Mediating the Local Oxygen-Bridge Interactions of Oxysalt/Perovskite Interface for Defect Passivation of Perovskite Photovoltaics
Corresponding Author: Shuang Yang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 177
Abstract
Passivation, as a classical surface treatment technique, has been widely accepted in start-of-the-art perovskite solar cells (PSCs) that can effectively modulate the electronic and chemical property of defective perovskite surface. The discovery of inorganic passivation compounds, such as oxysalts, has largely advanced the efficiency and lifetime of PSCs on account of its favorable electrical property and remarkable inherent stability, but a lack of deep understanding of how its local configuration affects the passivation effectiveness is a huge impediment for future interfacial molecular engineering. Here, we demonstrate the central-atom-dependent-passivation of oxysalt on perovskite surface, in which the central atoms of oxyacid anions dominate the interfacial oxygen-bridge strength. We revealed that the balance of local interactions between the central atoms of oxyacid anions (e.g., N, C, S, P, Si) and the metal cations on perovskite surface (e.g., Pb) generally determines the bond formation at oxysalt/perovskite interface, which can be understood by the bond order conservation principle. Silicate with less electronegative Si central atoms provides strong O-Pb motif and improved passivation effect, delivering a champion efficiency of 17.26% for CsPbI2Br solar cells. Our strategy is also universally effective in improving the device performance of several commonly used perovskite compositions.
Highlights:
1 Oxyacid anions (NO3−, SO42−, CO32−, PO43− and SiO32−) were investigated both theoretically and experimentally about their passivation effect on CsPbI2Br perovskite interface.
2 Adjustment of oxysalt layer thickness can optimize the surface band position that could be beneficial for electronic band alignment at perovskite/transport layer interface.
3 Using silicate as a passivator, the CsPbI2Br solar cells achieved a PCE of 17.26% with an open-circuit voltage of 1.36 V. This strategy is also effective for organic-inorganic perovskite solar cells.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Yang, S. Chen, E. Mosconi, Y. Fang, X. Xiao et al., Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 365, 473–478 (2019). https://doi.org/10.1126/science.aax3294
- Y. Hou, E. Aydin, M.D. Bastiani, C. Xiao, F.H. Isikgor et al., Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367, 1135–1140 (2020). https://doi.org/10.1126/science.aaz3691
- M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–646 (2012). https://doi.org/10.1126/science.1228604
- W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu et al., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015). https://doi.org/10.1126/science.aaa9272
- Y. Wang, M.I. Dar, L.K. Ono, T. Zhang, M. Kan et al., Thermodynamically stabilized β-CsPbI3–based perovskite solar cells with efficiencies >18%. Science 365, 591–595 (2019). https://doi.org/10.1126/science.aav8680
- K. Xiao, R. Lin, Q. Han, Y. Hou, Z. Qin et al., All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy 5, 870–880 (2020). https://doi.org/10.1038/s41560-020-00705-5
- National Renewable Energy Laboratory, Best Research-Cell Efficiency Chart; https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200929.pdf
- T.H. Han, S. Tan, J. Xue, L. Meng, J.W. Lee et al., Interface and defect engineering for metal halide perovskite optoelectronic devices. Adv. Mater. 31, e1803515 (2019). https://doi.org/10.1002/adma.201803515
- J. Chen, N.G. Park, Causes and solutions of recombination in perovskite solar cells. Adv. Mater. 31, e1803019 (2019). https://doi.org/10.1002/adma.201803019
