.Q. Yang et al., Bioinspired artificial sensory nerve based on nafion memristor. Adv. Funct. Mater. 29, 1808783 (2019). https://doi.org/10.1002/adfm.201808783
- J. Shi, L. Wang, Z. Dai, L. Zhao, M. Du, H. Li, Y. Fang, Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range. Small 14, 1800819 (2018). https://doi.org/10.1002/smll.201800819
- L. Gao, R. Fan, W. Zhou, X. Hu, K. Cao, W. Wang, Y. Lu, Biomimetic and radially symmetric graphene aerogel for flexible electronics. Adv. Electron. Mater. 5, 1900353 (2019). https://doi.org/10.1002/aelm.201900353
- L. Gao, Y. Wang, X. Hu, W. Zhou, K. Cao, Y. Wang, W. Wang, Y. Lu, Cellular carbon-film-based flexible sensor and waterproof supercapacitors. ACS Appl. Mater. Interfaces 11, 26288–26297 (2019). https://doi.org/10.1021/acsami.9b09438
- L. Gao, K. Cao, X. Hu, R. Xiao, B. Gan, W. Wang, Y. Lu, Nano electromechanical approach for flexible piezoresistive sensor. Appl. Mater. Today 18, 100475 (2020). https://doi.org/10.1016/j.apmt.2019.100475
- Y. Ling, T. An, L.W. Yap, B. Zhu, S. Gong, W. Cheng, Disruptive, soft, wearable sensors. Adv. Mater. 32, 1904664 (2019). https://doi.org/10.1002/adma.201904664
- S. Chen, Y. Song, F. Xu, Flexible and highly sensitive resistive pressure sensor based on carbonized crepe paper with corrugated structure. ACS Appl. Mater. Interfaces 10, 34646–34654 (2018). https://doi.org/10.1021/acsami.8b13535
- X. Wu, Y. Khan, J. Ting, J. Zhu, S. Ono et al., Large-area fabrication of high-performance flexible and wearable pressure sensors. Adv. Electron. Mater. 6, 1901310 (2020). https://doi.org/10.1002/aelm.201901310
- X. Wang, Y. Gu, Z. Xiong, Z. Cui, T. Zhang, Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 26, 1336–1342 (2014). https://doi.org/10.1002/adma.201304248
- H. Bin Yao, J. Ge, C.F. Wang, X. Wang, W. Hu, Z.J. Zheng, Y. Ni, S.H. Yu, A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design. Adv. Mater. 25, 6692–6698 (2013). https://doi.org/10.1002/adma.201303041
- Y. Zhu, J. Li, H. Cai, Y. Wu, H. Ding, N. Pan, X. Wang, Highly sensitive and skin-like pressure sensor based on asymmetric double-layered structures of reduced graphite oxide. Sens. Actuators B 255, 1262–1267 (2018). https://doi.org/10.1016/j.snb.2017.08.116
- X. Dong, Y. Wei, S. Chen, Y. Lin, L. Liu, J. Li, A linear and large-range pressure sensor based on a graphene/silver nanowires nanobiocomposites network and a hierarchical structural sponge. Compos. Sci. Technol. 155, 108–116 (2018). https://doi.org/10.1016/j.compscitech.2017.11.028
- S. Chun, Y. Kim, H.S. Oh, G. Bae, W. Park, A highly sensitive pressure sensor using a double-layered graphene structure for tactile sensing. Nanoscale 7, 11652–11659 (2015). https://doi.org/10.1039/c5nr00076a
- Y. Joo, J. Byun, N. Seong, J. Ha, H. Kim et al., Silver nanowire-embedded PDMS with a multiscale structure for a highly sensitive and robust flexible pressure sensor. Nanoscale 7, 6208–6215 (2015). https://doi.org/10.1039/c5nr00313j
- Y. Wei, S. Chen, Y. Lin, X. Yuan, L. Liu, Silver nanowires coated on cotton for flexible pressure sensors. J. Mater. Chem. C 4, 935–943 (2016). https://doi.org/10.1039/c5tc03419a
- Y. Wei, S. Chen, X. Dong, Y. Lin, L. Liu, Flexible piezoresistive sensors based on “dynamic bridging effect” of silver nanowires toward graphene. Carbon 113, 395–403 (2017). https://doi.org/10.1016/j.carbon.2016.11.027
