Boron Nanosheet-Supported Rh Catalysts for Hydrogen Evolution: A New Territory for the Strong Metal-Support Interaction Effect
Corresponding Author: Minghong Wu
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 138
Abstract
High-efficiency electrochemical hydrogen evolution reaction (HER) offers a promising strategy to address energy and environmental crisis. Platinum is the most effective electrocatalyst for the HER. However, challenging scarcity, valuableness, and poor electrochemical stability still hinder its wide application. Here, we designed an outstanding HER electrocatalyst, highly dispersed rhodium (Rh) nanoparticles with an average diameter of only 3 nm supported on boron (B) nanosheets. The HER catalytic activity is even comparable to that of commercial platinum catalysts, with an overpotential of only 66 mV in 0.5 M H2SO4 and 101 mV in 1 M KOH to reach the current density of 10 mA cm−2. Meanwhile, the catalyst exhibited impressive electrochemical durability during long-term electrochemical processes in acidic and alkaline media, even the simulated seawater environment. Theoretical calculations unraveled that the structure–activity relationship between B(104) crystal plane and Rh(111) crystal plane is beneficial to the release of hydrogen, and surface O plays a vital role in the catalysis process. Our work may gain insights into the development of supported metal catalysts with robust catalytic performance through precise engineering of the strong metal-supported interaction effect.
Highlights:
1 Ultra-small and highly dispersed rhodium nanoparticles anchored in 2D ultra-thin boron nanosheets (BNS) were synthesized by a rapid NaBH4 reduction and facile freeze-dry approach.
2 Due to the strong metal-support interaction effect, the optimized electrocatalyst exhibits excellent hydrogen evolution reaction (HER) catalytic activity and stability in the wide pH range electrolytes.
3 Based on the stable surface, the oxidized boron surface facilitates the coupling of BNS and metal, giving catalyst outstanding HER performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N.C. Cheng, S. Stambula, D. Wang, M.N. Banis, J. Liu et al., Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 7, 13638 (2016). https://doi.org/10.1038/ncomms13638
- Z.L. Chen, R.B. Wu, Y. Liu, Y. Ha, Y.H. Guo et al., Ultrafine Co nanoparticles encapsulated in carbon-nanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction. Adv. Mater. 30, 1802011 (2018). https://doi.org/10.1002/adma.201802011
- M.D. Hossain, Z.J. Liu, M.H. Zhuang, X.X. Yan, G.L. Xu et al., Rational design of graphene-supported single atom catalysts for hydrogen evolution reaction. Adv. Energy Mater. 9, 1803689 (2019). https://doi.org/10.1002/aenm.201803689
- J. Jia, T.L. Xiong, L.L. Zhao, F.L. Wang, H. Liu et al., Ultrathin N-doped Mo2C nanosheets with exposed active sites as efficient electrocatalyst for hydrogen evolution reactions. ACS Nano 11, 12509 (2017). https://doi.org/10.1021/acsnano.7b06607
- J. Yin, Q.H. Fan, Y.X. Li, F.Y. Cheng, P.P. Zhou et al., Ni-C-N nanosheets as catalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 138, 14546 (2016). https://doi.org/10.1021/jacs.6b09351
- S.H. Ye, F.Y. Luo, Q.L. Zhang, P.Y. Zhang, T.T. Xu et al., Highly stable single Pt atomic sites anchored on aniline-stacked graphene for hydrogen evolution reaction. Energy Environ. Sci. 12, 1000 (2019). https://doi.org/10.1039/c8ee02888e
- Z.H. Pu, J.H. Zhao, I.S. Amiinu, W.Q. Li, M. Wang et al., A universal synthesis strategy for P-rich noble metal diphosphide-based electrocatalysts for the hydrogen evolution reaction. Energy Environ. Sci. 12, 952 (2019). https://doi.org/10.1039/c9ee00197b
