Enhancing the Electrocatalytic Oxidation of 5-Hydroxymethylfurfural Through Cascade Structure Tuning for Highly Stable Biomass Upgrading
Corresponding Author: Yen Wei
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 275
Abstract
Electrocatalytic 5-hydroxymethylfurfural oxidation reaction (HMFOR) provides a promising strategy to convert biomass derivative to high-value-added chemicals. Herein, a cascade strategy is proposed to construct Pd–NiCo2O4 electrocatalyst by Pd loading on Ni-doped Co3O4 and for highly active and stable synergistic HMF oxidation. An elevated current density of 800 mA cm–2 can be achieved at 1.5 V, and both Faradaic efficiency and yield of 2,5-furandicarboxylic acid remained close to 100% over 10 consecutive electrolysis. Experimental and theoretical results unveil that the introduction of Pd atoms can modulate the local electronic structure of Ni/Co, which not only balances the competitive adsorption of HMF and OH– species, but also promote the active Ni3+ species formation, inducing high indirect oxidation activity. We have also discovered that Ni incorporation facilitates the Co2+ pre-oxidation and electrophilic OH* generation to contribute direct oxidation process. This work provides a new approach to design advanced electrocatalyst for biomass upgrading.
Highlights:
1 A novel cascade strategy is proposed to construct Pd-NiCo2O4 electrocatalyst.
2 First time discovery that Ni incorporation together with Pd loading is able to balance the competitive adsorption of OH– and 5-hydroxymethylfurfural.
3 Pd–NiCo2O4 promotes both the indirect and direct synergistic oxidation process.
4 Pd–NiCo2O4 catalyst exhibits extraordinary current density and excellent Faradaic Efficiency at a low potential.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Zhang, Z. Li, Y. Zhou, Z. Yang, Z. Xue et al., Fluorine induced in situ formation of high valent nickel species for ultra low potential electrooxidation of 5-hydroxymethylfurfural. Small 20(8), 2306663 (2023). https://doi.org/10.1002/smll.202306663
- M. Farahmandjou, S. Zhao, W.-H. Lai, B. Sun, P.H.L. Notten et al., Oxygen redox chemistry in lithium-rich cathode materials for Li-ion batteries: understanding from atomic structure to nano-engineering. Nano Mater. Sci. 4(4), 322–338 (2022). https://doi.org/10.1016/j.nanoms.2022.03.004
- F. Zhang, J. Chen, G.G. Wallace, J. Yang, Engineering electrocatalytic fiber architectures. Prog. Mater. Sci. 133, 101069 (2023). https://doi.org/10.1016/j.pmatsci.2023.101069
- X. Zeng, H. Zhang, X. Zhang, Q. Zhang, Y. Chen et al., Coupling of ultrasmall and small CoxP nanops confined in porous SiO2 matrix for a robust oxygen evolution reaction. Nano Mater. Sci. 4(4), 393–399 (2022). https://doi.org/10.1016/j.nanoms.2022.03.002
- F. Zhang, J. Chen, J. Yang, Fiber materials for electrocatalysis applications. Adv. Fiber Mater. 4(4), 720–735 (2022). https://doi.org/10.1007/s42765-022-00146-7
- Y. Zhu, J. Zhang, Q. Qian, Y. Li, Z. Li et al., Dual nanoislands on Ni/C hybrid nanosheet activate superior hydrazine oxidation-assisted high-efficiency H2 production. Angew. Chem. Int. Ed. 61(2), e202113082 (2022). https://doi.org/10.1002/anie.202113082
- G. Zhao, G. Hai, P. Zhou, Z. Liu, Y. Zhang et al., Electrochemical oxidation of 5-hydroxymethylfurfural on CeO2-modified Co3O4 with regulated intermediate adsorption and promoted charge transfer. Adv. Funct. Mater. 33(14), 2213170 (2023). https://doi.org/10.1002/adfm.202213170
- Y. Zhu, Q. Qian, Y. Chen, X. He, X. Shi et al., Biphasic transition metal nitride electrode promotes nucleophile oxidation reaction for practicable hybrid water electrocatalysis. Adv. Funct. Mater. 33(25), 2300547 (2023). https://doi.org/10.1002/adfm.202300547
