Deformable Catalytic Material Derived from Mechanical Flexibility for Hydrogen Evolution Reaction
Corresponding Author: Longlu Wang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 32
Abstract
Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions, especially electrocatalytic hydrogen evolution reaction (HER). In recent years, deformable catalysts for HER have made great progress and would become a research hotspot. The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration. The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties. Here, firstly, we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro–nanostructures evolution in catalytic HER process. Secondly, a series of strategies to design highly active catalysts based on the mechanical flexibility of low-dimensional nanomaterials were summarized. Last but not least, we presented the challenges and prospects of the study of flexible and deformable micro–nanostructures of electrocatalysts, which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst.
Highlights:
1 The main effects of deformation of flexible catalytic materials on the catalytic hydrogen evolution reaction performance are discussed, and a series of novel strategies to design highly active catalysts based on the mechanical flexibility of low-dimensional nanomaterials are summarized in detail.
2 This review provides a strategic choice for the rational design of low-cost and high-performance industrialized electrocatalysts.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Zhao, D.P. Adiyeri Saseendran, C. Huang, C.A. Triana, W.R. Markset al., Oxygen evolution/reduction reaction catalysts: From in situ monitoring and reaction mechanisms to rational design. Chem. Rev. 123, 6257–6358 (2023). https://doi.org/10.1021/acs.chemrev.2c00515
- Z. Liu, Z. Kong, S. Cui, L. Liu, F. Wang et al., Electrocatalytic mechanism of defect in spinels for water and organics oxidation. Small (2023). https://doi.org/10.1002/smll.202302216
- J. Li, W. Yin, J. Pan, Y. Zhang, F. Wang et al., External field assisted hydrogen evolution reaction. Nano Res. (2023). https://doi.org/10.1007/s12274-023-5610-5
- Z. Yin, L. Xie, W. Yin, T. Zhi, K. Chen et al., Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chin. Chem. Lett. (2023). https://doi.org/10.1016/j.cclet.2023.108628
- M. Luo, S. Guo, Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2(11), (2017). https://doi.org/10.1038/natrevmats.2017.59
- M. Shetty, A. Walton, S.R. Gathmann, M.A. Ardagh, J. Gopeesingh et al., The catalytic mechanics of dynamic surfaces: stimulating methods for promoting catalytic resonance. ACS Catal. 10(21), 12666–12695 (2020). https://doi.org/10.1021/acscatal.0c03336
- Y. Huang, W. Quan, H. Yao, R. Yang, Z. Hong et al., Recent advances in surface reconstruction toward self-adaptive electrocatalysis: a review. Inorganic Chem. Frontiers 10(2), 352–369 (2023). https://doi.org/10.1039/d2qi02256g
- T. Liang, A. Wang, D. Ma, Z. Mao, J. Wang et al., Low-dimensional transition metal sulfide-based electrocatalysts for water electrolysis: overview and perspectives. Nanoscale 14(48), 17841–17861 (2022). https://doi.org/10.1039/d2nr05205a
- C. Huang, X. Chen, Z. Xue, T. Wang, Effect of structure: a new insight into nanop assemblies from inanimate to animate. Sci. Adv. 6(20), eaba1321 (2020). https://doi.org/10.1126/sciadv.aba1321
- W. Zhao, B. Jin, L. Wang, C. Ding, M. Jiang et al., Ultrathin Ti3C2 nanowires derived from multi-layered bulks for high-performance hydrogen evolution reaction. Chin. Chem. Lett. 33(1), 557–561 (2022). https://doi.org/10.1016/j.cclet.2021.07.035
- R. Cepitis, N. Kongi, J. Rossmeisl, V. Ivaništšev, Surface curvature effect on dual-atom site oxygen electrocatalysis. ACS Energy Lett. 8(3), 1330–1335 (2023). https://doi.org/10.1021/acsenergylett.3c00068
