Conformal Human–Machine Integration Using Highly Bending-Insensitive, Unpixelated, and Waterproof Epidermal Electronics Toward Metaverse
Corresponding Author: Zhong Chen
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 199
Abstract
Efficient and flexible interactions require precisely converting human intentions into computer-recognizable signals, which is critical to the breakthrough development of metaverse. Interactive electronics face common dilemmas, which realize high-precision and stable touch detection but are rigid, bulky, and thick or achieve high flexibility to wear but lose precision. Here, we construct highly bending-insensitive, unpixelated, and waterproof epidermal interfaces (BUW epidermal interfaces) and demonstrate their interactive applications of conformal human–machine integration. The BUW epidermal interface based on the addressable electrical contact structure exhibits high-precision and stable touch detection, high flexibility, rapid response time, excellent stability, and versatile “cut-and-paste” character. Regardless of whether being flat or bent, the BUW epidermal interface can be conformally attached to the human skin for real-time, comfortable, and unrestrained interactions. This research provides promising insight into the functional composite and structural design strategies for developing epidermal electronics, which offers a new technology route and may further broaden human–machine interactions toward metaverse.
Highlights:
1 The addressable electrical contact structure enables the multifunctional epidermal interface with an all-in-one function of sense, recognition, and transmission, which realizes high flexibility and high-precision touch detection.
2 The multifunctional epidermal interface achieves superior waterproofness and is constructed enough thin to be bent freely, which is not as rigid, bulky, and thick as common interactive electronic device.
3 The bending-insensitive characteristic facilitates accurate and stable human–machine interactions, which provides a key foundation for intelligent prostheses and super-soft robots.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.N. Flesher, J.E. Downey, J.M. Weiss, C.L. Hughes, A.J. Herrera et al., A brain-computer interface that evokes tactile sensations improves robotic arm control. Science 372(6544), 831–836 (2021). https://doi.org/10.1126/science.abd0380
- X. Yu, Z. Xie, Y. Yu, J. Lee, A. Vazquez-Guardado et al., Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 575(7783), 473–479 (2019). https://doi.org/10.1038/s41586-019-1687-0
- M. Zhu, Z. Sun, Z. Zhang, Q. Shi, T. He et al., Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications. Sci. Adv. 6(19), eaaz8693 (2020). https://doi.org/10.1126/sciadv.aaz8693
- X. Liao, Z. Zhang, Z. Kang, F. Gao, Q. Liao et al., Ultrasensitive and stretchable resistive strain sensors designed for wearable electronics. Mater. Horiz. 4(3), 502–510 (2017). https://doi.org/10.1039/C7MH00071E
- Y. Yu, J. Li, S.A. Solomon, J. Min, J. Tu et al., All-printed soft human-machine interface for robotic physicochemical sensing. Sci. Robot. 7(67), eabn0495 (2022). https://doi.org/10.1126/scirobotics.abn0495
- C. Wu, J. Wang, X. Zhang, L. Kang, X. Cao et al., Hollow gradient-structured iron-anchored carbon nanospheres for enhanced electromagnetic wave absorption. Nano-Micro Lett. 15(1), 7 (2023). https://doi.org/10.1007/s40820-022-00963-w
- X. Liao, W. Song, X. Zhang, C. Yan, T. Li et al., A bioinspired analogous nerve towards artificial intelligence. Nat. Commun. 11(1), 1–9 (2020). https://doi.org/10.1038/s41467-019-14214-x
- H.U. Chung, B.H. Kim, J.Y. Lee, J. Lee, Z. Xie et al., Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 363(6430), eaau0780 (2019). https://doi.org/10.1126/science.aau0780