- H. Zhao, J.E. Holladay, H. Brown, Z.C. Zhang, Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316(5831), 1597–1600 (2007). https://doi.org/10.1126/science.1141199
- S. Barwe, J. Weidner, S. Cychy, D.M. Morales, S. Dieckhöfer et al., Electrocatalytic oxidation of 5-(hydroxymethyl)furfural using high-surface-area nickel boride. Angew. Chem. Int. Ed. 57(35), 11460–11464 (2018). https://doi.org/10.1002/anie.201806298
- A.F. Sousa, C. Vilela, A.C. Fonseca, M. Matos, C.S.R. Freire et al., Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: A tribute to furan excellency. Polym. Chem. 6(33), 5961–5983 (2015). https://doi.org/10.1039/C5PY00686D
- H.G. Cha, K.-S. Choi, Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nat. Chem. 7(4), 328–333 (2015). https://doi.org/10.1038/nchem.2194
- B.J. Taitt, D.-H. Nam, K.-S. Choi, A comparative study of nickel, cobalt, and iron oxyhydroxide anodes for the electrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. ACS Catal. 9(1), 660–670 (2019). https://doi.org/10.1021/acscatal.8b04003
- M.T. Bender, K.-S. Choi, Electrochemical oxidation of HMF via hydrogen atom transfer and hydride transfer on NiOOH and the impact of NiOOH composition. ChemSusChem 15(13), e202200675 (2022). https://doi.org/10.1002/cssc.202200675
- X. Jiang, W. Li, Y. Liu, L. Zhao, Z. Chen et al., Electrocatalytic oxidation of 5-hydroxymethylfurfural for sustainable 2,5-furandicarboxylic acid production—from mechanism to catalysts design. SusMat 3(1), 21–43 (2023). https://doi.org/10.1002/sus2.109
- W. Chen, C. Xie, Y. Wang, Y. Zou, C.-L. Dong et al., Activity origins and design principles of nickel-based catalysts for nucleophile electrooxidation. Chem 6(11), 2974–2993 (2020). https://doi.org/10.1016/j.chempr.2020.07.022
- Y. Lu, T. Liu, C.-L. Dong, Y.-C. Huang, Y. Li et al., Tuning the selective adsorption site of biomass on Co3O4 by ir single atoms for electrosynthesis. Adv. Mater. 33(8), 2007056 (2021). https://doi.org/10.1002/adma.202007056
- T. Wu, S. Sun, J. Song, S. Xi, Y. Du et al., Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2(9), 763–772 (2019). https://doi.org/10.1038/s41929-019-0325-4
- Y. Sun, J. Wu, Y. Xie, X. Wang, K. Ma et al., Dynamics of both active phase and catalysis pathway for spinel water-oxidation catalysts. Adv. Funct. Mater. 32(41), 2207116 (2022). https://doi.org/10.1002/adfm.202207116
- M. Safeer, NKC, Alex., R, Jana., A, Datta., NS, John, Remarkable COx tolerance of Ni3+ active species in a Ni2O3 catalyst for sustained electrochemical urea oxidation. J. Mater. Chem. A 10(8), 4209–4221 (2022). https://doi.org/10.1039/D1TA05753G
- Y. Lu, T. Liu, C.-L. Dong, C. Yang, L. Zhou et al., Tailoring competitive adsorption sites by oxygen-vacancy on cobalt oxides to enhance the electrooxidation of biomass. Adv. Mater. 34(2), 2107185 (2022). https://doi.org/10.1002/adma.202107185
- B. Xia, G. Wang, S. Cui, J. Guo, H. Xu et al., High-valance molybdenum doped Co3O4 nanowires: origin of the superior activity for 5-hydroxymethyl-furfural oxidation. Chin. Chem. Lett. 34(7), 107810 (2023). https://doi.org/10.1016/j.cclet.2022.107810
- Y. Lu, C.-L. Dong, Y.-C. Huang, Y. Zou, Z. Liu et al., Identifying the geometric site dependence of spinel oxides for the electrooxidation of 5-hydroxymethylfurfural. Angew. Chem. Int. Ed. 59(43), 19215–19221 (2020). https://doi.org/10.1002/anie.202007767
- Y. Lu, T. Liu, Y.-C. Huang, L. Zhou, Y. Li et al., Integrated catalytic sites for highly efficient electrochemical oxidation of the aldehyde and hydroxyl groups in 5-hydroxymethylfurfural. ACS Catal. 12(7), 4242–4251 (2022). https://doi.org/10.1021/acscatal.2c00174
