Operando Converting BiOCl into Bi2O2(CO3)xCly for Efficient Electrocatalytic Reduction of Carbon Dioxide to Formate
Corresponding Author: Huijun Zhao
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 121
Abstract
Bismuth-based materials (e.g., metallic, oxides and subcarbonate) are emerged as promising electrocatalysts for converting CO2 to formate. However, Bio-based electrocatalysts possess high overpotentials, while bismuth oxides and subcarbonate encounter stability issues. This work is designated to exemplify that the operando synthesis can be an effective means to enhance the stability of electrocatalysts under operando CO2RR conditions. A synthetic approach is developed to electrochemically convert BiOCl into Cl-containing subcarbonate (Bi2O2(CO3)xCly) under operando CO2RR conditions. The systematic operando spectroscopic studies depict that BiOCl is converted to Bi2O2(CO3)xCly via a cathodic potential-promoted anion-exchange process. The operando synthesized Bi2O2(CO3)xCly can tolerate − 1.0 V versus RHE, while for the wet-chemistry synthesized pure Bi2O2CO3, the formation of metallic Bio occurs at − 0.6 V versus RHE. At − 0.8 V versus RHE, Bi2O2(CO3)xCly can readily attain a FEHCOO- of 97.9%, much higher than that of the pure Bi2O2CO3 (81.3%). DFT calculations indicate that differing from the pure Bi2O2CO3-catalyzed CO2RR, where formate is formed via a *OCHO intermediate step that requires a high energy input energy of 2.69 eV to proceed, the formation of HCOO− over Bi2O2(CO3)xCly has proceeded via a *COOH intermediate step that only requires low energy input of 2.56 eV.
Highlights:
1 An operando synthetic approach was exemplified to enhance catalyst stability for efficient reduction of CO2 to formate.
2 A highly stable Bi2O2(CO3)xCly electrocatalyst was synthesized by direct electrochemical conversion of BiOCl via a cathodic potential-promoted anion-exchange process under operando CO2RR conditions.
3 The surface Cl− in Bi2O2(CO3)xCly changes the p-orbital electron states to enhance the stability and alters the CO2RR pathway to markedly reduce the energy barrier.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.D. Luna, C. Hahn, D. Higgins, S.A. Jaffer, T.F. Jaramillo et al., What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364(6438), 3506 (2019). https://doi.org/10.1126/science.aav3506
- J. Li, S.U. Abbas, H. Wang, Z. Zhang, W. Hu, Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 13, 216 (2021). https://doi.org/10.1007/s40820-021-00738-9
- Z.Z. Wu, X.L. Zhang, Z.Z. Niu, F.Y. Gao, P.P. Yang et al., Identification of Cu(100)/Cu(111) interfaces as superior active sites for CO dimerization during CO2 electroreduction. J. Am. Chem. Soc. 144(1), 259–269 (2022). https://doi.org/10.1021/jacs.1c09508
- X. Zheng, P.D. Luna, F.P.G. Arquer, B. Zhang, N. Becknell et al., Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule 1, 794–805 (2017). https://doi.org/10.1016/j.joule.2017.09.014
- X. Lu, Y. Wu, X. Yuan, H. Wang, An integrated CO2 electrolyzer and formate fuel cell enabled by a reversibly restructuring Pb-Pd bimetallic catalyst. Angew. Chem. Int. Ed. 58(12), 4031–4035 (2019). https://doi.org/10.1002/anie.201814257