- X. Liao, W. Wang, L. Wang, K. Tang, Y. Zheng, Controllably enhancing stretchability of highly sensitive fiber-based strain sensors for intelligent monitoring. ACS Appl. Mater. Interfaces 11(2), 2431–2440 (2018). https://doi.org/10.1021/acsami.8b20245
- Y. Luo, Y. Li, P. Sharma, W. Shou, K. Wu et al., Learning human–environment interactions using conformal tactile textiles. Nat. Electron. 4(3), 193–201 (2021). https://doi.org/10.1038/s41928-021-00558-0
- S. An, H. Zhu, C. Guo, B. Fu, C. Song et al., Noncontact human-machine interaction based on hand-responsive infrared structural color. Nat. Commun. 13(1), 1–9 (2022). https://doi.org/10.1038/s41467-022-29197-5
- L. Zhong, X. Lai, D. Xu, X. Liao, C. Yang et al., Capacitive touch panel with low sensitivity to water drop employing mutual-coupling electrical field shaping technique. IEEE Trans. Circuits Syst. I Regul. Pap. 66(4), 1393–1404 (2018). https://doi.org/10.1109/TCSI.2018.2879410
- W. Wang, R. Pradhan, Y.S. Ho, Z. Zhao, Q. Sun et al., Mrc-based double figure-of-eight coil sensor system with triple-mode operation capability for biomedical applications. IEEE Sens. J. 21(13), 14491–14502 (2020). https://doi.org/10.1109/JSEN.2020.3020578
- B. Zhao, Z. Li, X. Liao, L. Qiao, Y. Li et al., A heaving point absorber-based ocean wave energy convertor hybridizing a multilayered soft-brush cylindrical triboelectric generator and an electromagnetic generator. Nano Energy 89, 106381 (2021). https://doi.org/10.1016/j.nanoen.2021.106381
- Q. Wang, P. Xiao, W. Zhou, Y. Liang, G. Yin et al., Bioinspired adaptive, elastic, and conductive graphene structured thin-films achieving high-efficiency underwater detection and vibration perception. Nano-Micro Lett. 14(1), 1–13 (2022). https://doi.org/10.1007/s40820-022-00799-4
- F. Zhang, D. Li, C. Wang, Z. Liu, M. Yang et al., Shape morphing of plastic films. Nat. Commun. 13(1), 7294 (2022). https://doi.org/10.1038/s41467-022-34844-y
- C. Wang, C. Wang, Z. Huang, S. Xu, Materials and structures toward soft electronics. Adv. Mater. 30(50), 1801368 (2018). https://doi.org/10.1002/adma.201801368
- L. Ma, R. Wu, A. Patil, S. Zhu, Z. Meng et al., Full-textile wireless flexible humidity sensor for human physiological monitoring. Adv. Funct. Mater. 29(43), 1904549 (2019). https://doi.org/10.1002/adfm.201904549
- Z. Dai, G. Chen, S. Ding, J. Lin, S. Li et al., Facile formation of hierarchical textures for flexible, translucent, and durable superhydrophobic film. Adv. Funct. Mater. 31(7), 2008574 (2021). https://doi.org/10.1002/adfm.202008574
- D. Yu, Z. Zheng, J. Liu, H. Xiao, G. Huangfu et al., Superflexible and lead-free piezoelectric nanogenerator as a highly sensitive self-powered sensor for human motion monitoring. Nano-Micro Lett. 13(1), 117 (2021). https://doi.org/10.1007/s40820-021-00649-9
- K. Veenuttranon, K. Kaewpradub, I. Jeerapan, Screen-printable functional nanomaterials for flexible and wearable single-enzyme-based energy-harvesting and self-powered biosensing devices. Nano-Micro Lett. 15(1), 85 (2023). https://doi.org/10.1007/s40820-023-01045-1
- C. Wang, D. Hwang, Z. Yu, K. Takei, J. Park et al., User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 12(10), 899–904 (2013). https://doi.org/10.1038/nmat3711
- X. Liao, X. Yan, P. Lin, S. Lu, Y. Tian et al., Enhanced performance of ZnO piezotronic pressure sensor through electron-tunneling modulation of MgO nanolayer. ACS Appl. Mater. Interfaces 7(3), 1602–1607 (2015). https://doi.org/10.1021/am5070443
- F. Yi, Z. Zhang, Z. Kang, Q. Liao, Y. Zhang, Recent advances in triboelectric nanogenerator-based health monitoring. Adv. Funct. Mater. 29(41), 1808849 (2019). https://doi.org/10.1002/adfm.201808849
