Oxygen-Coordinated Single Mn Sites for Efficient Electrocatalytic Nitrate Reduction to Ammonia
Corresponding Author: Haimin Zhang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 9
Abstract
Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection. Here, we report an efficient NitRR catalyst composed of single Mn sites with atomically dispersed oxygen (O) coordination on bacterial cellulose-converted graphitic carbon (Mn–O–C). Evidence of the atomically dispersed Mn–(O–C2)4 moieties embedding in the exposed basal plane of carbon surface is confirmed by X-ray absorption spectroscopy. As a result, the as-synthesized Mn–O–C catalyst exhibits superior NitRR activity with an NH3 yield rate (RNH3) of 1476.9 ± 62.6 μg h−1 cm−2 at − 0.7 V (vs. reversible hydrogen electrode, RHE) and a faradaic efficiency (FE) of 89.0 ± 3.8% at − 0.5 V (vs. RHE) under ambient conditions. Further, when evaluated with a practical flow cell, Mn–O–C shows a high RNH3 of 3706.7 ± 552.0 μg h−1 cm−2 at a current density of 100 mA cm−2, 2.5 times of that in the H cell. The in situ FT-IR and Raman spectroscopic studies combined with theoretical calculations indicate that the Mn–(O–C2)4 sites not only effectively inhibit the competitive hydrogen evolution reaction, but also greatly promote the adsorption and activation of nitrate (NO3−), thus boosting both the FE and selectivity of NH3 over Mn–(O–C2)4 sites.
Highlights:
1 Oxygen-coordinated single-atom Mn catalyst was fabricated via introducing oxygen functional groups rich bacterial cellulose as the adsorption regulator through a combined impregnation–pyrolysis–etching synthetic route.
2 Mn–O–C as the electrocatalyst exhibits superior electrocatalytic activity toward ammonia synthesis with a maximum NH3 yield rate of 1476.9 ± 62.6 μg h−1 cm−2 at − 0.7 V (vs. RHE) and a faradaic efficiency of 89.0 ± 3.8% at − 0.5 V (vs. RHE) under ambient conditions.
3 Electrocatalytic mechanism of Mn–(O–C2)4 site for nitrate reduction reaction is unveiled by a combination of in situ spectroscopy characterization and computational study.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V. Rosca, M. Duca, M.T. de Groot, M.T.M. Koper, Nitrogen cycle electrocatalysis. Chem. Rev. 109, 2209–2244 (2009). https://doi.org/10.1021/cr8003696
- Y. Ashida, K. Arashiba, K. Nakajima, Y. Nishibayashi, Molybdenumcatalysed ammonia production with samarium diiodide and alcohols or water. Nature 568, 536–540 (2019). https://doi.org/10.1038/s41586-019-1134-2
- R.F. Service, New recipe produces ammonia from air, water, and sunlight. Science 345, 610–610 (2014). https://doi.org/10.1126/science.345.6197.610
- W.C. Zhang, B.W. Zhang, Bi-atom electrocatalyst for electrochemical nitrogen reduction reactions. Nano Micro Lett. 13, 106 (2021). https://doi.org/10.1007/s40820-021-00638-y
- J. Liang, Q. Liu, A.A. Alshehri, X.P. Sun, Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res. Energy 1, e9120010 (2022). https://doi.org/10.26599/NRE.2022.9120010
- X. Xu, L. Hu, Z.R. Li, L.S. Xie, S.J. Sun et al., Oxygen vacancies in Co3O4 nanoarrays promote nitrate electroreduction for ammonia synthesis. Sustain. Energy Fuels 6, 4130–4136 (2022). https://doi.org/10.1039/D2SE00830K