- S. Zhao, S. Li, T. Guo, S. Zhang, J. Wang et al., Advances in Sn-based catalysts for electrochemical CO2 reduction. Nano-Micro Lett. 11, 62 (2019). https://doi.org/10.1007/s40820-019-0293-x
- D. Wu, R. Feng, C. Xu, P.F. Sui, J. Zhang et al., Regulating the electron localization of metallic bismuth for boosting CO2 electroreduction. Nano-Micro Lett. 14, 38 (2021). https://doi.org/10.1007/s40820-021-00772-7
- Q. Gong, P. Ding, M. Xu, X. Zhu, M. Wang et al., Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat. Commun. 10, 2807 (2019). https://doi.org/10.1038/s41467-019-10819-4
- C. Xia, P. Zhu, Q. Jiang, Y. Pan, W. Liang et al., Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4, 776–785 (2019). https://doi.org/10.1038/s41560-019-0451-x
- F. Yang, A.O. Elnabawy, R. Schimmenti, P. Song, J. Wang et al., Bismuthene for highly efficient carbon dioxide electroreduction reaction. Nat. Commun. 11, 1088 (2020). https://doi.org/10.1038/s41467-020-14914-9
- P. Deng, F. Yang, Z. Wang, S. Chen, Y. Zhou et al., Metal-organic frameworks-derived carbon nanorods encapsulated bismuth oxides for rapid and selective CO2 electroreduction to formate. Angew. Chem. Int. Ed. 59(27), 10807–10813 (2020). https://doi.org/10.1002/anie.202000657
- D.D. Zhu, J.L. Liu, S.Z. Qiao, Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 28(18), 3423–3452 (2016). https://doi.org/10.1002/adma.201504766
- C.W. Lee, J.S. Hong, K.D. Yang, K. Jin, J.H. Lee et al., Selective electrochemical production of formate from carbon dioxide with bismuth-based catalysts in an aqueous electrolyte. ACS Catal. 8(2), 931–937 (2018). https://doi.org/10.1021/acscatal.7b03242
- P. Deng, H. Wang, R. Qi, J. Zhu, S. Chen et al., Bismuth oxides with enhanced bismuth-oxygen structure for efficient electrochemical reduction of carbon dioxide to formate. ACS Catal. 10(1), 743–750 (2019). https://doi.org/10.1021/acscatal.9b04043
- T. Tran-Phu, R. Daiyan, Z. Fusco, Z. Ma, R. Amal et al., Nanostructured β-Bi2O3 fractals on carbon fibers for highly selective CO2 electroreduction to formate. Adv. Funct. Mater. 30(3), 1906478 (2019). https://doi.org/10.1002/adfm.201906478
- S. Liu, X.F. Lu, J. Xiao, X. Wang, X.W.D. Lou, Bi2O3 nanosheets grown on multi-channel carbon matrix catalyze efficient CO2 electroreduction to HCOOH. Angew. Chem. Int. Ed. 58(39), 13828–13833 (2019). https://doi.org/10.1002/anie.201907674
- Y. Zhang, X. Zhang, Y. Ling, F. Li, A.M. Bond et al., Controllable synthesis of few-layer bismuth subcarbonate by electrochemical exfoliation for enhanced CO2 reduction performance. Angew. Chem. Int. Ed. 57(40), 13283–13287 (2018). https://doi.org/10.1002/anie.201807466
- B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005). https://doi.org/10.1107/S0909049505012719
- C. Greaves, S.K. Blower, Structural relationships between Bi2O2CO3 and β-Bi2O3. Mater. Res. Bull. 23(7), 1001–1008 (1988). https://doi.org/10.1016/0025-5408(88)90055-4
- G. Kresse, J. Hafner, Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48(17), 13115–13118 (1993). https://doi.org/10.1103/PhysRevB.48.13115
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
- A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J.K. Nørskov, How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3(9), 1311–1315 (2010). https://doi.org/10.1039/c0ee00071j