- S. Cheng, Z. Lou, L. Zhang, H. Guo, Z. Wang et al., Ultrathin hydrogel films toward breathable skin-integrated electronics. Adv. Mater. 35(1), 2206793 (2023). https://doi.org/10.1002/adma.202206793
- Y. Qiao, J. Luo, T. Cui, H. Liu, H. Tang et al., Soft electronics for health monitoring assisted by machine learning. Nano-Micro Lett. 15(1), 66 (2023). https://doi.org/10.1007/s40820-023-01029-1
- N. Matsuhisa, S. Niu, S.J. O’Neill, J. Kang, Y. Ochiai et al., High-frequency and intrinsically stretchable polymer diodes. Nature 600(7888), 246–252 (2021). https://doi.org/10.1038/s41586-021-04053-6
- X. Liao, W. Wang, M. Lin, M. Li, H. Wu et al., Hierarchically distributed microstructure design of haptic sensors for personalized fingertip mechanosensational manipulation. Mater. Horiz. 5(5), 920–931 (2018). https://doi.org/10.1039/C8MH00680F
- X. Liao, Q. Liao, Z. Zhang, X. Yan, Q. Liang et al., A highly stretchable ZnO@ fiber-based multifunctional nanosensor for strain/temperature/UV detection. Adv. Funct. Mater. 26(18), 3074–3081 (2016). https://doi.org/10.1002/adfm.201505223
- M. Wang, J. Tu, Z. Huang, T. Wang, Z. Liu et al., Tactile near-sensor analogue computing for ultrafast responsive artificial skin. Adv. Mater. 34(34), 2201962 (2022). https://doi.org/10.1002/adma.202201962
- Q. Zhou, B. Ji, F. Hu, Z. Dai, S. Ding et al., Magnetized microcilia array-based self-powered electronic skin for micro-scaled 3d morphology recognition and high-capacity communication. Adv. Funct. Mater. 32(46), 2208120 (2022). https://doi.org/10.1002/adfm.202208120
- W. Fan, Q. He, K. Meng, X. Tan, Z. Zhou et al., Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Sci. Adv. 6(11), eaay2840 (2020). https://doi.org/10.1126/sciadv.aay2840
- Y. Kim, A. Chortos, W. Xu, Y. Liu, J.Y. Oh et al., A bioinspired flexible organic artificial afferent nerve. Science 360(6392), 998–1003 (2018). https://doi.org/10.1126/science.aao0098
- Y. Zhang, T.H. Tao, Skin-friendly electronics for acquiring human physiological signatures. Adv. Mater. 31(49), 1905767 (2019). https://doi.org/10.1002/adma.201905767
- X. Zhao, Z. Zhang, Q. Liao, X. Xun, F. Gao et al., Self-powered user-interactive electronic skin for programmable touch operation platform. Sci. Adv. 6(28), eaba4294 (2020). https://doi.org/10.1126/sciadv.aba4294
- Y. Zhang, J. Yang, X. Hou, G. Li, L. Wang et al., Highly stable flexible pressure sensors with a quasi-homogeneous composition and interlinked interfaces. Nat. Commun. 13(1), 1317 (2022). https://doi.org/10.1038/s41467-022-29093-y
- K. Chen, K. Liang, H. Liu, R. Liu, Y. Liu et al., Skin-inspired ultra-tough supramolecular multifunctional hydrogel electronic skin for human–machine interaction. Nano-Micro Lett. 15(1), 102 (2023). https://doi.org/10.1007/s40820-023-01084-8
- M. Ma, Z. Zhang, Q. Liao, F. Yi, L. Han et al., Self-powered artificial electronic skin for high-resolution pressure sensing. Nano Energy 32, 389–396 (2017). https://doi.org/10.1016/j.nanoen.2017.01.004
- X. Liao, W. Song, X. Zhang, H. Zhan, Y. Liu et al., Hetero-contact microstructure to program discerning tactile interactions for virtual reality. Nano Energy 60, 127–136 (2019). https://doi.org/10.1016/j.nanoen.2019.03.048
- S. Sundaram, P. Kellnhofer, Y. Li, J.-Y. Zhu, A. Torralba et al., Learning the signatures of the human grasp using a scalable tactile glove. Nature 569(7758), 698–702 (2019). https://doi.org/10.1038/s41586-019-1234-z
- Z. Sun, M. Zhu, X. Shan, C. Lee, Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions. Nat. Commun. 13(1), 5224 (2022). https://doi.org/10.1038/s41467-022-32745-8