- W. Song, L.C. Yue, X.Y. Fan, Y.S. Luo, B.W. Ying et al., Recent progress and strategies on the design of catalysts for electrochemical ammonia synthesis from nitrate reduction. Inorg. Chem. Front. 10, 3489–3514 (2023). https://doi.org/10.1039/D3QI00554B
- H.P. Wang, F. Zhang, M.M. Jin, D.L. Zhao, X.Y. Fan et al., V-doped TiO2 nanobelt array for high-efficiency electrocatalytic nitrite reduction to ammonia. Mater. Today Phys. 30, 100944 (2023). https://doi.org/10.1016/j.mtphys.2022.100944
- J.Y. Ding, X.H. Hou, Y. Qiu, S.S. Zhang, Q. Lin et al., Iron-doping strategy promotes electroreduction of nitrate to ammonia on MoS2 nanosheets. Inorg. Chem. Commun. 151, 110621 (2023). https://doi.org/10.1016/j.inoche.2023.110621
- W.Q. Zhang, X.H. Qin, T.R. Wei, Q. Liu, J. Luo et al., Single atomic cerium sites anchored on nitrogen-doped hollow carbon spheres for highly selective electroreduction of nitric oxide to ammonia. J. Colloid Interface Sci. 638, 650–657 (2023). https://doi.org/10.1016/j.jcis.2023.02.026
- G. Soloveichik, Electrochemical synthesis of ammonia as a potential alternative to the Haber-Bosch process. Nat. Catal. 2, 377–380 (2019). https://doi.org/10.1038/s41929-019-0280-0
- B.H.R. Suryanto, H.L. Du, D.B. Wang, J. Chen, A.N. Simonov et al., Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2, 290–296 (2019). https://doi.org/10.1038/s41929-019-0252-4
- Y. Fu, P. Richardson, K.K. Li, H. Yu, B. Yu et al., Transition metal aluminum boride as a new candidate for ambient-condition electrochemical ammonia synthesis. Nano-Micro Lett. 12, 65 (2020). https://doi.org/10.1007/s40820-020-0400-z
- A. Biswas, S. Kapse, R. Thapa, R.S. Dey, Oxygen functionalization-induced charging effect on boron active sites for high-yield electrocatalytic NH3 production. Nano Micro Lett. 14, 214 (2022). https://doi.org/10.1007/s40820-022-00966-7
- C. Tang, S.Z. Qiao, How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem. Soc. Rev. 48, 3166–3180 (2019). https://doi.org/10.1039/C9CS00280D
- Y.C. Wan, J.C. Xu, R.T. Lv, Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Mater. Today 27, 69–90 (2019). https://doi.org/10.1016/j.mattod.2019.03.002
- A. Stirling, I. Pápai, J. Mink, D.R. Salahub, Density functional study of nitrogen oxides. J. Chem. Phys. 100, 2910–2923 (1994). https://doi.org/10.1063/1.466433
- N.C. Kani, J.A. Gaurhier, A. Prajapati, J. Edgington, I. Bordawekar et al., Solar-driven electrochemical synthesis of ammonia using nitrate with 11% solar-to-fuel efficiency at ambient conditions. Energy Environ. Sci. 14, 6349–6359 (2021). https://doi.org/10.1039/D1EE01879E
- F.B. Yao, M.C. Jia, Q. Yang, F. Chen, Y. Zhong et al., Highly selective electrochemical nitrate reduction using copper phosphide self-supported copper foam electrode: performance, mechanism, and application. Water Res. 193, 116881 (2021). https://doi.org/10.1016/j.watres.2021.116881
- W.H. He, J. Zhang, S. Dieckhöfer, S. Varhade, A.C. Brix et al., Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia. Nat. Commun. 13, 1129 (2022). https://doi.org/10.1038/s41467-022-28728-4
- F.X. Xie, X.L. Cui, X. Zhi, D.Z. Yao, B. Johannessen et al., A general approach to 3D-printed single-atom catalysts. Nat. Synth. 2, 129–139 (2023). https://doi.org/10.1038/s44160-022-00193-3