- A.A. Peterson, J.K. Nørskov, Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3(2), 251–258 (2012). https://doi.org/10.1002/aenm.201903083
- X. Tong, Z. Yang, J. Feng, Y. Li, H. Zhang, BiOCl/UiO-66 composite with enhanced performance for photo-assisted degradation of dye from water. Appl. Organomet. Chem. 32(2), e4049 (2018). https://doi.org/10.1002/aoc.4049
- J. Lu, W. Zhou, X. Zhang, G. Xiang, Electronic structures and lattice dynamics of layered BiOCl single crystals. J. Phys. Chem. Lett. 11(3), 1038–1044 (2020). https://doi.org/10.1021/acs.jpclett.9b03575
- W. Zhao, Y. Wang, A. Wang, J. Qian, W. Zhu et al., Novel Bi2O2CO3/polypyrrole/g-C3N4 nanocomposites with efficient photocatalytic and nonlinear optical properties. RSC Adv. 7(13), 7658–7670 (2017). https://doi.org/10.1039/c6ra28346b
- G.E. Tobon-Zapata, S.B. Etcheverry, E.J. Baran, Vibrational spectrum of bismuth subcarbonate. J. Mater. Sci. Lett. 16, 656–657 (1997). https://doi.org/10.1023/A:1018527602604
- J.D. Grice, A solution to the crystal structures of bismutite and beyerite. Can. Mineral. 40(2), 693–698 (2002). https://doi.org/10.2113/gscanmin.40.2.693
- Z. Miao, Q. Wang, Y. Zhang, L. Meng, X. Wang, In situ construction of S-scheme AgBr/BiOBr heterojunction with surface oxygen vacancy for boosting photocatalytic CO2 reduction with H2O. Appl. Catal. B Environ. 301, 120802 (2022). https://doi.org/10.1016/j.apcatb.2021.120802
- H. Huang, K. Xiao, S. Yu, F. Dong, T. Zhang et al., Iodide surface decoration: a facile and efficacious approach to modulating the band energy level of semiconductors for high-performance visible-light photocatalysis. Chem. Commun. 52(2), 354–357 (2016). https://doi.org/10.1039/c5cc08239k
- S. Wei, H. Zhong, H. Wang, Y. Song, C. Jia et al., Oxygen vacancy enhanced visible light photocatalytic selective oxidation of benzylamine over ultrathin Pd/BiOCl nanosheets. Appl. Catal. B Environ. 305, 121032 (2022). https://doi.org/10.1016/j.apcatb.2021.121032
- A.K. Friedman, W. Shi, Y. Losovyj, A.R. Siedle, L.A. Baker, Mapping microscale chemical heterogeneity in nafion membranes with X-ray photoelectron spectroscopy. J. Electrochem. Soc. 165(11), H733–H741 (2018). https://doi.org/10.1149/2.0771811jes
- W. Cen, T. Xiong, C. Tang, S. Yuan, F. Dong, Effects of morphology and crystallinity on the photocatalytic activity of (BiO)2CO3 nano/microstructures. Ind. Eng. Chem. Res. 53(39), 15002–15011 (2014). https://doi.org/10.1021/ie502670n
- P. Kar, T.K. Maji, R. Nandi, P. Lemmens, S.K. Pal, In-situ hydrothermal synthesis of Bi-Bi2O2CO3 heterojunction photocatalyst with enhanced visible light photocatalytic activity. Nano-Micro Lett. 9, 18 (2017). https://doi.org/10.1007/s40820-016-0118-0
- W. Ji, J. Niu, W. Zhang, X. Li, W. Yan et al., An electroactive ion exchange hybrid film with collaboratively-driven ability for electrochemically-mediated selective extraction of chloride ions. Chem. Eng. J. 427, 130807 (2022). https://doi.org/10.1016/j.cej.2021.130807
- N.E. Rajeevan, R. Kumar, D.K. Shukla, P. Thakur, N.B. Brookes et al., Bi-substitution-induced magnetic moment distribution in spinel BixCo2-xMnO4 multiferroic. J. Phys. Condens. Matter 21(40), 406006 (2009). https://doi.org/10.1088/0953-8984/21/40/406006