- J. Wu, Z. Zhai, T. Yu, X. Wu, S. Huang et al., Tailoring the selective adsorption sites of NiMoO by Ni ps for biomass upgrading assisted hydrogen production. J. Energy Chem. 86, 480–489 (2023). https://doi.org/10.1016/j.jechem.2023.08.006
- J. Liu, Y. Yuan, X. Guo, B. Li, R. Shahbazian-Yassar et al., Mesocrystallizing nanograins for enhanced Li+ storage. Adv. Energy Mater. 11(26), 2100503 (2021). https://doi.org/10.1002/aenm.202100503
- P. Gu, L. Bai, L. Gao, R. Brousseau, B.E. Conway, Problems in the determination of adsorption behaviour of intermediates in faradaic reactions: distinction between double layer and adsorption capacitance of electrocatalysts determined from fast potential relaxation transients. Electrochim. Acta 37(12), 2145–2154 (1992). https://doi.org/10.1016/0013-4686(92)85105-T
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
- H.J. Monkhorst, J.D. Pack, Special points for brillouin-zone integrations. Phys. Rev. B 13(12), 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
- S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32(7), 1456–1465 (2011). https://doi.org/10.1002/jcc.21759
- V.G. Hadjiev, M.N. Iliev, I.V. Vergilov, The Raman spectra of Co3O4. J. Phys. C Solid State Phys. 21(7), L199 (1988). https://doi.org/10.1088/0022-3719/21/7/007
- W. Luo, H. Tian, Q. Li, G. Meng, Z. Chang et al., Controllable electron distribution reconstruction of spinel NiCo2O4 boosting glycerol oxidation at elevated current density. Adv. Funct. Mater. 34(3), 2306995 (2023). https://doi.org/10.1002/adfm.202306995
- X.-T. Wang, T. Ouyang, L. Wang, J.-H. Zhong, T. Ma et al., Redox-inert Fe3+ ions in octahedral sites of Co-Fe spinel oxides with enhanced oxygen catalytic activity for rechargeable zinc–air batteries. Angew. Chem. Int. Ed. 58(38), 13291–13296 (2019). https://doi.org/10.1002/anie.201907595
- C.F. Windisch Jr., G.J. Exarhos, R.R. Owings, Vibrational spectroscopic study of the site occupancy distribution of cations in nickel cobalt oxides. J. Appl. Phys. 95(10), 5435–5442 (2004). https://doi.org/10.1063/1.1699505
- S. Liu, B. Zhang, Y. Cao, H. Wang, Y. Zhang et al., Understanding the effect of nickel doping in cobalt spinel oxides on regulating spin state to promote the performance of the oxygen reduction reaction and zinc–air batteries. ACS Energy Lett. 8(1), 159–168 (2023). https://doi.org/10.1021/acsenergylett.2c02457
- Z. Xiao, Y.-C. Huang, C.-L. Dong, C. Xie, Z. Liu et al., Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction. J. Am. Chem. Soc. 142(28), 12087–12095 (2020). https://doi.org/10.1021/jacs.0c00257
- L. Jin, H. Xu, C. Chen, T. Song, C. Wang et al., Uniform PdCu coated te nanowires as efficient catalysts for electrooxidation of ethylene glycol. J. Colloid Interf. Sci. 540, 265–271 (2019). https://doi.org/10.1016/j.jcis.2019.01.019
- C. Cai, M. Wang, S. Han, Q. Wang, Q. Zhang et al., Ultrahigh oxygen evolution reaction activity achieved using Ir single atoms on amorphous CoOx nanosheets. ACS Catal. 11(1), 123–130 (2021). https://doi.org/10.1021/acscatal.0c04656
- A. Wang, X. Zhang, S. Gao, C. Zhao, S. Kuang et al., Fast-charging Zn–air batteries with long lifetime enabled by reconstructed amorphous multi-metallic sulfide. Adv. Mater. 34(49), 2204247 (2022). https://doi.org/10.1002/adma.202204247
- A. Wang, W. Wang, J. Xu, A. Zhu, C. Zhao et al., Enhancing oxygen evolution reaction by simultaneously triggering metal and lattice oxygen redox pair in iridium loading on Ni-Doped Co3O4. Adv. Energy Mater. 13(43), 2302537 (2023). https://doi.org/10.1002/aenm.202302537