- G. Han, X. Zhang, W. Liu, Q. Zhang, Z. Wang et al., Substrate strain tunes operando geometric distortion and oxygen reduction activity of CuN2C2 single-atom sites. Nat. Commun. 12(1), 6335 (2021). https://doi.org/10.1038/s41467-021-26747-1
- S. Zhai, H. Xie, P. Cui, D. Guan, J. Wang et al., A combined ionic Lewis acid descriptor and machine-learning approach to prediction of efficient oxygen reduction electrodes for ceramic fuel cells. Nat. Energy 7(9), 866–875 (2022). https://doi.org/10.1038/s41560-022-01098-3
- X. Zhou, Z. Jin, J. Zhang, K. Hu, S. Liu et al., Curvature effects on the bifunctional oxygen catalytic performance of single atom metal-N-C. Nanoscale 15(5), 2276–2284 (2023). https://doi.org/10.1039/d2nr05974f
- W. Zhao, C. Cui, Y. Xu, Q. Liu, Y. Zhang et al., Triggering pt active sites in basal plane of van der Waals PtTe2 materials by amorphization engineering for hydrogen evolution. Adv. Mater. 35(29), (2023). https://doi.org/10.1002/adma.202301593
- W. Yin, L. Yuan, H. Huang, Y. Cai, J. Pan et al., Strategies to accelerate bubble detachment for efficient hydrogen evolution. Chin. Chem. Lett. (2023). https://doi.org/10.1016/j.cclet.2023.108351
- Z. Huang, Z. He, Y. Zhu, H. Wu, A general theory for the bending of multilayer van der waals materials. J. Mech. Phys. Solids 171, 105144 (2023). https://doi.org/10.1016/j.jmps.2022.105144
- G. Cao, H. Gao, Mechanical properties characterization of two-dimensional materials via nanoindentation experiments. Prog. Mater. Sci. 103, 558–595 (2019). https://doi.org/10.1016/j.pmatsci.2019.03.002
- C. Huang, X. Chen, Z. Xue, T. Wang, Nanoassembled interface for dynamics tailoring. Acc. Chem. Res. 54(1), 35–45 (2021). https://doi.org/10.1021/acs.accounts.0c00476
- Z. Lai, Y. Chen, C. Tan, X. Zhang, H. Zhang, Self-assembly of two-dimensional nanosheets into one-dimensional nanostructures. Chem 1(1), 59–77 (2016). https://doi.org/10.1016/j.chempr.2016.06.011
- Z. Peng, X. Chen, Y. Fan, D.J. Srolovitz, D. Lei, Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications. Light Sci. Appl. 9(1), 190 (2020). https://doi.org/10.1038/s41377-020-00421-5
- Z. Dai, Y. Hou, D.A. Sanchez, G. Wang, C.J. Brennan et al., Interface-governed deformation of nanobubbles and nanotents formed by two-dimensional materials. Phys. Rev. Lett. 121(26), 266101 (2018). https://doi.org/10.1103/PhysRevLett.121.266101
- P. Gentile, M. Cuoco, O.M. Volkov, Z.-J. Ying, I.J. Vera-Marun et al., Electronic materials with nanoscale curved geometries. Nat. Electron. 5(9), 551–563 (2022). https://doi.org/10.1038/s41928-022-00820-z
- Q.-M. Liang, X. Wang, X.-W. Wan, L.-X. Lin, B.-J. Geng et al., Opportunities and challenges of strain engineering for advanced electrocatalyst design. Nano Res. (2023). https://doi.org/10.1007/s12274-023-5641-y
- M. Wei, L. Yang, L. Wang, T. Liu, C. Liu et al., In-situ potentiostatic activation to optimize electrodeposited cobalt-phosphide electrocatalyst for highly efficient hydrogen evolution in alkaline media. Chem. Phys. Lett. 681, 90–94 (2017). https://doi.org/10.1016/j.cplett.2017.05.060
- J. Wang, Z. Li, N. Hu, L. Liu, C. Huang et al., From lamellar to hierarchical: overcoming the diffusion barriers of sulfide-intercalated layered double hydroxides for highly efficient water treatment. J. Mater. Chem. A 5(43), 22506–22511 (2017). https://doi.org/10.1039/c7ta08598b
- F.L. Deepak, R. Esparza, B. Borges, X. López-Lozano, M. Jose-Yacaman, Rippled and helical MoS2 nanowire catalysts: an aberration corrected stem study. Catal. Lett. 141(4), 518–524 (2011). https://doi.org/10.1007/s10562-011-0550-1
- Y. Tan, P. Liu, L. Chen, W. Cong, Y. Ito et al., Monolayer MoS2 films supported by 3D nanoporous metals for high-efficiency electrocatalytic hydrogen production. Adv. Mater. 26(47), 8023–8028 (2014). https://doi.org/10.1002/adma.201403808
- X. Hong, J. Liu, B. Zheng, X. Huang, X. Zhang et al., A universal method for preparation of noble metal nanop-decorated transition metal dichalcogenide nanobelts. Adv. Mater. 26(36), 6250–6254 (2014). https://doi.org/10.1002/adma.201402063