- D.K. Shukla, R. Kumar, S. Mollah, R.J. Choudhary, P. Thakurm et al., Swift heavy ion irradiation induced magnetism in magnetically frustrated BiMn2O5 thin films. Phys. Rev. B 82(17), 174432 (2010). https://doi.org/10.1103/PhysRevB.82.174432
- R. Qiao, Y.D. Chuang, S. Yan, W. Yang, Soft X-ray irradiation effects of Li2O2, Li2CO3 and Li2O revealed by absorption spectroscopy. PLoS ONE 7(11), e49182 (2012). https://doi.org/10.1371/journal.pone.0049182
- L. Wang, J. Han, Y. Zhu, R. Zhou, C. Jaye et al., Probing the dependence of electron transfer on size and coverage in carbon nanotube-quantum dot heterostructures. J. Phy. Chem. C 119(47), 26327–26338 (2015). https://doi.org/10.1021/acs.jpcc.5b08681
- Y. Ye, A. Kawase, M.K. Song, B. Feng, Y.S. Liu et al., X-ray absorption spectroscopy characterization of a Li/S cell. Nanomaterials 6(1), 14 (2016). https://doi.org/10.3390/nano6010014
- P.F. Liu, M.Y. Zu, L.R. Zheng, H.G. Yang, Bismuth oxyiodide microflower-derived catalysts for efficient CO2 electroreduction in a wide negative potential region. Chem. Commun. 55(82), 12392–12395 (2019). https://doi.org/10.1039/c9cc05089b
- W. Lv, J. Bei, R. Zhang, W. Wang, F. Kong et al., Bi2O2CO3 nanosheets as electrocatalysts for selective reduction of CO2 to formate at low overpotential. ACS Omega 2(6), 2561–2567 (2017). https://doi.org/10.1021/acsomega.7b00437
- T. Cheng, C. Tan, S. Zhang, T. Tu, H. Peng et al., Raman spectra and strain effects in bismuth oxychalcogenides. J. Phys. Chem. C 122(34), 19970–19980 (2018). https://doi.org/10.1021/acs.jpcc.8b05475
- M. Zhang, W. Wei, S. Zhou, D.D. Ma, A. Cao et al., Engineering conductive network of atomically thin bismuthene with rich defects enables CO2 reduction to formate with industry-compatible current densities and stability. Energy Environ. Sci. 14, 4998–5008 (2021). https://doi.org/10.1039/d1ee01495a
- N. Han, Y. Wang, H. Yang, J. Deng, J. Wu et al., Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat. Commun. 9, 1320 (2018). https://doi.org/10.1038/s41467-018-03712-z
- T. Chen, T. Liu, T. Ding, B. Pang, L. Wang et al., Surface oxygen injection in tin disulfide nanosheets for efficient CO2 electroreduction to formate and syngas. Nano-Micro Lett. 13, 189 (2021). https://doi.org/10.1007/s40820-021-00703-6
- C. Cao, D.D. Ma, J.F. Gu, X. Xie, G. Zeng et al., Metal-organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel. Angew. Chem. Int. Ed. 132(35), 15124–15130 (2020). https://doi.org/10.1002/anie.202005577
- Y. Xing, X. Kong, X. Guo, Y. Liu, Q. Li et al., Bi@Sn core-shell structure with compressive strain boosts the electroreduction of CO2 into formic acid. Adv. Sci. 7(22), 1902989 (2020). https://doi.org/10.1002/advs.201902989
- J.K. Norskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009). https://doi.org/10.1038/nchem.121
References
P.D. Luna, C. Hahn, D. Higgins, S.A. Jaffer, T.F. Jaramillo et al., What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364(6438), 3506 (2019). https://doi.org/10.1126/science.aav3506
J. Li, S.U. Abbas, H. Wang, Z. Zhang, W. Hu, Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 13, 216 (2021). https://doi.org/10.1007/s40820-021-00738-9