- W. Wu, X. Han, J. Li, X. Wang, Y. Zhang et al., Ultrathin and conformable lead halide perovskite photodetector arrays for potential application in retina-like vision sensing. Adv. Mater. 33(9), 2006006 (2021). https://doi.org/10.1002/adma.202006006
- S. Li, M.M. Lerch, J.T. Waters, B. Deng, R.S. Martens et al., Self-regulated non-reciprocal motions in single-material microstructures. Nature 605(7908), 76–83 (2022). https://doi.org/10.1038/s41586-022-04561-z
- A. Dodda, D. Jayachandran, A. Pannone, N. Trainor, S.P. Stepanoff et al., Active pixel sensor matrix based on monolayer MoS2 phototransistor array. Nat. Mater. 21(12), 1379–1387 (2022). https://doi.org/10.1038/s41563-022-01398-9
- S. Li, G. Liu, H. Wen, G. Liu, H. Wang et al., A skin-like pressure-and vibration-sensitive tactile sensor based on polyacrylamide/silk fibroin elastomer. Adv. Funct. Mater. 32(19), 2111747 (2022). https://doi.org/10.1002/adfm.202111747
- V. Gangadharan, H. Zheng, F.J. Taberner, J. Landry, T.A. Nees et al., Neuropathic pain caused by miswiring and abnormal end organ targeting. Nature 606(7912), 137–145 (2022). https://doi.org/10.1038/s41586-022-04777-z
References
S.N. Flesher, J.E. Downey, J.M. Weiss, C.L. Hughes, A.J. Herrera et al., A brain-computer interface that evokes tactile sensations improves robotic arm control. Science 372(6544), 831–836 (2021). https://doi.org/10.1126/science.abd0380
X. Yu, Z. Xie, Y. Yu, J. Lee, A. Vazquez-Guardado et al., Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 575(7783), 473–479 (2019). https://doi.org/10.1038/s41586-019-1687-0
M. Zhu, Z. Sun, Z. Zhang, Q. Shi, T. He et al., Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications. Sci. Adv. 6(19), eaaz8693 (2020). https://doi.org/10.1126/sciadv.aaz8693
X. Liao, Z. Zhang, Z. Kang, F. Gao, Q. Liao et al., Ultrasensitive and stretchable resistive strain sensors designed for wearable electronics. Mater. Horiz. 4(3), 502–510 (2017). https://doi.org/10.1039/C7MH00071E
Y. Yu, J. Li, S.A. Solomon, J. Min, J. Tu et al., All-printed soft human-machine interface for robotic physicochemical sensing. Sci. Robot. 7(67), eabn0495 (2022). https://doi.org/10.1126/scirobotics.abn0495
C. Wu, J. Wang, X. Zhang, L. Kang, X. Cao et al., Hollow gradient-structured iron-anchored carbon nanospheres for enhanced electromagnetic wave absorption. Nano-Micro Lett. 15(1), 7 (2023). https://doi.org/10.1007/s40820-022-00963-w
X. Liao, W. Song, X. Zhang, C. Yan, T. Li et al., A bioinspired analogous nerve towards artificial intelligence. Nat. Commun. 11(1), 1–9 (2020). https://doi.org/10.1038/s41467-019-14214-x
H.U. Chung, B.H. Kim, J.Y. Lee, J. Lee, Z. Xie et al., Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 363(6430), eaau0780 (2019). https://doi.org/10.1126/science.aau0780
X. Liao, W. Wang, L. Wang, K. Tang, Y. Zheng, Controllably enhancing stretchability of highly sensitive fiber-based strain sensors for intelligent monitoring. ACS Appl. Mater. Interfaces 11(2), 2431–2440 (2018). https://doi.org/10.1021/acsami.8b20245
Y. Luo, Y. Li, P. Sharma, W. Shou, K. Wu et al., Learning human–environment interactions using conformal tactile textiles. Nat. Electron. 4(3), 193–201 (2021). https://doi.org/10.1038/s41928-021-00558-0
S. An, H. Zhu, C. Guo, B. Fu, C. Song et al., Noncontact human-machine interaction based on hand-responsive infrared structural color. Nat. Commun. 13(1), 1–9 (2022). https://doi.org/10.1038/s41467-022-29197-5
L. Zhong, X. Lai, D. Xu, X. Liao, C. Yang et al., Capacitive touch panel with low sensitivity to water drop employing mutual-coupling electrical field shaping technique. IEEE Trans. Circuits Syst. I Regul. Pap. 66(4), 1393–1404 (2018). https://doi.org/10.1109/TCSI.2018.2879410