- Y. Zhou, Y. Zhao, Chemical stability and instability of inorganic halide perovskites. Energy Environ. Sci. 12, 1495–1511 (2019). https://doi.org/10.1039/C8EE03559H
- C.M. Wolff, P. Caprioglio, M. Stolterfoht, D. Neher, Nonradiative recombination in perovskite solar cells: the role of interfaces. Adv. Mater. 31, e1902762 (2019). https://doi.org/10.1002/adma.201902762
- J. Song, T. Fang, J. Li, L. Xu, F. Zhang et al., Organic-inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48%. Adv. Mater. 30, e1805409 (2018). https://doi.org/10.1002/adma.201805409
- P. Chen, Y. Bai, S. Wang, M. Lyu, J.-H. Yun et al., In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells. Adv. Funct. Mater. 28, 1706923 (2018). https://doi.org/10.1002/adfm.201706923
- Y. Shao, Y. Fang, T. Li, Q. Wang, Q. Dong et al., Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films. Energy Environ. Sci. 9, 1752–1759 (2016). https://doi.org/10.1039/C6EE00413J
- X. Jiang, F. Wang, Q. Wei, H. Li, Y. Shang et al., Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design. Nat. Commun. 11, 1245 (2020). https://doi.org/10.1038/s41467-020-15078-2
- E.A. Alharbi, A.Y. Alyamani, D.J. Kubicki, A.R. Uhl, B.J. Walder et al., Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells. Nat. Commun. 10, 3008 (2019). https://doi.org/10.1038/s41467-019-10985-5
- Q. Wang, X. Zheng, Y. Deng, J. Zhao, Z. Chen et al., Stabilizing the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films. Joule 1, 371–382 (2017). https://doi.org/10.1016/j.joule.2017.07.017
- M. Kim, S.G. Motti, R. Sorrentino, A. Petrozza, Enhanced solar cell stability by hygroscopic polymer passivation of metal halide perovskite thin film. Energy Environ. Sci. 11, 2609–2619 (2018). https://doi.org/10.1039/C8EE01101J
- T. Fang, T. Wang, X. Li, Y. Dong, S. Bai et al., Perovskite QLED with an external quantum efficiency of over 21% by modulating electronic transport. Sci. Bull. 66, 36–43 (2020). https://doi.org/10.1016/j.scib.2020.08.025
- Y. Shao, Y. Yuan, J. Huang, Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells. Nat. Energy 1, 15001 (2016). https://doi.org/10.1038/nenergy.2015.1
- P.Y. Gu, N. Wang, A. Wu, Z. Wang, M. Tian et al., An azaacene derivative as promising electron-transport layer for inverted perovskite solar cells. Chem. Asian. J 11, 2135–2138 (2016). https://doi.org/10.1002/asia.201600856
- S. Zhang, H. Gu, S.-C. Chen, Q. Zheng, KF-Doped SnO2 as an electron transport layer for efficient inorganic CsPbI2Br perovskite solar cells with enhanced open-circuit voltages. J. Mater. Chem. C 9, 4240–4247 (2021). https://doi.org/10.1039/D1TC00277E
- A.A. Said, J. Xie, Q. Zhang, Recent progress in organic electron transport materials in inverted perovskite solar cells. Small 15, 1900854 (2019). https://doi.org/10.1002/smll.201900854
- W.Q. Wu, P.N. Rudd, Z. Ni, C.H. Van Brackle, H. Wei et al., Reducing surface halide deficiency for efficient and stable iodide-based perovskite solar cells. J. Am. Chem. Soc. 142, 3989–3996 (2020). https://doi.org/10.1021/jacs.9b13418
- P. Zhu, S. Gu, X. Luo, Y. Gao, S. Li et al., Simultaneous contact and grain-boundary passivation in planar perovskite solar cells using SnO2-KCl composite electron transport layer. Adv. Energy Mater. 10, 1903083 (2019). https://doi.org/10.1002/aenm.201903083
- W. Qi, X. Zhou, J. Li, J. Cheng, Y. Li et al., Inorganic material passivation of defects toward efficient perovskite solar cells. Sci. Bull. 65, 2022–2032 (2020). https://doi.org/10.1016/j.scib.2020.07.017
- Q. Ye, Y. Zhao, S. Mu, F. Ma, F. Gao et al., Cesium lead inorganic solar cell with efficiency beyond 18% via reduced charge recombination. Adv. Mater. 31, e1905143 (2019). https://doi.org/10.1002/adma.201905143
- S.S. Mali, J.V. Patil, P.S. Shinde, G. de Miguel, C.K. Hong, Fully air-processed dynamic hot-air-assisted M:CsPbI2Br (M: Eu2+, In3+) for stable inorganic perovskite solar cells. Matter 4, 1–19 (2020). https://doi.org/10.1016/j.matt.2020.11.008