Z.Z. Wu, X.L. Zhang, Z.Z. Niu, F.Y. Gao, P.P. Yang et al., Identification of Cu(100)/Cu(111) interfaces as superior active sites for CO dimerization during CO2 electroreduction. J. Am. Chem. Soc. 144(1), 259–269 (2022). https://doi.org/10.1021/jacs.1c09508
X. Zheng, P.D. Luna, F.P.G. Arquer, B. Zhang, N. Becknell et al., Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule 1, 794–805 (2017). https://doi.org/10.1016/j.joule.2017.09.014
X. Lu, Y. Wu, X. Yuan, H. Wang, An integrated CO2 electrolyzer and formate fuel cell enabled by a reversibly restructuring Pb-Pd bimetallic catalyst. Angew. Chem. Int. Ed. 58(12), 4031–4035 (2019). https://doi.org/10.1002/anie.201814257
S. Zhao, S. Li, T. Guo, S. Zhang, J. Wang et al., Advances in Sn-based catalysts for electrochemical CO2 reduction. Nano-Micro Lett. 11, 62 (2019). https://doi.org/10.1007/s40820-019-0293-x
D. Wu, R. Feng, C. Xu, P.F. Sui, J. Zhang et al., Regulating the electron localization of metallic bismuth for boosting CO2 electroreduction. Nano-Micro Lett. 14, 38 (2021). https://doi.org/10.1007/s40820-021-00772-7
Q. Gong, P. Ding, M. Xu, X. Zhu, M. Wang et al., Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat. Commun. 10, 2807 (2019). https://doi.org/10.1038/s41467-019-10819-4
C. Xia, P. Zhu, Q. Jiang, Y. Pan, W. Liang et al., Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4, 776–785 (2019). https://doi.org/10.1038/s41560-019-0451-x
F. Yang, A.O. Elnabawy, R. Schimmenti, P. Song, J. Wang et al., Bismuthene for highly efficient carbon dioxide electroreduction reaction. Nat. Commun. 11, 1088 (2020). https://doi.org/10.1038/s41467-020-14914-9
P. Deng, F. Yang, Z. Wang, S. Chen, Y. Zhou et al., Metal-organic frameworks-derived carbon nanorods encapsulated bismuth oxides for rapid and selective CO2 electroreduction to formate. Angew. Chem. Int. Ed. 59(27), 10807–10813 (2020). https://doi.org/10.1002/anie.202000657
D.D. Zhu, J.L. Liu, S.Z. Qiao, Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 28(18), 3423–3452 (2016). https://doi.org/10.1002/adma.201504766
C.W. Lee, J.S. Hong, K.D. Yang, K. Jin, J.H. Lee et al., Selective electrochemical production of formate from carbon dioxide with bismuth-based catalysts in an aqueous electrolyte. ACS Catal. 8(2), 931–937 (2018). https://doi.org/10.1021/acscatal.7b03242
P. Deng, H. Wang, R. Qi, J. Zhu, S. Chen et al., Bismuth oxides with enhanced bismuth-oxygen structure for efficient electrochemical reduction of carbon dioxide to formate. ACS Catal. 10(1), 743–750 (2019). https://doi.org/10.1021/acscatal.9b04043
T. Tran-Phu, R. Daiyan, Z. Fusco, Z. Ma, R. Amal et al., Nanostructured β-Bi2O3 fractals on carbon fibers for highly selective CO2 electroreduction to formate. Adv. Funct. Mater. 30(3), 1906478 (2019). https://doi.org/10.1002/adfm.201906478
S. Liu, X.F. Lu, J. Xiao, X. Wang, X.W.D. Lou, Bi2O3 nanosheets grown on multi-channel carbon matrix catalyze efficient CO2 electroreduction to HCOOH. Angew. Chem. Int. Ed. 58(39), 13828–13833 (2019). https://doi.org/10.1002/anie.201907674
Y. Zhang, X. Zhang, Y. Ling, F. Li, A.M. Bond et al., Controllable synthesis of few-layer bismuth subcarbonate by electrochemical exfoliation for enhanced CO2 reduction performance. Angew. Chem. Int. Ed. 57(40), 13283–13287 (2018). https://doi.org/10.1002/anie.201807466
B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005). https://doi.org/10.1107/S0909049505012719