- Z. Zhan, R. Lin, V.T. Tran, J. An, Y. Wei, H. Du, T. Tran, W. Lu, Paper/carbon nanotube-based wearable pressure sensor for physiological signal acquisition and soft robotic skin. ACS Appl. Mater. Interfaces 9, 37921–37928 (2017). https://doi.org/10.1021/acsami.7b10820
- Y. Fu, S. Zhao, L. Wang, R. Zhu, A wearable sensor using structured silver-particle reinforced PDMS for radial arterial pulse wave monitoring. Adv. Healthc. Mater. 8, 1900633 (2019). https://doi.org/10.1002/adhm.201900633
- T. Yang, X. Jiang, Y. Zhong, X. Zhao, S. Lin et al., A wearable and highly sensitive graphene strain sensor for precise home-based pulse wave monitoring. ACS Sens. 2, 967–974 (2017). https://doi.org/10.1021/acssensors.7b00230
- J. He, P. Xiao, W. Lu, J. Shi, L. Zhang et al., A Universal high accuracy wearable pulse monitoring system via high sensitivity and large linearity graphene pressure sensor. Nano Energy 59, 422–433 (2019). https://doi.org/10.1016/j.nanoen.2019.02.036
References
B. Lee, J.Y. Oh, H. Cho, C.W. Joo, H. Yoon et al., Ultraflexible and transparent electroluminescent skin for real-time and super-resolution imaging of pressure distribution. Nat. Commun. 11, 1–11 (2020). https://doi.org/10.1038/s41467-020-14485-9
S. Sundaram, P. Kellnhofer, Y. Li, J.Y. Zhu, A. Torralba, W. Matusik, Learning the signatures of the human grasp using a scalable tactile glove. Nature 569, 698–702 (2019). https://doi.org/10.1038/s41586-019-1234-z
Z. Liang, J. Cheng, Q. Zhao, X. Zhao, Z. Han, Y. Chen, Y. Ma, X. Feng, High-performance flexible tactile sensor enabling intelligent haptic perception for a soft prosthetic hand. Adv. Mater. Technol. 4, 1900317 (2019). https://doi.org/10.1002/admt.201900317
B. Liang, Z. Zhang, W. Chen, D. Lu, L. Yang et al., Direct patterning of carbon nanotube via stamp contact printing process for stretchable and sensitive sensing devices. Nano-Micro Lett. 11, 92 (2019). https://doi.org/10.1007/s40820-019-0323-8
R.M. Torrente-Rodríguez, J. Tu, Y. Yang, J. Min, M. Wang et al., Investigation of cortisol dynamics in human sweat using a graphene-based wireless mhealth system. Matter 2, 921–937 (2020). https://doi.org/10.1016/j.matt.2020.01.021
C. Wang, X. Hou, M. Cui, J. Yu, X. Fan et al., An ultra-sensitive and wide measuring range pressure sensor with paper-based CNT film/interdigitated structure. Sci. China Mater. 63, 403–412 (2020). https://doi.org/10.1007/s40843-019-1173-3
Y. Yang, Y. Song, X. Bo, J. Min, O.S. Pak et al., A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 38, 217–224 (2020). https://doi.org/10.1038/s41587-019-0321-x
T. Ha, J. Tran, S. Liu, H. Jang, H. Jeong et al., A chest-laminated ultrathin and stretchable e-tattoo for the measurement of electrocardiogram, seismocardiogram, and cardiac time intervals. Adv. Sci. 6, 1900290 (2019). https://doi.org/10.1002/advs.201900290
R. Shi, Z. Lou, S. Chen, G. Shen, Flexible and transparent capacitive pressure sensor with patterned microstructured composite rubber dielectric for wearable touch keyboard application. Sci. China Mater. 61, 1587–1595 (2018). https://doi.org/10.1007/s40843-018-9267-3
S. Chen, Z. Lou, D. Chen, Z. Chen, K. Jiang, G. Shen, Highly flexible strain sensor based on ZnO nanowires and P(VDF-TrFE) fibers for wearable electronic device. Sci. China Mater. 59, 173–181 (2016). https://doi.org/10.1007/s40843-016-0128-8