- M. Abdi-Jalebi, Z. Andaji-Garmaroudi, S. Cacovich, C. Stavrakas, B. Philippe et al., Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018). https://doi.org/10.1038/nature25989
- T.Y. Wen, S. Yang, P.F. Liu, L.J. Tang, H.W. Qiao et al., Surface electronic modification of perovskite thin film with water-resistant electron delocalized molecules for stable and efficient photovoltaics. Adv. Energy Mater. 8, 1703143 (2018). https://doi.org/10.1002/aenm.201703143
- S. Yang, J. Dai, Z. Yu, Y. Shao, Y. Zhou et al., Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells. J. Am. Chem. Soc. 141, 5781–5787 (2019). https://doi.org/10.1021/jacs.8b13091
- D. Perez-Del-Rey, D. Forgacs, E.M. Hutter, T.J. Savenije, D. Nordlund et al., Strontium insertion in methylammonium lead iodide: long charge carrier lifetime and high fill-factor solar cells. Adv. Mater. 28, 9839–9845 (2016). https://doi.org/10.1002/adma.201603016
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- R. Dronskowski, P.E. Blöchl, Crystal orbital hamilton populations (Cohp)—energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 97, 8617–8624 (1993). https://doi.org/10.1021/j100135a014
- J. He, W.-H. Fang, R. Long, O.V. Prezhdo, Bidentate Lewis bases are preferred for passivation of MAPbI3 surfaces: a time-domain ab initio analysis. Nano Energy 79, 105491 (2021). https://doi.org/10.1016/j.nanoen.2020.105491
- N. Li, S. Tao, Y. Chen, X. Niu, C.K. Onwudinanti et al., Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 4, 408–415 (2019). https://doi.org/10.1038/s41560-019-0382-6
- M.K. Trivedi, A.B. Dahryn Trivedi, Spectroscopic characterization of disodium hydrogen orthophosphate and sodium nitrate after biofield treatment. J. Chromatogr. Sep. Tech. 06, 1000282 (2015). https://doi.org/10.4172/2157-7064.1000282
- F. Ren, Y. Ding, Y. Leng, Infrared spectroscopic characterization of carbonated apatite: a combined experimental and computational study. J. Biomed. Mater. Res. A 102, 496–505 (2014). https://doi.org/10.1002/jbm.a.34720
- D. Peak, R.G. Ford, D.L. Sparks, An in situ ATR-FTIR investigation of sulfate bonding mechanisms on goethite. J. Colloid Interface Sci. 218, 289–299 (1999). https://doi.org/10.1006/jcis.1999.6405
- H. Sahu, K. Mohanty, Pseudo-first order reaction kinetics and thermodynamic properties study of neem oil esterification using MgO grafted natural hydroxyapatite. RSC Adv. 6, 8892–8901 (2016). https://doi.org/10.1039/C5RA25095A
- N. Rahmat, F. Hamzah, N. Sahiron, M. Mazlan, M.M. Zahari, Sodium silicate as source of silica for synthesis of mesoporous SBA-15. IOP Conf. Ser: Mater. Sci. Eng. 133, 012011 (2016). https://doi.org/10.1088/1757-899X/133/1/012011
- M. Maiberg, T. Hölscher, S. Zahedi-Azad, R. Scheer, Theoretical study of time-resolved luminescence in semiconductors. III. Trap states in the band gap. J. Appl. Phys. 118, 105701 (2015). https://doi.org/10.1063/1.4929877
- L.J.A. Koster, V.D. Mihailetchi, R. Ramaker, P.W.M. Blom, Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells. Appl. Phys. Lett. 86, 123509 (2005). https://doi.org/10.1063/1.1889240
- F. Fabregat-Santiago, G. Garcia-Belmonte, I. Mora-Seró, J. Bisquert, Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. Phys. Chem. Chem. Phys. 13, 9083–9118 (2011). https://doi.org/10.1039/C0CP02249G
- D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu et al., Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015). https://doi.org/10.1126/science.aaa2725
- K.B. Mabrouk, T.H. Kaouffmann, H. Aroui, M.D. Fontana, Raman study of cation effect on sulfate vibration modes in solid state and in aqueous solutions. J. Raman Spectrosc. 44, 1603–1608 (2013). https://hal.archives-ouvertes.fr/hal-00863209
- T. Uchino, T. Sakka, M. Iwasaki, Interpretation of hydrated states of sodium silicate glasses by infrared and raman analysis. J. Am. Ceram. Soc. 74, 306–313 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb06880.x