C. Greaves, S.K. Blower, Structural relationships between Bi2O2CO3 and β-Bi2O3. Mater. Res. Bull. 23(7), 1001–1008 (1988). https://doi.org/10.1016/0025-5408(88)90055-4
G. Kresse, J. Hafner, Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48(17), 13115–13118 (1993). https://doi.org/10.1103/PhysRevB.48.13115
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J.K. Nørskov, How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3(9), 1311–1315 (2010). https://doi.org/10.1039/c0ee00071j
A.A. Peterson, J.K. Nørskov, Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3(2), 251–258 (2012). https://doi.org/10.1002/aenm.201903083
X. Tong, Z. Yang, J. Feng, Y. Li, H. Zhang, BiOCl/UiO-66 composite with enhanced performance for photo-assisted degradation of dye from water. Appl. Organomet. Chem. 32(2), e4049 (2018). https://doi.org/10.1002/aoc.4049
J. Lu, W. Zhou, X. Zhang, G. Xiang, Electronic structures and lattice dynamics of layered BiOCl single crystals. J. Phys. Chem. Lett. 11(3), 1038–1044 (2020). https://doi.org/10.1021/acs.jpclett.9b03575
W. Zhao, Y. Wang, A. Wang, J. Qian, W. Zhu et al., Novel Bi2O2CO3/polypyrrole/g-C3N4 nanocomposites with efficient photocatalytic and nonlinear optical properties. RSC Adv. 7(13), 7658–7670 (2017). https://doi.org/10.1039/c6ra28346b
G.E. Tobon-Zapata, S.B. Etcheverry, E.J. Baran, Vibrational spectrum of bismuth subcarbonate. J. Mater. Sci. Lett. 16, 656–657 (1997). https://doi.org/10.1023/A:1018527602604
J.D. Grice, A solution to the crystal structures of bismutite and beyerite. Can. Mineral. 40(2), 693–698 (2002). https://doi.org/10.2113/gscanmin.40.2.693
Z. Miao, Q. Wang, Y. Zhang, L. Meng, X. Wang, In situ construction of S-scheme AgBr/BiOBr heterojunction with surface oxygen vacancy for boosting photocatalytic CO2 reduction with H2O. Appl. Catal. B Environ. 301, 120802 (2022). https://doi.org/10.1016/j.apcatb.2021.120802
H. Huang, K. Xiao, S. Yu, F. Dong, T. Zhang et al., Iodide surface decoration: a facile and efficacious approach to modulating the band energy level of semiconductors for high-performance visible-light photocatalysis. Chem. Commun. 52(2), 354–357 (2016). https://doi.org/10.1039/c5cc08239k
S. Wei, H. Zhong, H. Wang, Y. Song, C. Jia et al., Oxygen vacancy enhanced visible light photocatalytic selective oxidation of benzylamine over ultrathin Pd/BiOCl nanosheets. Appl. Catal. B Environ. 305, 121032 (2022). https://doi.org/10.1016/j.apcatb.2021.121032
A.K. Friedman, W. Shi, Y. Losovyj, A.R. Siedle, L.A. Baker, Mapping microscale chemical heterogeneity in nafion membranes with X-ray photoelectron spectroscopy. J. Electrochem. Soc. 165(11), H733–H741 (2018). https://doi.org/10.1149/2.0771811jes
W. Cen, T. Xiong, C. Tang, S. Yuan, F. Dong, Effects of morphology and crystallinity on the photocatalytic activity of (BiO)2CO3 nano/microstructures. Ind. Eng. Chem. Res. 53(39), 15002–15011 (2014). https://doi.org/10.1021/ie502670n
P. Kar, T.K. Maji, R. Nandi, P. Lemmens, S.K. Pal, In-situ hydrothermal synthesis of Bi-Bi2O2CO3 heterojunction photocatalyst with enhanced visible light photocatalytic activity. Nano-Micro Lett. 9, 18 (2017). https://doi.org/10.1007/s40820-016-0118-0