- P.P. Li, R. Li, Y.T. Liu, M.H. Xie, Z.Y. Jin et al., Pulsed nitrate-to-ammonia electroreduction facilitated by tandem catalysis of nitrite intermediates. J. Am. Chem. Soc. 145, 6471–6479 (2023). https://doi.org/10.1021/jacs.3c00334
- X.F. Cheng, J.H. He, H.Q. Ji, H.Y. Zhang, Q. Cao et al., Coordination symmetry breaking of single-atom catalysts for robust and efficient nitrate electroreduction to ammonia. Adv. Mater. 34, 2205767 (2022). https://doi.org/10.1002/adma.202205767
- P.P. Li, L. Liao, Z.W. Fang, G.H. Su, Z.Y. Jin et al., A multifunctional copper single-atom electrocatalyst aerogel for smart sensing and producing ammonia from nitrate. Proc. Natl. Acad. Sci. U.S.A. 120, e2305489120 (2023). https://doi.org/10.1073/pnas.2305489120
- X.X. Wang, X.H. Wu, W. Ma, X.C. Zhou, S. Zhang et al., Free-standing membrane incorporating single-atom catalysts for ultrafast electroreduction of low-concentration nitrate. Proc. Natl. Acad. Sci. U.S.A. 120, e2217703120 (2023). https://doi.org/10.1073/pnas.2217703120
- G.F. Chen, Y.F. Yuan, H.F. Jiang, S.Y. Ren, L.X. Ding et al., Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst. Nat. Energy 5, 605–613 (2020). https://doi.org/10.1038/s41560-020-0654-1
- S.H. Ye, Z.D. Chen, G.K. Zhang, W.D. Chen, C. Pen et al., Elucidating the activity, mechanism and application of selective electrosynthesis of ammonia from nitrate on cobalt phosphide. Energy Environ. Sci. 15, 760–770 (2022). https://doi.org/10.1039/D1EE03097C
- L.L. Han, M.C. Hou, P.F. Ou, H. Cheng, Z.H. Ren et al., Local modulation of single-atomic Mn sites for enhanced ambient ammonia electrosynthesis. ACS Catal. 11, 509–516 (2021). https://doi.org/10.1021/acscatal.0c04102
- X.W. Wang, D. Wu, S.Y. Liu, J.J. Zhang, X.Z. Fu et al., Folic acid self-assembly enabling manganese single-atom electrocatalyst for selective nitrogen reduction to ammonia. Nano-Micro Lett. 13, 125 (2021). https://doi.org/10.1007/s40820-021-00651-1
- X.Y. Ji, K. Sun, Z.K. Liu, X.H. Liu, W.K. Dong et al., Identification of dynamic active sites among Cu species derived from MOFs@CuPc for electrocatalytic nitrate reduction reaction to ammonia. Nano-Micro Lett. 15, 110 (2023). https://doi.org/10.1007/s40820-023-01091-9
- P.P. Li, Z.Y. Jin, Z.W. Fang, G.H. Yu et al., A single-site iron catalyst with preoccupied acive centers that achieves selective ammonia electrosynthesis from nitrate. Energy Environ. Sci. 14, 3522–3531 (2021). https://doi.org/10.1039/D1EE00545F
- J.C. Li, M. Li, N. An, S. Zhang, Q.N. Song et al., Boosted ammonium production by single cobalt atom catalysts with high Faradic efficiencies. Proc. Natl. Acad. Sci. U.S.A. 119, e2123450119 (2022). https://doi.org/10.1073/pnas.2123450119
- J. Yang, H.F. Qi, A.Q. Li, X.Y. Liu, X.F. Yang et al., Potential-driven restructuring of Cu single atoms to nanops for boosting the electrochemical reduction of nitrate to ammonia. J. Am. Chem. Soc. 144(27), 12062–12071 (2022). https://doi.org/10.1021/jacs.2c02262
- S.B. Zhang, M. Jin, T.F. Shi, M.M. Han, Q. Sun et al., Electrocatalytically active Fe–(O–C2)4 single-atom site for efficient reduction of nitrogen to ammonia. Angew. Chem. Int. Ed. 59, 13423–13429 (2020). https://doi.org/10.1002/anie.202005930