- J. Zhang, H. Wang, L. Wang, S. Ali, C.T. Wang et al., Wet-chemistry strong metal-support interactions in Titania-supported Au catalysts. J. Am. Chem. Soc. 141, 2975 (2019). https://doi.org/10.1021/jacs.8b10864
- X.Y. Liu, M.H. Liu, Y.C. Luo, C.Y. Mou, S.D. Lin et al., Strong metal-support interactions between gold nanoparticles and ZnO nanorods in CO oxidation. J. Am. Chem. Soc. 134, 10251 (2012). https://doi.org/10.1021/ja3033235
- J. Dong, Q. Fu, H. Li, J. Xiao, B. Yang et al., Reaction-induced strong metal-support interactions between metals and inert boron nitride nanosheets. J. Am. Chem. Soc. 142, 17167 (2020). https://doi.org/10.1021/jacs.0c08139
- B. Han, Y.L. Guo, Y.K. Huang, W. Xi, J. Xu et al., Strong metal-support interactions between Pt single atoms and TiO2. Angew. Chem. Int. Ed. 59, 11824 (2020). https://doi.org/10.1002/ange.202003208
- H.B. Zhang, P.F. An, W. Zhou, B.Y. Guan, P. Zhang et al., Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Sci. Adv. 4, eaao6657 (2018). https://doi.org/10.1126/sciadv.aao6657
- C.Y. Ling, L. Shi, Y.X. Ouyang, X.C. Zeng, J.L. Wang, Nanosheet supported single-metal atom bifunctional catalyst for overall water splitting. Nano Lett. 17, 5133 (2017). https://doi.org/10.1021/acs.nanolett.7b02518
- J. Deng, H.B. Li, J.P. Xiao, Y.C. Tu, D.H. Deng et al., Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 8, 1594 (2015). https://doi.org/10.1039/c5ee00751h
- C. Lei, Y. Wang, Y. Hou, P. Liu, J. Yang et al., Efficient alkaline hydrogen evolution on atomically dispersed Ni–Nx species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics. Energy Environ. Sci. 12, 149 (2019). https://doi.org/10.1039/c8ee01841c
- Z.L. Liu, B. Lei, Z.L. Zhu, L. Tao, J. Qi et al., Spontaneous formation of 1D pattern in monolayer VSe2 with dispersive adsorption of Pt atoms for HER catalysis. Nano Lett. 19, 4897 (2019). https://doi.org/10.1021/acs.nanolett.9b00889
- H.T. Wang, Z.Y. Lu, D.S. Kong, J. Sun, T.M. Hymel et al., Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. ACS Nano 8, 4940 (2014). https://doi.org/10.1021/nn500959v
- S.Y. Xie, Y.L. Wang, X.O.B. Li, Flat boron: a new cousin of graphene. Adv. Mater. 31, 1900392 (2019). https://doi.org/10.1002/adma.201900392
- X. Sun, X. Liu, J. Yin, J. Yu, Y. Li et al., Two-dimensional boron crystals: structural stability, tunable properties, fabrications and applications. Adv. Funct. Mater. 27, 1603300 (2017). https://doi.org/10.1002/adfm.201603300
- E.S. Penev, A. Kutana, B.I. Yakobson, Can two-dimensional boron superconduct? Nano Lett. 16, 2522 (2016). https://doi.org/10.1021/acs.nanolett.6b00070
- A.R. Oganov, J. Chen, C. Gatti, Y. Ma, Y. Ma et al., Ionic high-pressure form of elemental boron. Nature 457, 867 (2009). https://doi.org/10.1038/nature07736
- X. Zhang, J. Hu, Y. Cheng, H.Y. Yang, Y. Yao et al., Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries. Nanoscale 8, 15340 (2016). https://doi.org/10.1039/c6nr04186h
- J. Xu, Y. Chang, L. Gan, Y. Ma, T. Zhai, Ultrathin single-crystalline boron nanosheets for enhanced electro-optical performances. Adv. Sci. 2, 1500023 (2015). https://doi.org/10.1002/advs.201500023
- C. Liu, Q. Li, J. Zhang, Y. Jin, D.R. MacFarlane et al., Conversion of dinitrogen to ammonia on Ru atoms supported on boron sheets: a DFT study. J. Mater. Chem. A 7, 4771 (2019). https://doi.org/10.1039/c8ta08219g
- N.A. Vinogradov, A. Lyalin, T. Taketsugu, A.S. Vinogradov, A. Preobrajenski, Single-phase borophene on Ir(111): formation, structure, and decoupling from the support. ACS Nano 13, 14511 (2019). https://doi.org/10.1021/acsnano.9b08296