Q.J. Sun, X.H. Zhao, Y. Zhou, C.C. Yeung, W. Wu et al., Fingertip-skin-inspired highly sensitive and multifunctional sensor with hierarchically structured conductive graphite/polydimethylsiloxane foams. Adv. Funct. Mater. 29, 1808829 (2019). https://doi.org/10.1002/adfm.201808829
T. Zhang, Z. Li, K. Li, X. Yang, Flexible pressure sensors with wide linearity range and high sensitivity based on selective laser sintering 3D printing. Adv. Mater. Technol. 4, 1900679 (2019). https://doi.org/10.1002/admt.201900679
Y. Lee, J. Park, S. Cho, Y.E. Shin, H. Lee et al., Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range. ACS Nano 12, 4045–4054 (2018). https://doi.org/10.1021/acsnano.8b01805
Z. Wang, X. Guan, H. Huang, H. Wang, W. Lin, Z. Peng, Full 3D printing of stretchable piezoresistive sensor with hierarchical porosity and multimodulus architecture. Adv. Funct. Mater. 29, 1807569 (2019). https://doi.org/10.1002/adfm.201807569
Y. Li, Y.A. Samad, K. Liao, From cotton to wearable pressure sensor. J. Mater. Chem. A 3, 2181–2187 (2015). https://doi.org/10.1039/c4ta05810k
E. Davoodi, H. Montazerian, R. Haghniaz, A. Rashidi, S. Ahadian et al., 3D-printed ultra-robust surface-doped porous silicone sensors for wearable biomonitoring. ACS Nano 14, 1520–1532 (2020). https://doi.org/10.1021/acsnano.9b06283
Y. Huang, X. Fan, S.C. Chen, N. Zhao, Emerging technologies of flexible pressure sensors: materials, modeling, devices, and manufacturing. Adv. Funct. Mater. 29, 1808509 (2019). https://doi.org/10.1002/adfm.201808509
N. Luo, Y. Huang, J. Liu, S.C. Chen, C.P. Wong, N. Zhao, Hollow-structured graphene–silicone-composite-based piezoresistive sensors: decoupled property tuning and bending reliability. Adv. Mater. 29, 1702675 (2017). https://doi.org/10.1002/adma.201702675
W. Cheng, J. Wang, Z. Ma, K. Yan, Y. Wang, H. Wang, Flexible pressure sensor with high sensitivity and low hysteresis based on a hierarchically microstructured electrode. IEEE Electron Device Lett. 39, 288–291 (2018). https://doi.org/10.1109/LED.2017.2784538
H. Chang, S. Kim, T.H. Kang, S.W. Lee, G.T. Yang, K.Y. Lee, H. Yi, Wearable piezoresistive sensors with ultrawide pressure range and circuit compatibility based on conductive-island-bridging nanonetworks. ACS Appl. Mater. Interfaces 11, 32291–32300 (2019). https://doi.org/10.1021/acsami.9b10194
K. Wang, Z. Lou, L. Wang, L. Zhao, S. Zhao et al., Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano 13, 9139–9147 (2019). https://doi.org/10.1021/acsnano.9b03454
C. Zhang, W. Bin Ye, K. Zhou, H.Y. Chen, J.Q. Yang et al., Bioinspired artificial sensory nerve based on nafion memristor. Adv. Funct. Mater. 29, 1808783 (2019). https://doi.org/10.1002/adfm.201808783
J. Shi, L. Wang, Z. Dai, L. Zhao, M. Du, H. Li, Y. Fang, Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range. Small 14, 1800819 (2018). https://doi.org/10.1002/smll.201800819
L. Gao, R. Fan, W. Zhou, X. Hu, K. Cao, W. Wang, Y. Lu, Biomimetic and radially symmetric graphene aerogel for flexible electronics. Adv. Electron. Mater. 5, 1900353 (2019). https://doi.org/10.1002/aelm.201900353
L. Gao, Y. Wang, X. Hu, W. Zhou, K. Cao, Y. Wang, W. Wang, Y. Lu, Cellular carbon-film-based flexible sensor and waterproof supercapacitors. ACS Appl. Mater. Interfaces 11, 26288–26297 (2019). https://doi.org/10.1021/acsami.9b09438
L. Gao, K. Cao, X. Hu, R. Xiao, B. Gan, W. Wang, Y. Lu, Nano electromechanical approach for flexible piezoresistive sensor. Appl. Mater. Today 18, 100475 (2020). https://doi.org/10.1016/j.apmt.2019.100475