- A. Mirzehmet, T. Ohtsuka, S.A. Abd Rahman, T. Yuyama, P. Kruger et al., Surface termination of solution-processed CH3NH3PbI3 perovskite film examined using electron spectroscopies. Adv. Mater. 33, e2004981 (2021). https://doi.org/10.1002/adma.202004981
- D. Zhang, C. Liu, K. Li, W. Guo, F. Gao et al., Trapped-electron-induced hole injection in perovskite photodetector with controllable gain. Adv. Optic. Mater. 6, 1701189 (2018). https://doi.org/10.1002/adom.201701189
- D. Pan, G. Galli, A first principles method to determine speciation of carbonates in supercritical water. Nat. Commun. 11, 421 (2020). https://doi.org/10.1038/s41467-019-14248-1
- M. Xu, J.P. Larentzos, M. Roshdy, L.J. Criscenti, H.C. Allen, Aqueous divalent metal–nitrate interactions: hydration versus ion pairing. Phys. Chem. Chem. Phys. 10, 4676–4677 (2008). https://doi.org/10.1039/B807090N
- R.L. Frost, A. López, Y. Xi, A. Granja, R. Scholz et al., Vibrational spectroscopy of the phosphate mineral kovdorskite – Mg2PO4(OH)⋅3H2O. Spectrochim. Acta A 114, 309–315 (2013). https://doi.org/10.1016/j.saa.2013.05.033
References
S. Yang, S. Chen, E. Mosconi, Y. Fang, X. Xiao et al., Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 365, 473–478 (2019). https://doi.org/10.1126/science.aax3294
Y. Hou, E. Aydin, M.D. Bastiani, C. Xiao, F.H. Isikgor et al., Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367, 1135–1140 (2020). https://doi.org/10.1126/science.aaz3691
M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–646 (2012). https://doi.org/10.1126/science.1228604
W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu et al., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015). https://doi.org/10.1126/science.aaa9272
Y. Wang, M.I. Dar, L.K. Ono, T. Zhang, M. Kan et al., Thermodynamically stabilized β-CsPbI3–based perovskite solar cells with efficiencies >18%. Science 365, 591–595 (2019). https://doi.org/10.1126/science.aav8680
K. Xiao, R. Lin, Q. Han, Y. Hou, Z. Qin et al., All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy 5, 870–880 (2020). https://doi.org/10.1038/s41560-020-00705-5
National Renewable Energy Laboratory, Best Research-Cell Efficiency Chart; https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200929.pdf
T.H. Han, S. Tan, J. Xue, L. Meng, J.W. Lee et al., Interface and defect engineering for metal halide perovskite optoelectronic devices. Adv. Mater. 31, e1803515 (2019). https://doi.org/10.1002/adma.201803515
J. Chen, N.G. Park, Causes and solutions of recombination in perovskite solar cells. Adv. Mater. 31, e1803019 (2019). https://doi.org/10.1002/adma.201803019
Y. Zhou, Y. Zhao, Chemical stability and instability of inorganic halide perovskites. Energy Environ. Sci. 12, 1495–1511 (2019). https://doi.org/10.1039/C8EE03559H
C.M. Wolff, P. Caprioglio, M. Stolterfoht, D. Neher, Nonradiative recombination in perovskite solar cells: the role of interfaces. Adv. Mater. 31, e1902762 (2019). https://doi.org/10.1002/adma.201902762
J. Song, T. Fang, J. Li, L. Xu, F. Zhang et al., Organic-inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48%. Adv. Mater. 30, e1805409 (2018). https://doi.org/10.1002/adma.201805409
P. Chen, Y. Bai, S. Wang, M. Lyu, J.-H. Yun et al., In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells. Adv. Funct. Mater. 28, 1706923 (2018). https://doi.org/10.1002/adfm.201706923
Y. Shao, Y. Fang, T. Li, Q. Wang, Q. Dong et al., Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films. Energy Environ. Sci. 9, 1752–1759 (2016). https://doi.org/10.1039/C6EE00413J
X. Jiang, F. Wang, Q. Wei, H. Li, Y. Shang et al., Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design. Nat. Commun. 11, 1245 (2020). https://doi.org/10.1038/s41467-020-15078-2