- S.B. Zhang, M. Jin, H. Xu, W.Y. Li, Y.X. Ye et al., Hydrogen peroxide assisted electrooxidation of benzene to phenol over bifunctional Ni–(O–C2)4 sites. Adv. Sci. 9, 2204043 (2022). https://doi.org/10.1002/advs.202204043
- S.B. Zhang, M.M. Han, T.F. Shi, H.M. Zhang, Y. Lin et al., Atomically dispersed bimetallic Fe–Co electrocatalysts for green production of ammonia. Nat. Sustain. 6, 169–179 (2023). https://doi.org/10.1038/s41893-022-00993-7
- W.Y. Li, S.B. Zhang, J. Ding, J.F. Liu, Z.W. Wang et al., Sustainable nitrogen fixation to produce ammonia by electroreduction of plasma-generated nitrite. ACS Sustain. Chem. Eng. 11(3), 1168–1177 (2023). https://doi.org/10.1021/acssuschemeng.2c06525
- L. Yan, L.Y. Xie, X.L. Wu, M.Y. Qian, J.R. Chen et al., Precise regulation of pyrrole-type single-atom Mn-N4 sites for superior pH-universal oxygen reduction. Carbon Eenergy 3, 856–865 (2021). https://doi.org/10.1002/cey2.135
- J.Z. Li, M.J. Chen, D.A. Cullen, S.Y. Hwang, M.Y. Wang et al., Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 1, 935–945 (2018). https://doi.org/10.1038/s41929-018-0164-8
- Y.T. Wang, W. Zhou, R.R. Jia, Y.F. Yu, B. Zhang et al., Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew. Chem. Int. Ed. 59, 5350 (2020). https://doi.org/10.1002/anie.201915992
- J. Li, G.M. Zhan, J.H. Yang, F.G. Quan, C.L. Mao et al., Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters. J. Am. Chem. Soc. 142(15), 7036–7046 (2020). https://doi.org/10.1021/jacs.0c00418
- M.H. Jiang, J. Su, X.M. Song, P.B. Zhang, M.F. Zhu et al., Interfacial reduction nucleation of noble metal nanodots on redox-active metal–organic frameworks for high-efficiency electrocatalytic conversion of nitrate to ammonia. Nano Lett. 22(6), 2529–2537 (2022). https://doi.org/10.1021/acs.nanolett.2c00446
- Y.G. Bu, C. Wang, W.K. Zhang, X. Yang, J. Ding et al., Electrical pulse-driven periodic self-repair of Cu–Ni tandem catalyst for efficient ammonia synthesis from nitrate. Angew. Chem. Int. Ed. 62, e202217337 (2023). https://doi.org/10.1002/ange.202217337
- C.Q. Zhang, L. Yuan, C. Liu, Z.M. Li, Y.Y. Zou et al., Crystal engineering enables cobalt-based metal–organic frameworks as high-performance electrocatalysts for H2O2 production. J. Am. Chem. Soc. 145, 7791–7799 (2023). https://doi.org/10.1021/jacs.2c11446
- M.M. Yan, Z.X. Wei, Z.C. Gong, B. Johannessen, G.L. Ye et al., Sb2S3-templated synthesis of sulfur-doped Sb-N-C with hierarchical architecture and high metal loading for H2O2 electrosynthesis. Nat. Commun. 14, 368 (2023). https://doi.org/10.1038/s41467-023-36078-y
- X.B. Fu, X.G. Zhao, X.B. Hu, K. He, Y.N. Yu et al., Alternative route for electrochemical ammonia synthesis by reduction of nitrateon copper nanosheets. Appl. Mater. Today 19, 100620 (2020). https://doi.org/10.1016/j.apmt.2020.100620
- L. Lv, R.H. Lu, J.X. Zhu, R.H. Yu, W. Zhang et al., Coordinating the edge defects of bismuth with sulfur for enhanced CO2 electroreduction to formate. Angew. Chem. Int. Ed. 62, e20233117 (2023). https://doi.org/10.1002/anie.202303117
- J.Y. Fang, Q.Z. Zheng, Y.Y. Lou, K.M. Zhao, S.N. Hu et al., Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature. Nat. Commun. 13, 7899 (2022). https://doi.org/10.1038/s41467-022-35533-6