W. Wang, R. Pradhan, Y.S. Ho, Z. Zhao, Q. Sun et al., Mrc-based double figure-of-eight coil sensor system with triple-mode operation capability for biomedical applications. IEEE Sens. J. 21(13), 14491–14502 (2020). https://doi.org/10.1109/JSEN.2020.3020578
B. Zhao, Z. Li, X. Liao, L. Qiao, Y. Li et al., A heaving point absorber-based ocean wave energy convertor hybridizing a multilayered soft-brush cylindrical triboelectric generator and an electromagnetic generator. Nano Energy 89, 106381 (2021). https://doi.org/10.1016/j.nanoen.2021.106381
Q. Wang, P. Xiao, W. Zhou, Y. Liang, G. Yin et al., Bioinspired adaptive, elastic, and conductive graphene structured thin-films achieving high-efficiency underwater detection and vibration perception. Nano-Micro Lett. 14(1), 1–13 (2022). https://doi.org/10.1007/s40820-022-00799-4
F. Zhang, D. Li, C. Wang, Z. Liu, M. Yang et al., Shape morphing of plastic films. Nat. Commun. 13(1), 7294 (2022). https://doi.org/10.1038/s41467-022-34844-y
C. Wang, C. Wang, Z. Huang, S. Xu, Materials and structures toward soft electronics. Adv. Mater. 30(50), 1801368 (2018). https://doi.org/10.1002/adma.201801368
L. Ma, R. Wu, A. Patil, S. Zhu, Z. Meng et al., Full-textile wireless flexible humidity sensor for human physiological monitoring. Adv. Funct. Mater. 29(43), 1904549 (2019). https://doi.org/10.1002/adfm.201904549
Z. Dai, G. Chen, S. Ding, J. Lin, S. Li et al., Facile formation of hierarchical textures for flexible, translucent, and durable superhydrophobic film. Adv. Funct. Mater. 31(7), 2008574 (2021). https://doi.org/10.1002/adfm.202008574
D. Yu, Z. Zheng, J. Liu, H. Xiao, G. Huangfu et al., Superflexible and lead-free piezoelectric nanogenerator as a highly sensitive self-powered sensor for human motion monitoring. Nano-Micro Lett. 13(1), 117 (2021). https://doi.org/10.1007/s40820-021-00649-9
K. Veenuttranon, K. Kaewpradub, I. Jeerapan, Screen-printable functional nanomaterials for flexible and wearable single-enzyme-based energy-harvesting and self-powered biosensing devices. Nano-Micro Lett. 15(1), 85 (2023). https://doi.org/10.1007/s40820-023-01045-1
C. Wang, D. Hwang, Z. Yu, K. Takei, J. Park et al., User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 12(10), 899–904 (2013). https://doi.org/10.1038/nmat3711
X. Liao, X. Yan, P. Lin, S. Lu, Y. Tian et al., Enhanced performance of ZnO piezotronic pressure sensor through electron-tunneling modulation of MgO nanolayer. ACS Appl. Mater. Interfaces 7(3), 1602–1607 (2015). https://doi.org/10.1021/am5070443
F. Yi, Z. Zhang, Z. Kang, Q. Liao, Y. Zhang, Recent advances in triboelectric nanogenerator-based health monitoring. Adv. Funct. Mater. 29(41), 1808849 (2019). https://doi.org/10.1002/adfm.201808849
S. Cheng, Z. Lou, L. Zhang, H. Guo, Z. Wang et al., Ultrathin hydrogel films toward breathable skin-integrated electronics. Adv. Mater. 35(1), 2206793 (2023). https://doi.org/10.1002/adma.202206793
Y. Qiao, J. Luo, T. Cui, H. Liu, H. Tang et al., Soft electronics for health monitoring assisted by machine learning. Nano-Micro Lett. 15(1), 66 (2023). https://doi.org/10.1007/s40820-023-01029-1
N. Matsuhisa, S. Niu, S.J. O’Neill, J. Kang, Y. Ochiai et al., High-frequency and intrinsically stretchable polymer diodes. Nature 600(7888), 246–252 (2021). https://doi.org/10.1038/s41586-021-04053-6
X. Liao, W. Wang, M. Lin, M. Li, H. Wu et al., Hierarchically distributed microstructure design of haptic sensors for personalized fingertip mechanosensational manipulation. Mater. Horiz. 5(5), 920–931 (2018). https://doi.org/10.1039/C8MH00680F
X. Liao, Q. Liao, Z. Zhang, X. Yan, Q. Liang et al., A highly stretchable ZnO@ fiber-based multifunctional nanosensor for strain/temperature/UV detection. Adv. Funct. Mater. 26(18), 3074–3081 (2016). https://doi.org/10.1002/adfm.201505223