- L. Zeng, Y. Chen, M. Sun, Q. Huang, K. Sun et al., Cooperative Rh-O5/Ni(Fe) site for efficient biomass upgrading coupled with H2 production. J. Am. Chem. Soc. 145(32), 17577–17587 (2023). https://doi.org/10.1021/jacs.3c02570
- X. Teng, D. Si, L. Chen, J. Shi, (2024). Synergetic catalytic effects by strong metal−support interaction for efficient electrocatalysis. eScience 100272 https://doi.org/10.1016/j.esci.2024.100272
- J. Bao, X. Zhang, B. Fan, J. Zhang, M. Zhou et al., Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem. Int. Ed. 54(25), 7399–7404 (2015). https://doi.org/10.1002/anie.201502226
- Y. Zhang, W. Zheng, H. Wu, R. Zhu, Y. Wang et al., Tungsten oxide-anchored Ru clusters with electron-rich and anti-corrosive microenvironments for efficient and robust seawater splitting. SusMat 4(1), 106–115 (2024). https://doi.org/10.1002/sus2.164
- W. Hu, Y. Liu, R.L. Withers, T.J. Frankcombe, L. Norén et al., Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat. Mater. 12(9), 821–826 (2013). https://doi.org/10.1038/nmat3691
- X. Yu, H. Tian, Z. Fu, F. Pei, L. Peng et al., Strengthening the hydrogen spillover effect via the phase transformation of W18O49 for boosted hydrogen oxidation reaction. ACS Catal. 13(5), 2834–2846 (2023). https://doi.org/10.1021/acscatal.2c04174
- C. Largeot, C. Portet, J. Chmiola, P.-L. Taberna, Y. Gogotsi et al., Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 130(9), 2730–2731 (2008). https://doi.org/10.1021/ja7106178
- Y. Wang, Y.-Q. Zhu, Z. Xie, S.-M. Xu, M. Xu et al., Efficient electrocatalytic oxidation of glycerol via promoted OH* generation over single-atom-bismuth-doped spinel Co3O4. ACS Catal. 12(19), 12432–12443 (2022). https://doi.org/10.1021/acscatal.2c03162
- R. Subbaraman, D. Tripkovic, K.-C. Chang, D. Strmcnik, A.P. Paulikas et al., Trends in activity for the water electrolyser reactions on 3d M(Ni Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11(6), 550–557 (2012). https://doi.org/10.1038/nmat3313
- R. Ge, Y. Wang, Z. Li, M. Xu, S.-M. Xu et al., Selective electrooxidation of biomass-derived alcohols to aldehydes in a neutral medium: promoted water dissociation over a nickel-oxide-supported ruthenium single-atom catalyst. Angew. Chem. Int. Ed. 61(19), e202200211 (2022). https://doi.org/10.1002/anie.202200211
- Q. Qian, X. He, Z. Li, Y. Chen, Y. Feng et al., Electrochemical biomass upgrading coupled with hydrogen production under industrial-level current density. Adv. Mater. 35(25), 2300935 (2023). https://doi.org/10.1002/adma.202300935
- W. Zheng, M. Liu, L.Y.S. Lee, Electrochemical instability of metal–organic frameworks: in situ spectroelectrochemical investigation of the real active sites. ACS Catal. 10(1), 81–92 (2020). https://doi.org/10.1021/acscatal.9b03790
- X. Jiang, X. Ma, Y. Liu, L. Zhao, Y. Zhang et al., Cation vacancies creation propel pre-oxidation enhancing nickel hydroxide activity for highly efficient 5-hydroxymethylfurfural upgrading. Appl. Catal. B 347, 123785 (2024). https://doi.org/10.1016/j.apcatb.2024.123785
- Z. Chen, L. Cai, X. Yang, C. Kronawitter, L. Guo et al., Reversible structural evolution of nicooxhy during the oxygen evolution reaction and identification of the catalytically active phase. ACS Catal. 8(2), 1238–1247 (2018). https://doi.org/10.1021/acscatal.7b03191
- W. Chen, Y. Wang, B. Wu, J. Shi, Y. Li et al., Activated Ni–OH bonds in a catalyst facilitates the nucleophile oxidation reaction. Adv. Mater. 34(27), 2105320 (2022). https://doi.org/10.1002/adma.202105320
- Z. Wang, S. Shen, Z. Lin, W. Tao, Q. Zhang et al., Regulating the local spin state and band structure in Ni3S2 nanosheet for improved oxygen evolution activity. Adv. Funct. Mater. 32(18), 2112832 (2022). https://doi.org/10.1002/adfm.202112832