- M.C. Figueiredo, J.S. Garcia, V. Climent, J.M. Feliu, Nitrate reduction on Pt(111) surfaces modified by Bi adatoms. Electrochem. Commun. 11, 1760–1763 (2009). https://doi.org/10.1016/j.elecom.2009.07.010
- E.P. Gallent, M.C. Figueiredo, L. Katsounaros, M.T.M. Koper, Electrocatalytic reduction of nitrate on copper single crystals in acidic and alkaline solutions. Electrochim. Acta 227, 77–84 (2017). https://doi.org/10.1016/j.electacta.2016.12.147
- V.K. Agrawal, M. Trenary, An infrared study of NO adsorption at defect sites on Pt(111). Surf. Sci. 259, 116–128 (1991). https://doi.org/10.1016/0039-6028(91)90530-6
- Z.M. Song, Y. Liu, Y.Z. Zhong, Q. Guo, J. Zeng et al., Efficient electroreduction of nitrate into ammonia at ultralow concentrations via an enrichment effect. Adv. Mater. 34, 2204306 (2022). https://doi.org/10.1002/adma.202204306
- L.Y. Liu, T. Xiao, H.Y. Fu, Z.J. Chen, X.L. Qu et al., Construction and identification of highly active single-atom Fe1-NC catalytic site for electrocatalytic nitrate reduction. Appl. Catal. B Environ. 323, 122181 (2023). https://doi.org/10.1016/j.apcatb.2022.122181
References
V. Rosca, M. Duca, M.T. de Groot, M.T.M. Koper, Nitrogen cycle electrocatalysis. Chem. Rev. 109, 2209–2244 (2009). https://doi.org/10.1021/cr8003696
Y. Ashida, K. Arashiba, K. Nakajima, Y. Nishibayashi, Molybdenumcatalysed ammonia production with samarium diiodide and alcohols or water. Nature 568, 536–540 (2019). https://doi.org/10.1038/s41586-019-1134-2
R.F. Service, New recipe produces ammonia from air, water, and sunlight. Science 345, 610–610 (2014). https://doi.org/10.1126/science.345.6197.610
W.C. Zhang, B.W. Zhang, Bi-atom electrocatalyst for electrochemical nitrogen reduction reactions. Nano Micro Lett. 13, 106 (2021). https://doi.org/10.1007/s40820-021-00638-y
J. Liang, Q. Liu, A.A. Alshehri, X.P. Sun, Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res. Energy 1, e9120010 (2022). https://doi.org/10.26599/NRE.2022.9120010
X. Xu, L. Hu, Z.R. Li, L.S. Xie, S.J. Sun et al., Oxygen vacancies in Co3O4 nanoarrays promote nitrate electroreduction for ammonia synthesis. Sustain. Energy Fuels 6, 4130–4136 (2022). https://doi.org/10.1039/D2SE00830K
W. Song, L.C. Yue, X.Y. Fan, Y.S. Luo, B.W. Ying et al., Recent progress and strategies on the design of catalysts for electrochemical ammonia synthesis from nitrate reduction. Inorg. Chem. Front. 10, 3489–3514 (2023). https://doi.org/10.1039/D3QI00554B
H.P. Wang, F. Zhang, M.M. Jin, D.L. Zhao, X.Y. Fan et al., V-doped TiO2 nanobelt array for high-efficiency electrocatalytic nitrite reduction to ammonia. Mater. Today Phys. 30, 100944 (2023). https://doi.org/10.1016/j.mtphys.2022.100944
J.Y. Ding, X.H. Hou, Y. Qiu, S.S. Zhang, Q. Lin et al., Iron-doping strategy promotes electroreduction of nitrate to ammonia on MoS2 nanosheets. Inorg. Chem. Commun. 151, 110621 (2023). https://doi.org/10.1016/j.inoche.2023.110621
W.Q. Zhang, X.H. Qin, T.R. Wei, Q. Liu, J. Luo et al., Single atomic cerium sites anchored on nitrogen-doped hollow carbon spheres for highly selective electroreduction of nitric oxide to ammonia. J. Colloid Interface Sci. 638, 650–657 (2023). https://doi.org/10.1016/j.jcis.2023.02.026