E.A. Alharbi, A.Y. Alyamani, D.J. Kubicki, A.R. Uhl, B.J. Walder et al., Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells. Nat. Commun. 10, 3008 (2019). https://doi.org/10.1038/s41467-019-10985-5
Q. Wang, X. Zheng, Y. Deng, J. Zhao, Z. Chen et al., Stabilizing the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films. Joule 1, 371–382 (2017). https://doi.org/10.1016/j.joule.2017.07.017
M. Kim, S.G. Motti, R. Sorrentino, A. Petrozza, Enhanced solar cell stability by hygroscopic polymer passivation of metal halide perovskite thin film. Energy Environ. Sci. 11, 2609–2619 (2018). https://doi.org/10.1039/C8EE01101J
T. Fang, T. Wang, X. Li, Y. Dong, S. Bai et al., Perovskite QLED with an external quantum efficiency of over 21% by modulating electronic transport. Sci. Bull. 66, 36–43 (2020). https://doi.org/10.1016/j.scib.2020.08.025
Y. Shao, Y. Yuan, J. Huang, Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells. Nat. Energy 1, 15001 (2016). https://doi.org/10.1038/nenergy.2015.1
P.Y. Gu, N. Wang, A. Wu, Z. Wang, M. Tian et al., An azaacene derivative as promising electron-transport layer for inverted perovskite solar cells. Chem. Asian. J 11, 2135–2138 (2016). https://doi.org/10.1002/asia.201600856
S. Zhang, H. Gu, S.-C. Chen, Q. Zheng, KF-Doped SnO2 as an electron transport layer for efficient inorganic CsPbI2Br perovskite solar cells with enhanced open-circuit voltages. J. Mater. Chem. C 9, 4240–4247 (2021). https://doi.org/10.1039/D1TC00277E
A.A. Said, J. Xie, Q. Zhang, Recent progress in organic electron transport materials in inverted perovskite solar cells. Small 15, 1900854 (2019). https://doi.org/10.1002/smll.201900854
W.Q. Wu, P.N. Rudd, Z. Ni, C.H. Van Brackle, H. Wei et al., Reducing surface halide deficiency for efficient and stable iodide-based perovskite solar cells. J. Am. Chem. Soc. 142, 3989–3996 (2020). https://doi.org/10.1021/jacs.9b13418
P. Zhu, S. Gu, X. Luo, Y. Gao, S. Li et al., Simultaneous contact and grain-boundary passivation in planar perovskite solar cells using SnO2-KCl composite electron transport layer. Adv. Energy Mater. 10, 1903083 (2019). https://doi.org/10.1002/aenm.201903083
W. Qi, X. Zhou, J. Li, J. Cheng, Y. Li et al., Inorganic material passivation of defects toward efficient perovskite solar cells. Sci. Bull. 65, 2022–2032 (2020). https://doi.org/10.1016/j.scib.2020.07.017
Q. Ye, Y. Zhao, S. Mu, F. Ma, F. Gao et al., Cesium lead inorganic solar cell with efficiency beyond 18% via reduced charge recombination. Adv. Mater. 31, e1905143 (2019). https://doi.org/10.1002/adma.201905143
S.S. Mali, J.V. Patil, P.S. Shinde, G. de Miguel, C.K. Hong, Fully air-processed dynamic hot-air-assisted M:CsPbI2Br (M: Eu2+, In3+) for stable inorganic perovskite solar cells. Matter 4, 1–19 (2020). https://doi.org/10.1016/j.matt.2020.11.008
M. Abdi-Jalebi, Z. Andaji-Garmaroudi, S. Cacovich, C. Stavrakas, B. Philippe et al., Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018). https://doi.org/10.1038/nature25989
T.Y. Wen, S. Yang, P.F. Liu, L.J. Tang, H.W. Qiao et al., Surface electronic modification of perovskite thin film with water-resistant electron delocalized molecules for stable and efficient photovoltaics. Adv. Energy Mater. 8, 1703143 (2018). https://doi.org/10.1002/aenm.201703143
S. Yang, J. Dai, Z. Yu, Y. Shao, Y. Zhou et al., Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells. J. Am. Chem. Soc. 141, 5781–5787 (2019). https://doi.org/10.1021/jacs.8b13091
D. Perez-Del-Rey, D. Forgacs, E.M. Hutter, T.J. Savenije, D. Nordlund et al., Strontium insertion in methylammonium lead iodide: long charge carrier lifetime and high fill-factor solar cells. Adv. Mater. 28, 9839–9845 (2016). https://doi.org/10.1002/adma.201603016
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
R. Dronskowski, P.E. Blöchl, Crystal orbital hamilton populations (Cohp)—energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 97, 8617–8624 (1993). https://doi.org/10.1021/j100135a014