- Q. Xu, J. Zhang, H. Zhang, L. Zhang, L. Chen et al., Atomic heterointerface engineering overcomes the activity limitation of electrocatalysts and promises highly-efficient alkaline water splitting. Energy Environ. Sci. 14(10), 5228–5259 (2021). https://doi.org/10.1039/D1EE02105B
- S. Sun, X. Zhou, B. Cong, W. Hong, G. Chen, Tailoring the d-band centers endows (NixFe1–x)2P nanosheets with efficient oxygen evolution catalysis. ACS Catal. 10(16), 9086–9097 (2020). https://doi.org/10.1021/acscatal.0c01273
- Y. Wu, L. Ma, J. Wu, M. Song, C. Wang et al., High-surface area mesoporous Sc2O3 with abundant oxygen vacancies as new and advanced electrocatalyst for electrochemical biomass valorization. Adv. Mater. 36(16), 2311698 (2024). https://doi.org/10.1002/adma.202311698
- P. Zhou, X. Lv, S. Tao, J. Wu, H. Wang et al., Heterogeneous-interface-enhanced adsorption of organic and hydroxyl for biomass electrooxidation. Adv. Mater. 34(42), 2204089 (2022). https://doi.org/10.1002/adma.202204089
References
B. Zhang, Z. Li, Y. Zhou, Z. Yang, Z. Xue et al., Fluorine induced in situ formation of high valent nickel species for ultra low potential electrooxidation of 5-hydroxymethylfurfural. Small 20(8), 2306663 (2023). https://doi.org/10.1002/smll.202306663
M. Farahmandjou, S. Zhao, W.-H. Lai, B. Sun, P.H.L. Notten et al., Oxygen redox chemistry in lithium-rich cathode materials for Li-ion batteries: understanding from atomic structure to nano-engineering. Nano Mater. Sci. 4(4), 322–338 (2022). https://doi.org/10.1016/j.nanoms.2022.03.004
F. Zhang, J. Chen, G.G. Wallace, J. Yang, Engineering electrocatalytic fiber architectures. Prog. Mater. Sci. 133, 101069 (2023). https://doi.org/10.1016/j.pmatsci.2023.101069
X. Zeng, H. Zhang, X. Zhang, Q. Zhang, Y. Chen et al., Coupling of ultrasmall and small CoxP nanops confined in porous SiO2 matrix for a robust oxygen evolution reaction. Nano Mater. Sci. 4(4), 393–399 (2022). https://doi.org/10.1016/j.nanoms.2022.03.002
F. Zhang, J. Chen, J. Yang, Fiber materials for electrocatalysis applications. Adv. Fiber Mater. 4(4), 720–735 (2022). https://doi.org/10.1007/s42765-022-00146-7
Y. Zhu, J. Zhang, Q. Qian, Y. Li, Z. Li et al., Dual nanoislands on Ni/C hybrid nanosheet activate superior hydrazine oxidation-assisted high-efficiency H2 production. Angew. Chem. Int. Ed. 61(2), e202113082 (2022). https://doi.org/10.1002/anie.202113082
G. Zhao, G. Hai, P. Zhou, Z. Liu, Y. Zhang et al., Electrochemical oxidation of 5-hydroxymethylfurfural on CeO2-modified Co3O4 with regulated intermediate adsorption and promoted charge transfer. Adv. Funct. Mater. 33(14), 2213170 (2023). https://doi.org/10.1002/adfm.202213170
Y. Zhu, Q. Qian, Y. Chen, X. He, X. Shi et al., Biphasic transition metal nitride electrode promotes nucleophile oxidation reaction for practicable hybrid water electrocatalysis. Adv. Funct. Mater. 33(25), 2300547 (2023). https://doi.org/10.1002/adfm.202300547
H. Zhao, J.E. Holladay, H. Brown, Z.C. Zhang, Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316(5831), 1597–1600 (2007). https://doi.org/10.1126/science.1141199
S. Barwe, J. Weidner, S. Cychy, D.M. Morales, S. Dieckhöfer et al., Electrocatalytic oxidation of 5-(hydroxymethyl)furfural using high-surface-area nickel boride. Angew. Chem. Int. Ed. 57(35), 11460–11464 (2018). https://doi.org/10.1002/anie.201806298
A.F. Sousa, C. Vilela, A.C. Fonseca, M. Matos, C.S.R. Freire et al., Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: A tribute to furan excellency. Polym. Chem. 6(33), 5961–5983 (2015). https://doi.org/10.1039/C5PY00686D
H.G. Cha, K.-S. Choi, Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nat. Chem. 7(4), 328–333 (2015). https://doi.org/10.1038/nchem.2194