M. Wang, J. Tu, Z. Huang, T. Wang, Z. Liu et al., Tactile near-sensor analogue computing for ultrafast responsive artificial skin. Adv. Mater. 34(34), 2201962 (2022). https://doi.org/10.1002/adma.202201962
Q. Zhou, B. Ji, F. Hu, Z. Dai, S. Ding et al., Magnetized microcilia array-based self-powered electronic skin for micro-scaled 3d morphology recognition and high-capacity communication. Adv. Funct. Mater. 32(46), 2208120 (2022). https://doi.org/10.1002/adfm.202208120
W. Fan, Q. He, K. Meng, X. Tan, Z. Zhou et al., Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Sci. Adv. 6(11), eaay2840 (2020). https://doi.org/10.1126/sciadv.aay2840
Y. Kim, A. Chortos, W. Xu, Y. Liu, J.Y. Oh et al., A bioinspired flexible organic artificial afferent nerve. Science 360(6392), 998–1003 (2018). https://doi.org/10.1126/science.aao0098
Y. Zhang, T.H. Tao, Skin-friendly electronics for acquiring human physiological signatures. Adv. Mater. 31(49), 1905767 (2019). https://doi.org/10.1002/adma.201905767
X. Zhao, Z. Zhang, Q. Liao, X. Xun, F. Gao et al., Self-powered user-interactive electronic skin for programmable touch operation platform. Sci. Adv. 6(28), eaba4294 (2020). https://doi.org/10.1126/sciadv.aba4294
Y. Zhang, J. Yang, X. Hou, G. Li, L. Wang et al., Highly stable flexible pressure sensors with a quasi-homogeneous composition and interlinked interfaces. Nat. Commun. 13(1), 1317 (2022). https://doi.org/10.1038/s41467-022-29093-y
K. Chen, K. Liang, H. Liu, R. Liu, Y. Liu et al., Skin-inspired ultra-tough supramolecular multifunctional hydrogel electronic skin for human–machine interaction. Nano-Micro Lett. 15(1), 102 (2023). https://doi.org/10.1007/s40820-023-01084-8
M. Ma, Z. Zhang, Q. Liao, F. Yi, L. Han et al., Self-powered artificial electronic skin for high-resolution pressure sensing. Nano Energy 32, 389–396 (2017). https://doi.org/10.1016/j.nanoen.2017.01.004
X. Liao, W. Song, X. Zhang, H. Zhan, Y. Liu et al., Hetero-contact microstructure to program discerning tactile interactions for virtual reality. Nano Energy 60, 127–136 (2019). https://doi.org/10.1016/j.nanoen.2019.03.048
S. Sundaram, P. Kellnhofer, Y. Li, J.-Y. Zhu, A. Torralba et al., Learning the signatures of the human grasp using a scalable tactile glove. Nature 569(7758), 698–702 (2019). https://doi.org/10.1038/s41586-019-1234-z
Z. Sun, M. Zhu, X. Shan, C. Lee, Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions. Nat. Commun. 13(1), 5224 (2022). https://doi.org/10.1038/s41467-022-32745-8
W. Wu, X. Han, J. Li, X. Wang, Y. Zhang et al., Ultrathin and conformable lead halide perovskite photodetector arrays for potential application in retina-like vision sensing. Adv. Mater. 33(9), 2006006 (2021). https://doi.org/10.1002/adma.202006006
S. Li, M.M. Lerch, J.T. Waters, B. Deng, R.S. Martens et al., Self-regulated non-reciprocal motions in single-material microstructures. Nature 605(7908), 76–83 (2022). https://doi.org/10.1038/s41586-022-04561-z
A. Dodda, D. Jayachandran, A. Pannone, N. Trainor, S.P. Stepanoff et al., Active pixel sensor matrix based on monolayer MoS2 phototransistor array. Nat. Mater. 21(12), 1379–1387 (2022). https://doi.org/10.1038/s41563-022-01398-9
S. Li, G. Liu, H. Wen, G. Liu, H. Wang et al., A skin-like pressure-and vibration-sensitive tactile sensor based on polyacrylamide/silk fibroin elastomer. Adv. Funct. Mater. 32(19), 2111747 (2022). https://doi.org/10.1002/adfm.202111747
V. Gangadharan, H. Zheng, F.J. Taberner, J. Landry, T.A. Nees et al., Neuropathic pain caused by miswiring and abnormal end organ targeting. Nature 606(7912), 137–145 (2022). https://doi.org/10.1038/s41586-022-04777-z