G. Soloveichik, Electrochemical synthesis of ammonia as a potential alternative to the Haber-Bosch process. Nat. Catal. 2, 377–380 (2019). https://doi.org/10.1038/s41929-019-0280-0
B.H.R. Suryanto, H.L. Du, D.B. Wang, J. Chen, A.N. Simonov et al., Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2, 290–296 (2019). https://doi.org/10.1038/s41929-019-0252-4
Y. Fu, P. Richardson, K.K. Li, H. Yu, B. Yu et al., Transition metal aluminum boride as a new candidate for ambient-condition electrochemical ammonia synthesis. Nano-Micro Lett. 12, 65 (2020). https://doi.org/10.1007/s40820-020-0400-z
A. Biswas, S. Kapse, R. Thapa, R.S. Dey, Oxygen functionalization-induced charging effect on boron active sites for high-yield electrocatalytic NH3 production. Nano Micro Lett. 14, 214 (2022). https://doi.org/10.1007/s40820-022-00966-7
C. Tang, S.Z. Qiao, How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem. Soc. Rev. 48, 3166–3180 (2019). https://doi.org/10.1039/C9CS00280D
Y.C. Wan, J.C. Xu, R.T. Lv, Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Mater. Today 27, 69–90 (2019). https://doi.org/10.1016/j.mattod.2019.03.002
A. Stirling, I. Pápai, J. Mink, D.R. Salahub, Density functional study of nitrogen oxides. J. Chem. Phys. 100, 2910–2923 (1994). https://doi.org/10.1063/1.466433
N.C. Kani, J.A. Gaurhier, A. Prajapati, J. Edgington, I. Bordawekar et al., Solar-driven electrochemical synthesis of ammonia using nitrate with 11% solar-to-fuel efficiency at ambient conditions. Energy Environ. Sci. 14, 6349–6359 (2021). https://doi.org/10.1039/D1EE01879E
F.B. Yao, M.C. Jia, Q. Yang, F. Chen, Y. Zhong et al., Highly selective electrochemical nitrate reduction using copper phosphide self-supported copper foam electrode: performance, mechanism, and application. Water Res. 193, 116881 (2021). https://doi.org/10.1016/j.watres.2021.116881
W.H. He, J. Zhang, S. Dieckhöfer, S. Varhade, A.C. Brix et al., Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia. Nat. Commun. 13, 1129 (2022). https://doi.org/10.1038/s41467-022-28728-4
F.X. Xie, X.L. Cui, X. Zhi, D.Z. Yao, B. Johannessen et al., A general approach to 3D-printed single-atom catalysts. Nat. Synth. 2, 129–139 (2023). https://doi.org/10.1038/s44160-022-00193-3
P.P. Li, R. Li, Y.T. Liu, M.H. Xie, Z.Y. Jin et al., Pulsed nitrate-to-ammonia electroreduction facilitated by tandem catalysis of nitrite intermediates. J. Am. Chem. Soc. 145, 6471–6479 (2023). https://doi.org/10.1021/jacs.3c00334
X.F. Cheng, J.H. He, H.Q. Ji, H.Y. Zhang, Q. Cao et al., Coordination symmetry breaking of single-atom catalysts for robust and efficient nitrate electroreduction to ammonia. Adv. Mater. 34, 2205767 (2022). https://doi.org/10.1002/adma.202205767
P.P. Li, L. Liao, Z.W. Fang, G.H. Su, Z.Y. Jin et al., A multifunctional copper single-atom electrocatalyst aerogel for smart sensing and producing ammonia from nitrate. Proc. Natl. Acad. Sci. U.S.A. 120, e2305489120 (2023). https://doi.org/10.1073/pnas.2305489120
X.X. Wang, X.H. Wu, W. Ma, X.C. Zhou, S. Zhang et al., Free-standing membrane incorporating single-atom catalysts for ultrafast electroreduction of low-concentration nitrate. Proc. Natl. Acad. Sci. U.S.A. 120, e2217703120 (2023). https://doi.org/10.1073/pnas.2217703120