B.J. Taitt, D.-H. Nam, K.-S. Choi, A comparative study of nickel, cobalt, and iron oxyhydroxide anodes for the electrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. ACS Catal. 9(1), 660–670 (2019). https://doi.org/10.1021/acscatal.8b04003
M.T. Bender, K.-S. Choi, Electrochemical oxidation of HMF via hydrogen atom transfer and hydride transfer on NiOOH and the impact of NiOOH composition. ChemSusChem 15(13), e202200675 (2022). https://doi.org/10.1002/cssc.202200675
X. Jiang, W. Li, Y. Liu, L. Zhao, Z. Chen et al., Electrocatalytic oxidation of 5-hydroxymethylfurfural for sustainable 2,5-furandicarboxylic acid production—from mechanism to catalysts design. SusMat 3(1), 21–43 (2023). https://doi.org/10.1002/sus2.109
W. Chen, C. Xie, Y. Wang, Y. Zou, C.-L. Dong et al., Activity origins and design principles of nickel-based catalysts for nucleophile electrooxidation. Chem 6(11), 2974–2993 (2020). https://doi.org/10.1016/j.chempr.2020.07.022
Y. Lu, T. Liu, C.-L. Dong, Y.-C. Huang, Y. Li et al., Tuning the selective adsorption site of biomass on Co3O4 by ir single atoms for electrosynthesis. Adv. Mater. 33(8), 2007056 (2021). https://doi.org/10.1002/adma.202007056
T. Wu, S. Sun, J. Song, S. Xi, Y. Du et al., Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2(9), 763–772 (2019). https://doi.org/10.1038/s41929-019-0325-4
Y. Sun, J. Wu, Y. Xie, X. Wang, K. Ma et al., Dynamics of both active phase and catalysis pathway for spinel water-oxidation catalysts. Adv. Funct. Mater. 32(41), 2207116 (2022). https://doi.org/10.1002/adfm.202207116
M. Safeer, NKC, Alex., R, Jana., A, Datta., NS, John, Remarkable COx tolerance of Ni3+ active species in a Ni2O3 catalyst for sustained electrochemical urea oxidation. J. Mater. Chem. A 10(8), 4209–4221 (2022). https://doi.org/10.1039/D1TA05753G
Y. Lu, T. Liu, C.-L. Dong, C. Yang, L. Zhou et al., Tailoring competitive adsorption sites by oxygen-vacancy on cobalt oxides to enhance the electrooxidation of biomass. Adv. Mater. 34(2), 2107185 (2022). https://doi.org/10.1002/adma.202107185
B. Xia, G. Wang, S. Cui, J. Guo, H. Xu et al., High-valance molybdenum doped Co3O4 nanowires: origin of the superior activity for 5-hydroxymethyl-furfural oxidation. Chin. Chem. Lett. 34(7), 107810 (2023). https://doi.org/10.1016/j.cclet.2022.107810
Y. Lu, C.-L. Dong, Y.-C. Huang, Y. Zou, Z. Liu et al., Identifying the geometric site dependence of spinel oxides for the electrooxidation of 5-hydroxymethylfurfural. Angew. Chem. Int. Ed. 59(43), 19215–19221 (2020). https://doi.org/10.1002/anie.202007767
Y. Lu, T. Liu, Y.-C. Huang, L. Zhou, Y. Li et al., Integrated catalytic sites for highly efficient electrochemical oxidation of the aldehyde and hydroxyl groups in 5-hydroxymethylfurfural. ACS Catal. 12(7), 4242–4251 (2022). https://doi.org/10.1021/acscatal.2c00174
J. Wu, Z. Zhai, T. Yu, X. Wu, S. Huang et al., Tailoring the selective adsorption sites of NiMoO by Ni ps for biomass upgrading assisted hydrogen production. J. Energy Chem. 86, 480–489 (2023). https://doi.org/10.1016/j.jechem.2023.08.006
J. Liu, Y. Yuan, X. Guo, B. Li, R. Shahbazian-Yassar et al., Mesocrystallizing nanograins for enhanced Li+ storage. Adv. Energy Mater. 11(26), 2100503 (2021). https://doi.org/10.1002/aenm.202100503
P. Gu, L. Bai, L. Gao, R. Brousseau, B.E. Conway, Problems in the determination of adsorption behaviour of intermediates in faradaic reactions: distinction between double layer and adsorption capacitance of electrocatalysts determined from fast potential relaxation transients. Electrochim. Acta 37(12), 2145–2154 (1992). https://doi.org/10.1016/0013-4686(92)85105-T
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