W. Ji, J. Niu, W. Zhang, X. Li, W. Yan et al., An electroactive ion exchange hybrid film with collaboratively-driven ability for electrochemically-mediated selective extraction of chloride ions. Chem. Eng. J. 427, 130807 (2022). https://doi.org/10.1016/j.cej.2021.130807
N.E. Rajeevan, R. Kumar, D.K. Shukla, P. Thakur, N.B. Brookes et al., Bi-substitution-induced magnetic moment distribution in spinel BixCo2-xMnO4 multiferroic. J. Phys. Condens. Matter 21(40), 406006 (2009). https://doi.org/10.1088/0953-8984/21/40/406006
D.K. Shukla, R. Kumar, S. Mollah, R.J. Choudhary, P. Thakurm et al., Swift heavy ion irradiation induced magnetism in magnetically frustrated BiMn2O5 thin films. Phys. Rev. B 82(17), 174432 (2010). https://doi.org/10.1103/PhysRevB.82.174432
R. Qiao, Y.D. Chuang, S. Yan, W. Yang, Soft X-ray irradiation effects of Li2O2, Li2CO3 and Li2O revealed by absorption spectroscopy. PLoS ONE 7(11), e49182 (2012). https://doi.org/10.1371/journal.pone.0049182
L. Wang, J. Han, Y. Zhu, R. Zhou, C. Jaye et al., Probing the dependence of electron transfer on size and coverage in carbon nanotube-quantum dot heterostructures. J. Phy. Chem. C 119(47), 26327–26338 (2015). https://doi.org/10.1021/acs.jpcc.5b08681
Y. Ye, A. Kawase, M.K. Song, B. Feng, Y.S. Liu et al., X-ray absorption spectroscopy characterization of a Li/S cell. Nanomaterials 6(1), 14 (2016). https://doi.org/10.3390/nano6010014
P.F. Liu, M.Y. Zu, L.R. Zheng, H.G. Yang, Bismuth oxyiodide microflower-derived catalysts for efficient CO2 electroreduction in a wide negative potential region. Chem. Commun. 55(82), 12392–12395 (2019). https://doi.org/10.1039/c9cc05089b
W. Lv, J. Bei, R. Zhang, W. Wang, F. Kong et al., Bi2O2CO3 nanosheets as electrocatalysts for selective reduction of CO2 to formate at low overpotential. ACS Omega 2(6), 2561–2567 (2017). https://doi.org/10.1021/acsomega.7b00437
T. Cheng, C. Tan, S. Zhang, T. Tu, H. Peng et al., Raman spectra and strain effects in bismuth oxychalcogenides. J. Phys. Chem. C 122(34), 19970–19980 (2018). https://doi.org/10.1021/acs.jpcc.8b05475
M. Zhang, W. Wei, S. Zhou, D.D. Ma, A. Cao et al., Engineering conductive network of atomically thin bismuthene with rich defects enables CO2 reduction to formate with industry-compatible current densities and stability. Energy Environ. Sci. 14, 4998–5008 (2021). https://doi.org/10.1039/d1ee01495a
N. Han, Y. Wang, H. Yang, J. Deng, J. Wu et al., Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat. Commun. 9, 1320 (2018). https://doi.org/10.1038/s41467-018-03712-z
T. Chen, T. Liu, T. Ding, B. Pang, L. Wang et al., Surface oxygen injection in tin disulfide nanosheets for efficient CO2 electroreduction to formate and syngas. Nano-Micro Lett. 13, 189 (2021). https://doi.org/10.1007/s40820-021-00703-6
C. Cao, D.D. Ma, J.F. Gu, X. Xie, G. Zeng et al., Metal-organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel. Angew. Chem. Int. Ed. 132(35), 15124–15130 (2020). https://doi.org/10.1002/anie.202005577
Y. Xing, X. Kong, X. Guo, Y. Liu, Q. Li et al., Bi@Sn core-shell structure with compressive strain boosts the electroreduction of CO2 into formic acid. Adv. Sci. 7(22), 1902989 (2020). https://doi.org/10.1002/advs.201902989
J.K. Norskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009). https://doi.org/10.1038/nchem.121