J. He, W.-H. Fang, R. Long, O.V. Prezhdo, Bidentate Lewis bases are preferred for passivation of MAPbI3 surfaces: a time-domain ab initio analysis. Nano Energy 79, 105491 (2021). https://doi.org/10.1016/j.nanoen.2020.105491
N. Li, S. Tao, Y. Chen, X. Niu, C.K. Onwudinanti et al., Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 4, 408–415 (2019). https://doi.org/10.1038/s41560-019-0382-6
M.K. Trivedi, A.B. Dahryn Trivedi, Spectroscopic characterization of disodium hydrogen orthophosphate and sodium nitrate after biofield treatment. J. Chromatogr. Sep. Tech. 06, 1000282 (2015). https://doi.org/10.4172/2157-7064.1000282
F. Ren, Y. Ding, Y. Leng, Infrared spectroscopic characterization of carbonated apatite: a combined experimental and computational study. J. Biomed. Mater. Res. A 102, 496–505 (2014). https://doi.org/10.1002/jbm.a.34720
D. Peak, R.G. Ford, D.L. Sparks, An in situ ATR-FTIR investigation of sulfate bonding mechanisms on goethite. J. Colloid Interface Sci. 218, 289–299 (1999). https://doi.org/10.1006/jcis.1999.6405
H. Sahu, K. Mohanty, Pseudo-first order reaction kinetics and thermodynamic properties study of neem oil esterification using MgO grafted natural hydroxyapatite. RSC Adv. 6, 8892–8901 (2016). https://doi.org/10.1039/C5RA25095A
N. Rahmat, F. Hamzah, N. Sahiron, M. Mazlan, M.M. Zahari, Sodium silicate as source of silica for synthesis of mesoporous SBA-15. IOP Conf. Ser: Mater. Sci. Eng. 133, 012011 (2016). https://doi.org/10.1088/1757-899X/133/1/012011
M. Maiberg, T. Hölscher, S. Zahedi-Azad, R. Scheer, Theoretical study of time-resolved luminescence in semiconductors. III. Trap states in the band gap. J. Appl. Phys. 118, 105701 (2015). https://doi.org/10.1063/1.4929877
L.J.A. Koster, V.D. Mihailetchi, R. Ramaker, P.W.M. Blom, Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells. Appl. Phys. Lett. 86, 123509 (2005). https://doi.org/10.1063/1.1889240
F. Fabregat-Santiago, G. Garcia-Belmonte, I. Mora-Seró, J. Bisquert, Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. Phys. Chem. Chem. Phys. 13, 9083–9118 (2011). https://doi.org/10.1039/C0CP02249G
D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu et al., Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015). https://doi.org/10.1126/science.aaa2725
K.B. Mabrouk, T.H. Kaouffmann, H. Aroui, M.D. Fontana, Raman study of cation effect on sulfate vibration modes in solid state and in aqueous solutions. J. Raman Spectrosc. 44, 1603–1608 (2013). https://hal.archives-ouvertes.fr/hal-00863209
T. Uchino, T. Sakka, M. Iwasaki, Interpretation of hydrated states of sodium silicate glasses by infrared and raman analysis. J. Am. Ceram. Soc. 74, 306–313 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb06880.x
A. Mirzehmet, T. Ohtsuka, S.A. Abd Rahman, T. Yuyama, P. Kruger et al., Surface termination of solution-processed CH3NH3PbI3 perovskite film examined using electron spectroscopies. Adv. Mater. 33, e2004981 (2021). https://doi.org/10.1002/adma.202004981
D. Zhang, C. Liu, K. Li, W. Guo, F. Gao et al., Trapped-electron-induced hole injection in perovskite photodetector with controllable gain. Adv. Optic. Mater. 6, 1701189 (2018). https://doi.org/10.1002/adom.201701189
D. Pan, G. Galli, A first principles method to determine speciation of carbonates in supercritical water. Nat. Commun. 11, 421 (2020). https://doi.org/10.1038/s41467-019-14248-1
M. Xu, J.P. Larentzos, M. Roshdy, L.J. Criscenti, H.C. Allen, Aqueous divalent metal–nitrate interactions: hydration versus ion pairing. Phys. Chem. Chem. Phys. 10, 4676–4677 (2008). https://doi.org/10.1039/B807090N
R.L. Frost, A. López, Y. Xi, A. Granja, R. Scholz et al., Vibrational spectroscopy of the phosphate mineral kovdorskite – Mg2PO4(OH)⋅3H2O. Spectrochim. Acta A 114, 309–315 (2013). https://doi.org/10.1016/j.saa.2013.05.033