H.J. Monkhorst, J.D. Pack, Special points for brillouin-zone integrations. Phys. Rev. B 13(12), 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32(7), 1456–1465 (2011). https://doi.org/10.1002/jcc.21759
V.G. Hadjiev, M.N. Iliev, I.V. Vergilov, The Raman spectra of Co3O4. J. Phys. C Solid State Phys. 21(7), L199 (1988). https://doi.org/10.1088/0022-3719/21/7/007
W. Luo, H. Tian, Q. Li, G. Meng, Z. Chang et al., Controllable electron distribution reconstruction of spinel NiCo2O4 boosting glycerol oxidation at elevated current density. Adv. Funct. Mater. 34(3), 2306995 (2023). https://doi.org/10.1002/adfm.202306995
X.-T. Wang, T. Ouyang, L. Wang, J.-H. Zhong, T. Ma et al., Redox-inert Fe3+ ions in octahedral sites of Co-Fe spinel oxides with enhanced oxygen catalytic activity for rechargeable zinc–air batteries. Angew. Chem. Int. Ed. 58(38), 13291–13296 (2019). https://doi.org/10.1002/anie.201907595
C.F. Windisch Jr., G.J. Exarhos, R.R. Owings, Vibrational spectroscopic study of the site occupancy distribution of cations in nickel cobalt oxides. J. Appl. Phys. 95(10), 5435–5442 (2004). https://doi.org/10.1063/1.1699505
S. Liu, B. Zhang, Y. Cao, H. Wang, Y. Zhang et al., Understanding the effect of nickel doping in cobalt spinel oxides on regulating spin state to promote the performance of the oxygen reduction reaction and zinc–air batteries. ACS Energy Lett. 8(1), 159–168 (2023). https://doi.org/10.1021/acsenergylett.2c02457
Z. Xiao, Y.-C. Huang, C.-L. Dong, C. Xie, Z. Liu et al., Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction. J. Am. Chem. Soc. 142(28), 12087–12095 (2020). https://doi.org/10.1021/jacs.0c00257
L. Jin, H. Xu, C. Chen, T. Song, C. Wang et al., Uniform PdCu coated te nanowires as efficient catalysts for electrooxidation of ethylene glycol. J. Colloid Interf. Sci. 540, 265–271 (2019). https://doi.org/10.1016/j.jcis.2019.01.019
C. Cai, M. Wang, S. Han, Q. Wang, Q. Zhang et al., Ultrahigh oxygen evolution reaction activity achieved using Ir single atoms on amorphous CoOx nanosheets. ACS Catal. 11(1), 123–130 (2021). https://doi.org/10.1021/acscatal.0c04656
A. Wang, X. Zhang, S. Gao, C. Zhao, S. Kuang et al., Fast-charging Zn–air batteries with long lifetime enabled by reconstructed amorphous multi-metallic sulfide. Adv. Mater. 34(49), 2204247 (2022). https://doi.org/10.1002/adma.202204247
A. Wang, W. Wang, J. Xu, A. Zhu, C. Zhao et al., Enhancing oxygen evolution reaction by simultaneously triggering metal and lattice oxygen redox pair in iridium loading on Ni-Doped Co3O4. Adv. Energy Mater. 13(43), 2302537 (2023). https://doi.org/10.1002/aenm.202302537
L. Zeng, Y. Chen, M. Sun, Q. Huang, K. Sun et al., Cooperative Rh-O5/Ni(Fe) site for efficient biomass upgrading coupled with H2 production. J. Am. Chem. Soc. 145(32), 17577–17587 (2023). https://doi.org/10.1021/jacs.3c02570
X. Teng, D. Si, L. Chen, J. Shi, (2024). Synergetic catalytic effects by strong metal−support interaction for efficient electrocatalysis. eScience 100272 https://doi.org/10.1016/j.esci.2024.100272
J. Bao, X. Zhang, B. Fan, J. Zhang, M. Zhou et al., Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem. Int. Ed. 54(25), 7399–7404 (2015). https://doi.org/10.1002/anie.201502226
Y. Zhang, W. Zheng, H. Wu, R. Zhu, Y. Wang et al., Tungsten oxide-anchored Ru clusters with electron-rich and anti-corrosive microenvironments for efficient and robust seawater splitting. SusMat 4(1), 106–115 (2024). https://doi.org/10.1002/sus2.164
W. Hu, Y. Liu, R.L. Withers, T.J. Frankcombe, L. Norén et al., Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat. Mater. 12(9), 821–826 (2013). https://doi.org/10.1038/nmat3691