Y. Ling, T. An, L.W. Yap, B. Zhu, S. Gong, W. Cheng, Disruptive, soft, wearable sensors. Adv. Mater. 32, 1904664 (2019). https://doi.org/10.1002/adma.201904664
S. Chen, Y. Song, F. Xu, Flexible and highly sensitive resistive pressure sensor based on carbonized crepe paper with corrugated structure. ACS Appl. Mater. Interfaces 10, 34646–34654 (2018). https://doi.org/10.1021/acsami.8b13535
X. Wu, Y. Khan, J. Ting, J. Zhu, S. Ono et al., Large-area fabrication of high-performance flexible and wearable pressure sensors. Adv. Electron. Mater. 6, 1901310 (2020). https://doi.org/10.1002/aelm.201901310
X. Wang, Y. Gu, Z. Xiong, Z. Cui, T. Zhang, Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 26, 1336–1342 (2014). https://doi.org/10.1002/adma.201304248
H. Bin Yao, J. Ge, C.F. Wang, X. Wang, W. Hu, Z.J. Zheng, Y. Ni, S.H. Yu, A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design. Adv. Mater. 25, 6692–6698 (2013). https://doi.org/10.1002/adma.201303041
Y. Zhu, J. Li, H. Cai, Y. Wu, H. Ding, N. Pan, X. Wang, Highly sensitive and skin-like pressure sensor based on asymmetric double-layered structures of reduced graphite oxide. Sens. Actuators B 255, 1262–1267 (2018). https://doi.org/10.1016/j.snb.2017.08.116
X. Dong, Y. Wei, S. Chen, Y. Lin, L. Liu, J. Li, A linear and large-range pressure sensor based on a graphene/silver nanowires nanobiocomposites network and a hierarchical structural sponge. Compos. Sci. Technol. 155, 108–116 (2018). https://doi.org/10.1016/j.compscitech.2017.11.028
S. Chun, Y. Kim, H.S. Oh, G. Bae, W. Park, A highly sensitive pressure sensor using a double-layered graphene structure for tactile sensing. Nanoscale 7, 11652–11659 (2015). https://doi.org/10.1039/c5nr00076a
Y. Joo, J. Byun, N. Seong, J. Ha, H. Kim et al., Silver nanowire-embedded PDMS with a multiscale structure for a highly sensitive and robust flexible pressure sensor. Nanoscale 7, 6208–6215 (2015). https://doi.org/10.1039/c5nr00313j
Y. Wei, S. Chen, Y. Lin, X. Yuan, L. Liu, Silver nanowires coated on cotton for flexible pressure sensors. J. Mater. Chem. C 4, 935–943 (2016). https://doi.org/10.1039/c5tc03419a
Y. Wei, S. Chen, X. Dong, Y. Lin, L. Liu, Flexible piezoresistive sensors based on “dynamic bridging effect” of silver nanowires toward graphene. Carbon 113, 395–403 (2017). https://doi.org/10.1016/j.carbon.2016.11.027
Z. Zhan, R. Lin, V.T. Tran, J. An, Y. Wei, H. Du, T. Tran, W. Lu, Paper/carbon nanotube-based wearable pressure sensor for physiological signal acquisition and soft robotic skin. ACS Appl. Mater. Interfaces 9, 37921–37928 (2017). https://doi.org/10.1021/acsami.7b10820
Y. Fu, S. Zhao, L. Wang, R. Zhu, A wearable sensor using structured silver-particle reinforced PDMS for radial arterial pulse wave monitoring. Adv. Healthc. Mater. 8, 1900633 (2019). https://doi.org/10.1002/adhm.201900633
T. Yang, X. Jiang, Y. Zhong, X. Zhao, S. Lin et al., A wearable and highly sensitive graphene strain sensor for precise home-based pulse wave monitoring. ACS Sens. 2, 967–974 (2017). https://doi.org/10.1021/acssensors.7b00230
J. He, P. Xiao, W. Lu, J. Shi, L. Zhang et al., A Universal high accuracy wearable pulse monitoring system via high sensitivity and large linearity graphene pressure sensor. Nano Energy 59, 422–433 (2019). https://doi.org/10.1016/j.nanoen.2019.02.036