- G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993). https://doi.org/10.1103/physrevb.47.558
- B. Hammer, L.B. Hansen, J.K. Norskov, Improved adsorption energetics within density-functional theory using revised perdew-burke-ernzerhof functionals. Phys. Rev. B 59, 7413 (1999). https://doi.org/10.1103/PhysRevB.59.7413
- P.E. Blochl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994). https://doi.org/10.1103/physrevb.50.17953
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758
- P.E. Blochl, O. Jepsen, O.K. Andersen, Improved tetrahedron method for brillouin-zone integrations. Phys. Rev. B 49, 16223 (1994). https://doi.org/10.1103/physrevb.49.16223
- J.K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin et al., Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886 (2004). https://doi.org/10.1021/jp047349j
- X. Ji, N. Kong, J. Wang, W. Li, Y. Xiao et al., A novel top-down synthesis of ultrathin 2D boron nanosheets for multimodal imaging-guided cancer therapy. Adv. Mater. (2018). https://doi.org/10.1002/adma.201803031
- H. Li, L. Jing, W. Liu, J. Lin, R.Y. Tay et al., Scalable production of few-layer boron sheets by liquid-phase exfoliation and their superior supercapacitive performance. ACS Nano 12, 1262 (2018). https://doi.org/10.1021/acsnano.7b07444
- G. Tai, T. Hu, Y. Zhou, X. Wang, J. Kong et al., Synthesis of atomically thin boron films on copper foils. Angew. Chem. Int. Ed. 54, 15473 (2015). https://doi.org/10.1002/anie.201509285
- B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li et al., Experimental realization of two-dimensional boron sheets. Nat. Chem. 8, 563 (2016). https://doi.org/10.1038/nchem.2491
- J.H. Dong, Q. Fu, Z. Jiang, B.B. Mei, X.H. Bao, Carbide-supported Au catalysts for water-gas shift reactions: a new territory for the strong metal-support interaction effect. J. Am. Chem. Soc. 140, 13808 (2018). https://doi.org/10.1021/jacs.8b08246
- J. Mahmood, F. Li, S.M. Jung, M.S. Okyay, I. Ahmad et al., An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 12, 441 (2017). https://doi.org/10.1038/Nnano.2016.304
- L. Wu, L. Yu, F. Zhang, B. McElhenny, D. Luo et al., Heterogeneous bimetallic phosphide Ni2P-Fe2P as an efficient bifunctional catalyst for water/seawater splitting. Adv. Funct. Mater. 31, 2006484 (2020). https://doi.org/10.1002/adfm.202006484
- W. Tong, M. Forster, F. Dionigi, S. Dresp, R. Sadeghi Erami et al., Electrolysis of low-grade and saline surface water. Nat. Energy 5, 367 (2020). https://doi.org/10.1038/s41560-020-0550-8
- E. Skulason, V. Tripkovic, M.E. Bjorketun, S.D. Gudmundsdottir, G. Karlberg et al., Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 114, 18182 (2010). https://doi.org/10.1021/jp1048887
- J. Shang, Y. Ma, Y. Gu, L. Kou, Two dimensional boron nanosheets: synthesis, properties and applications. Phys. Chem. Chem. Phys. 20, 28964 (2018). https://doi.org/10.1039/c8cp04850a
References
N.C. Cheng, S. Stambula, D. Wang, M.N. Banis, J. Liu et al., Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 7, 13638 (2016). https://doi.org/10.1038/ncomms13638
Z.L. Chen, R.B. Wu, Y. Liu, Y. Ha, Y.H. Guo et al., Ultrafine Co nanoparticles encapsulated in carbon-nanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction. Adv. Mater. 30, 1802011 (2018). https://doi.org/10.1002/adma.201802011
M.D. Hossain, Z.J. Liu, M.H. Zhuang, X.X. Yan, G.L. Xu et al., Rational design of graphene-supported single atom catalysts for hydrogen evolution reaction. Adv. Energy Mater. 9, 1803689 (2019). https://doi.org/10.1002/aenm.201803689