X. Yu, H. Tian, Z. Fu, F. Pei, L. Peng et al., Strengthening the hydrogen spillover effect via the phase transformation of W18O49 for boosted hydrogen oxidation reaction. ACS Catal. 13(5), 2834–2846 (2023). https://doi.org/10.1021/acscatal.2c04174
C. Largeot, C. Portet, J. Chmiola, P.-L. Taberna, Y. Gogotsi et al., Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 130(9), 2730–2731 (2008). https://doi.org/10.1021/ja7106178
Y. Wang, Y.-Q. Zhu, Z. Xie, S.-M. Xu, M. Xu et al., Efficient electrocatalytic oxidation of glycerol via promoted OH* generation over single-atom-bismuth-doped spinel Co3O4. ACS Catal. 12(19), 12432–12443 (2022). https://doi.org/10.1021/acscatal.2c03162
R. Subbaraman, D. Tripkovic, K.-C. Chang, D. Strmcnik, A.P. Paulikas et al., Trends in activity for the water electrolyser reactions on 3d M(Ni Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11(6), 550–557 (2012). https://doi.org/10.1038/nmat3313
R. Ge, Y. Wang, Z. Li, M. Xu, S.-M. Xu et al., Selective electrooxidation of biomass-derived alcohols to aldehydes in a neutral medium: promoted water dissociation over a nickel-oxide-supported ruthenium single-atom catalyst. Angew. Chem. Int. Ed. 61(19), e202200211 (2022). https://doi.org/10.1002/anie.202200211
Q. Qian, X. He, Z. Li, Y. Chen, Y. Feng et al., Electrochemical biomass upgrading coupled with hydrogen production under industrial-level current density. Adv. Mater. 35(25), 2300935 (2023). https://doi.org/10.1002/adma.202300935
W. Zheng, M. Liu, L.Y.S. Lee, Electrochemical instability of metal–organic frameworks: in situ spectroelectrochemical investigation of the real active sites. ACS Catal. 10(1), 81–92 (2020). https://doi.org/10.1021/acscatal.9b03790
X. Jiang, X. Ma, Y. Liu, L. Zhao, Y. Zhang et al., Cation vacancies creation propel pre-oxidation enhancing nickel hydroxide activity for highly efficient 5-hydroxymethylfurfural upgrading. Appl. Catal. B 347, 123785 (2024). https://doi.org/10.1016/j.apcatb.2024.123785
Z. Chen, L. Cai, X. Yang, C. Kronawitter, L. Guo et al., Reversible structural evolution of nicooxhy during the oxygen evolution reaction and identification of the catalytically active phase. ACS Catal. 8(2), 1238–1247 (2018). https://doi.org/10.1021/acscatal.7b03191
W. Chen, Y. Wang, B. Wu, J. Shi, Y. Li et al., Activated Ni–OH bonds in a catalyst facilitates the nucleophile oxidation reaction. Adv. Mater. 34(27), 2105320 (2022). https://doi.org/10.1002/adma.202105320
Z. Wang, S. Shen, Z. Lin, W. Tao, Q. Zhang et al., Regulating the local spin state and band structure in Ni3S2 nanosheet for improved oxygen evolution activity. Adv. Funct. Mater. 32(18), 2112832 (2022). https://doi.org/10.1002/adfm.202112832
Q. Xu, J. Zhang, H. Zhang, L. Zhang, L. Chen et al., Atomic heterointerface engineering overcomes the activity limitation of electrocatalysts and promises highly-efficient alkaline water splitting. Energy Environ. Sci. 14(10), 5228–5259 (2021). https://doi.org/10.1039/D1EE02105B
S. Sun, X. Zhou, B. Cong, W. Hong, G. Chen, Tailoring the d-band centers endows (NixFe1–x)2P nanosheets with efficient oxygen evolution catalysis. ACS Catal. 10(16), 9086–9097 (2020). https://doi.org/10.1021/acscatal.0c01273
Y. Wu, L. Ma, J. Wu, M. Song, C. Wang et al., High-surface area mesoporous Sc2O3 with abundant oxygen vacancies as new and advanced electrocatalyst for electrochemical biomass valorization. Adv. Mater. 36(16), 2311698 (2024). https://doi.org/10.1002/adma.202311698
P. Zhou, X. Lv, S. Tao, J. Wu, H. Wang et al., Heterogeneous-interface-enhanced adsorption of organic and hydroxyl for biomass electrooxidation. Adv. Mater. 34(42), 2204089 (2022). https://doi.org/10.1002/adma.202204089