G.F. Chen, Y.F. Yuan, H.F. Jiang, S.Y. Ren, L.X. Ding et al., Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst. Nat. Energy 5, 605–613 (2020). https://doi.org/10.1038/s41560-020-0654-1
S.H. Ye, Z.D. Chen, G.K. Zhang, W.D. Chen, C. Pen et al., Elucidating the activity, mechanism and application of selective electrosynthesis of ammonia from nitrate on cobalt phosphide. Energy Environ. Sci. 15, 760–770 (2022). https://doi.org/10.1039/D1EE03097C
L.L. Han, M.C. Hou, P.F. Ou, H. Cheng, Z.H. Ren et al., Local modulation of single-atomic Mn sites for enhanced ambient ammonia electrosynthesis. ACS Catal. 11, 509–516 (2021). https://doi.org/10.1021/acscatal.0c04102
X.W. Wang, D. Wu, S.Y. Liu, J.J. Zhang, X.Z. Fu et al., Folic acid self-assembly enabling manganese single-atom electrocatalyst for selective nitrogen reduction to ammonia. Nano-Micro Lett. 13, 125 (2021). https://doi.org/10.1007/s40820-021-00651-1
X.Y. Ji, K. Sun, Z.K. Liu, X.H. Liu, W.K. Dong et al., Identification of dynamic active sites among Cu species derived from MOFs@CuPc for electrocatalytic nitrate reduction reaction to ammonia. Nano-Micro Lett. 15, 110 (2023). https://doi.org/10.1007/s40820-023-01091-9
P.P. Li, Z.Y. Jin, Z.W. Fang, G.H. Yu et al., A single-site iron catalyst with preoccupied acive centers that achieves selective ammonia electrosynthesis from nitrate. Energy Environ. Sci. 14, 3522–3531 (2021). https://doi.org/10.1039/D1EE00545F
J.C. Li, M. Li, N. An, S. Zhang, Q.N. Song et al., Boosted ammonium production by single cobalt atom catalysts with high Faradic efficiencies. Proc. Natl. Acad. Sci. U.S.A. 119, e2123450119 (2022). https://doi.org/10.1073/pnas.2123450119
J. Yang, H.F. Qi, A.Q. Li, X.Y. Liu, X.F. Yang et al., Potential-driven restructuring of Cu single atoms to nanops for boosting the electrochemical reduction of nitrate to ammonia. J. Am. Chem. Soc. 144(27), 12062–12071 (2022). https://doi.org/10.1021/jacs.2c02262
S.B. Zhang, M. Jin, T.F. Shi, M.M. Han, Q. Sun et al., Electrocatalytically active Fe–(O–C2)4 single-atom site for efficient reduction of nitrogen to ammonia. Angew. Chem. Int. Ed. 59, 13423–13429 (2020). https://doi.org/10.1002/anie.202005930
S.B. Zhang, M. Jin, H. Xu, W.Y. Li, Y.X. Ye et al., Hydrogen peroxide assisted electrooxidation of benzene to phenol over bifunctional Ni–(O–C2)4 sites. Adv. Sci. 9, 2204043 (2022). https://doi.org/10.1002/advs.202204043
S.B. Zhang, M.M. Han, T.F. Shi, H.M. Zhang, Y. Lin et al., Atomically dispersed bimetallic Fe–Co electrocatalysts for green production of ammonia. Nat. Sustain. 6, 169–179 (2023). https://doi.org/10.1038/s41893-022-00993-7
W.Y. Li, S.B. Zhang, J. Ding, J.F. Liu, Z.W. Wang et al., Sustainable nitrogen fixation to produce ammonia by electroreduction of plasma-generated nitrite. ACS Sustain. Chem. Eng. 11(3), 1168–1177 (2023). https://doi.org/10.1021/acssuschemeng.2c06525
L. Yan, L.Y. Xie, X.L. Wu, M.Y. Qian, J.R. Chen et al., Precise regulation of pyrrole-type single-atom Mn-N4 sites for superior pH-universal oxygen reduction. Carbon Eenergy 3, 856–865 (2021). https://doi.org/10.1002/cey2.135
J.Z. Li, M.J. Chen, D.A. Cullen, S.Y. Hwang, M.Y. Wang et al., Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 1, 935–945 (2018). https://doi.org/10.1038/s41929-018-0164-8