J. Jia, T.L. Xiong, L.L. Zhao, F.L. Wang, H. Liu et al., Ultrathin N-doped Mo2C nanosheets with exposed active sites as efficient electrocatalyst for hydrogen evolution reactions. ACS Nano 11, 12509 (2017). https://doi.org/10.1021/acsnano.7b06607
J. Yin, Q.H. Fan, Y.X. Li, F.Y. Cheng, P.P. Zhou et al., Ni-C-N nanosheets as catalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 138, 14546 (2016). https://doi.org/10.1021/jacs.6b09351
S.H. Ye, F.Y. Luo, Q.L. Zhang, P.Y. Zhang, T.T. Xu et al., Highly stable single Pt atomic sites anchored on aniline-stacked graphene for hydrogen evolution reaction. Energy Environ. Sci. 12, 1000 (2019). https://doi.org/10.1039/c8ee02888e
Z.H. Pu, J.H. Zhao, I.S. Amiinu, W.Q. Li, M. Wang et al., A universal synthesis strategy for P-rich noble metal diphosphide-based electrocatalysts for the hydrogen evolution reaction. Energy Environ. Sci. 12, 952 (2019). https://doi.org/10.1039/c9ee00197b
J. Zhang, H. Wang, L. Wang, S. Ali, C.T. Wang et al., Wet-chemistry strong metal-support interactions in Titania-supported Au catalysts. J. Am. Chem. Soc. 141, 2975 (2019). https://doi.org/10.1021/jacs.8b10864
X.Y. Liu, M.H. Liu, Y.C. Luo, C.Y. Mou, S.D. Lin et al., Strong metal-support interactions between gold nanoparticles and ZnO nanorods in CO oxidation. J. Am. Chem. Soc. 134, 10251 (2012). https://doi.org/10.1021/ja3033235
J. Dong, Q. Fu, H. Li, J. Xiao, B. Yang et al., Reaction-induced strong metal-support interactions between metals and inert boron nitride nanosheets. J. Am. Chem. Soc. 142, 17167 (2020). https://doi.org/10.1021/jacs.0c08139
B. Han, Y.L. Guo, Y.K. Huang, W. Xi, J. Xu et al., Strong metal-support interactions between Pt single atoms and TiO2. Angew. Chem. Int. Ed. 59, 11824 (2020). https://doi.org/10.1002/ange.202003208
H.B. Zhang, P.F. An, W. Zhou, B.Y. Guan, P. Zhang et al., Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Sci. Adv. 4, eaao6657 (2018). https://doi.org/10.1126/sciadv.aao6657
C.Y. Ling, L. Shi, Y.X. Ouyang, X.C. Zeng, J.L. Wang, Nanosheet supported single-metal atom bifunctional catalyst for overall water splitting. Nano Lett. 17, 5133 (2017). https://doi.org/10.1021/acs.nanolett.7b02518
J. Deng, H.B. Li, J.P. Xiao, Y.C. Tu, D.H. Deng et al., Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 8, 1594 (2015). https://doi.org/10.1039/c5ee00751h
C. Lei, Y. Wang, Y. Hou, P. Liu, J. Yang et al., Efficient alkaline hydrogen evolution on atomically dispersed Ni–Nx species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics. Energy Environ. Sci. 12, 149 (2019). https://doi.org/10.1039/c8ee01841c
Z.L. Liu, B. Lei, Z.L. Zhu, L. Tao, J. Qi et al., Spontaneous formation of 1D pattern in monolayer VSe2 with dispersive adsorption of Pt atoms for HER catalysis. Nano Lett. 19, 4897 (2019). https://doi.org/10.1021/acs.nanolett.9b00889
H.T. Wang, Z.Y. Lu, D.S. Kong, J. Sun, T.M. Hymel et al., Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. ACS Nano 8, 4940 (2014). https://doi.org/10.1021/nn500959v
S.Y. Xie, Y.L. Wang, X.O.B. Li, Flat boron: a new cousin of graphene. Adv. Mater. 31, 1900392 (2019). https://doi.org/10.1002/adma.201900392
X. Sun, X. Liu, J. Yin, J. Yu, Y. Li et al., Two-dimensional boron crystals: structural stability, tunable properties, fabrications and applications. Adv. Funct. Mater. 27, 1603300 (2017). https://doi.org/10.1002/adfm.201603300
E.S. Penev, A. Kutana, B.I. Yakobson, Can two-dimensional boron superconduct? Nano Lett. 16, 2522 (2016). https://doi.org/10.1021/acs.nanolett.6b00070
A.R. Oganov, J. Chen, C. Gatti, Y. Ma, Y. Ma et al., Ionic high-pressure form of elemental boron. Nature 457, 867 (2009). https://doi.org/10.1038/nature07736