Y.T. Wang, W. Zhou, R.R. Jia, Y.F. Yu, B. Zhang et al., Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew. Chem. Int. Ed. 59, 5350 (2020). https://doi.org/10.1002/anie.201915992
J. Li, G.M. Zhan, J.H. Yang, F.G. Quan, C.L. Mao et al., Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters. J. Am. Chem. Soc. 142(15), 7036–7046 (2020). https://doi.org/10.1021/jacs.0c00418
M.H. Jiang, J. Su, X.M. Song, P.B. Zhang, M.F. Zhu et al., Interfacial reduction nucleation of noble metal nanodots on redox-active metal–organic frameworks for high-efficiency electrocatalytic conversion of nitrate to ammonia. Nano Lett. 22(6), 2529–2537 (2022). https://doi.org/10.1021/acs.nanolett.2c00446
Y.G. Bu, C. Wang, W.K. Zhang, X. Yang, J. Ding et al., Electrical pulse-driven periodic self-repair of Cu–Ni tandem catalyst for efficient ammonia synthesis from nitrate. Angew. Chem. Int. Ed. 62, e202217337 (2023). https://doi.org/10.1002/ange.202217337
C.Q. Zhang, L. Yuan, C. Liu, Z.M. Li, Y.Y. Zou et al., Crystal engineering enables cobalt-based metal–organic frameworks as high-performance electrocatalysts for H2O2 production. J. Am. Chem. Soc. 145, 7791–7799 (2023). https://doi.org/10.1021/jacs.2c11446
M.M. Yan, Z.X. Wei, Z.C. Gong, B. Johannessen, G.L. Ye et al., Sb2S3-templated synthesis of sulfur-doped Sb-N-C with hierarchical architecture and high metal loading for H2O2 electrosynthesis. Nat. Commun. 14, 368 (2023). https://doi.org/10.1038/s41467-023-36078-y
X.B. Fu, X.G. Zhao, X.B. Hu, K. He, Y.N. Yu et al., Alternative route for electrochemical ammonia synthesis by reduction of nitrateon copper nanosheets. Appl. Mater. Today 19, 100620 (2020). https://doi.org/10.1016/j.apmt.2020.100620
L. Lv, R.H. Lu, J.X. Zhu, R.H. Yu, W. Zhang et al., Coordinating the edge defects of bismuth with sulfur for enhanced CO2 electroreduction to formate. Angew. Chem. Int. Ed. 62, e20233117 (2023). https://doi.org/10.1002/anie.202303117
J.Y. Fang, Q.Z. Zheng, Y.Y. Lou, K.M. Zhao, S.N. Hu et al., Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature. Nat. Commun. 13, 7899 (2022). https://doi.org/10.1038/s41467-022-35533-6
M.C. Figueiredo, J.S. Garcia, V. Climent, J.M. Feliu, Nitrate reduction on Pt(111) surfaces modified by Bi adatoms. Electrochem. Commun. 11, 1760–1763 (2009). https://doi.org/10.1016/j.elecom.2009.07.010
E.P. Gallent, M.C. Figueiredo, L. Katsounaros, M.T.M. Koper, Electrocatalytic reduction of nitrate on copper single crystals in acidic and alkaline solutions. Electrochim. Acta 227, 77–84 (2017). https://doi.org/10.1016/j.electacta.2016.12.147
V.K. Agrawal, M. Trenary, An infrared study of NO adsorption at defect sites on Pt(111). Surf. Sci. 259, 116–128 (1991). https://doi.org/10.1016/0039-6028(91)90530-6
Z.M. Song, Y. Liu, Y.Z. Zhong, Q. Guo, J. Zeng et al., Efficient electroreduction of nitrate into ammonia at ultralow concentrations via an enrichment effect. Adv. Mater. 34, 2204306 (2022). https://doi.org/10.1002/adma.202204306
L.Y. Liu, T. Xiao, H.Y. Fu, Z.J. Chen, X.L. Qu et al., Construction and identification of highly active single-atom Fe1-NC catalytic site for electrocatalytic nitrate reduction. Appl. Catal. B Environ. 323, 122181 (2023). https://doi.org/10.1016/j.apcatb.2022.122181