X. Zhang, J. Hu, Y. Cheng, H.Y. Yang, Y. Yao et al., Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries. Nanoscale 8, 15340 (2016). https://doi.org/10.1039/c6nr04186h
J. Xu, Y. Chang, L. Gan, Y. Ma, T. Zhai, Ultrathin single-crystalline boron nanosheets for enhanced electro-optical performances. Adv. Sci. 2, 1500023 (2015). https://doi.org/10.1002/advs.201500023
C. Liu, Q. Li, J. Zhang, Y. Jin, D.R. MacFarlane et al., Conversion of dinitrogen to ammonia on Ru atoms supported on boron sheets: a DFT study. J. Mater. Chem. A 7, 4771 (2019). https://doi.org/10.1039/c8ta08219g
N.A. Vinogradov, A. Lyalin, T. Taketsugu, A.S. Vinogradov, A. Preobrajenski, Single-phase borophene on Ir(111): formation, structure, and decoupling from the support. ACS Nano 13, 14511 (2019). https://doi.org/10.1021/acsnano.9b08296
G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993). https://doi.org/10.1103/physrevb.47.558
B. Hammer, L.B. Hansen, J.K. Norskov, Improved adsorption energetics within density-functional theory using revised perdew-burke-ernzerhof functionals. Phys. Rev. B 59, 7413 (1999). https://doi.org/10.1103/PhysRevB.59.7413
P.E. Blochl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994). https://doi.org/10.1103/physrevb.50.17953
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758
P.E. Blochl, O. Jepsen, O.K. Andersen, Improved tetrahedron method for brillouin-zone integrations. Phys. Rev. B 49, 16223 (1994). https://doi.org/10.1103/physrevb.49.16223
J.K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin et al., Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886 (2004). https://doi.org/10.1021/jp047349j
X. Ji, N. Kong, J. Wang, W. Li, Y. Xiao et al., A novel top-down synthesis of ultrathin 2D boron nanosheets for multimodal imaging-guided cancer therapy. Adv. Mater. (2018). https://doi.org/10.1002/adma.201803031
H. Li, L. Jing, W. Liu, J. Lin, R.Y. Tay et al., Scalable production of few-layer boron sheets by liquid-phase exfoliation and their superior supercapacitive performance. ACS Nano 12, 1262 (2018). https://doi.org/10.1021/acsnano.7b07444
G. Tai, T. Hu, Y. Zhou, X. Wang, J. Kong et al., Synthesis of atomically thin boron films on copper foils. Angew. Chem. Int. Ed. 54, 15473 (2015). https://doi.org/10.1002/anie.201509285
B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li et al., Experimental realization of two-dimensional boron sheets. Nat. Chem. 8, 563 (2016). https://doi.org/10.1038/nchem.2491
J.H. Dong, Q. Fu, Z. Jiang, B.B. Mei, X.H. Bao, Carbide-supported Au catalysts for water-gas shift reactions: a new territory for the strong metal-support interaction effect. J. Am. Chem. Soc. 140, 13808 (2018). https://doi.org/10.1021/jacs.8b08246
J. Mahmood, F. Li, S.M. Jung, M.S. Okyay, I. Ahmad et al., An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 12, 441 (2017). https://doi.org/10.1038/Nnano.2016.304
L. Wu, L. Yu, F. Zhang, B. McElhenny, D. Luo et al., Heterogeneous bimetallic phosphide Ni2P-Fe2P as an efficient bifunctional catalyst for water/seawater splitting. Adv. Funct. Mater. 31, 2006484 (2020). https://doi.org/10.1002/adfm.202006484
W. Tong, M. Forster, F. Dionigi, S. Dresp, R. Sadeghi Erami et al., Electrolysis of low-grade and saline surface water. Nat. Energy 5, 367 (2020). https://doi.org/10.1038/s41560-020-0550-8
E. Skulason, V. Tripkovic, M.E. Bjorketun, S.D. Gudmundsdottir, G. Karlberg et al., Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 114, 18182 (2010). https://doi.org/10.1021/jp1048887
J. Shang, Y. Ma, Y. Gu, L. Kou, Two dimensional boron nanosheets: synthesis, properties and applications. Phys. Chem. Chem. Phys. 20, 28964 (2018). https://doi.org/10.1039/c8cp04850a