- F. Wang, J. Li, F. Wang, T.A. Shifa, Z. Cheng et al., Enhanced electrochemical H2 evolution by few-layered metallic WS2(1–x)Se2xnanoribbons. Adv. Funct. Mater. 25(38), 6077–6083 (2015). https://doi.org/10.1002/adfm.201502680
- L. Yang, H. Hong, Q. Fu, Y. Huang, J. Zhang et al., Single-crystal atomic-layered molybdenum disulfide nanobelts with high surface activity. ACS Nano 9(6), 6478–6483 (2015). https://doi.org/10.1021/acsnano.5b02188
- P. Fan, Y. He, J. Pan, N. Sun, Q. Zhang et al., Recent advances in photothermal effects for hydrogen evolution. Chinese Chem. Lett. (2023). https://doi.org/10.1016/j.cclet.2023.108513
- C. Huang, Z. Guo, X. Zheng, X. Chen, Z. Xue et al., Deformable metal-organic framework nanosheets for heterogeneous catalytic reactions. J. Am. Chem. Soc. 142(20), 9408–9414 (2020). https://doi.org/10.1021/jacs.0c02272
- S. Zhang, W. Wang, F. Hu, Y. Mi, S. Wang et al., 2D CoOOH sheet-encapsulated Ni2P into tubular arrays realizing 1000 ma cm-2-level-current-density hydrogen evolution over 100 h in neutral water. Nano-Micro Lett. 12(1), 140 (2020). https://doi.org/10.1007/s40820-020-00476-4
- R. Ghosh, M. Singh, L.W. Chang, H.I. Lin, Y.S. Chen et al., Enhancing the photoelectrochemical hydrogen evolution reaction through nanoscrolling of two-dimensional material heterojunctions. ACS Nano 16(4), 5743–5751 (2022). https://doi.org/10.1021/acsnano.1c10772
- L. Xie, L. Wang, W. Zhao, S. Liu, W. Huang et al., WS2 moiré superlattices derived from mechanical flexibility for hydrogen evolution reaction. Nat. Commun. 12(1), 5070 (2021). https://doi.org/10.1038/s41467-021-25381-1
- Y. Wang, Z. Bao, M. Shi, Z. Liang, R. Cao et al., The role of surface curvature in electrocatalysts. Chemistry 28(1), e202102915 (2022). https://doi.org/10.1002/chem.202102915
- X. Xu, T. Liang, D. Kong, B. Wang, L. Zhi, Strain engineering of two-dimensional materials for advanced electrocatalysts. MT. Nano 14, 100111 (2021). https://doi.org/10.1016/j.mtnano.2021.100111
- W. Yao, C. Hu, Y. Zhang, H. Li, F. Wang et al., Hierarchically ordered porous carbon with atomically dispersed cobalt for oxidative esterification of furfural. Ind. Chem. Mater. 1(1), 106–116 (2023). https://doi.org/10.1039/d2im00045h
- C. Chang, L. Wang, L. Xie, W. Zhao, S. Liu et al., Amorphous molybdenum sulfide and its Mo-S motifs: structural characteristics, synthetic strategies, and comprehensive applications. Nano Res. 15(9), 8613–8635 (2022). https://doi.org/10.1007/s12274-022-4507-z
- Q. Wang, Y. Lei, Y. Wang, Y. Liu, C. Song et al., Atomic-scale engineering of chemical-vapor-deposition-grown 2d transition metal dichalcogenides for electrocatalysis. Energ. Environ. Sci. 13(6), 1593–1616 (2020). https://doi.org/10.1039/d0ee00450b
- X. Wang, Y. Zhang, J. Wu, Z. Zhang, Q. Liao et al., Single-atom engineering to ignite 2d transition metal dichalcogenide based catalysis: Fundamentals, progress, and beyond. Chem. Rev. 122(1), 1273–1348 (2021). https://doi.org/10.1021/acs.chemrev.1c00505
- Z. Liu, Y. Du, R. Yu, M. Zheng, R. Hu et al., Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem. Int. Ed. 62(3), e202212653 (2023). https://doi.org/10.1002/anie.202212653
- Z. Li, Y. Lv, L. Ren, J. Li, L. Kong et al., Efficient strain modulation of 2D materials via polymer encapsulation. Nat. Commun. 11(1), 1151 (2020). https://doi.org/10.1038/s41467-020-15023-3
- S. Li, B. Xu, M. Lu, M. Sun, H. Yang et al., Tensile-strained palladium nanosheets for synthetic catalytic therapy and phototherapy. Adv. Mater. 34(32), e2202609 (2022). https://doi.org/10.1002/adma.202202609
- S. Wang, L. Wang, L. Xie, W. Zhao, X. Liu et al., Dislocation-strained MoS2 nanosheets for high-efficiency hydrogen evolution reaction. Nano Res. 15(6), 4996–5003 (2022). https://doi.org/10.1007/s12274-022-4158-0
- C. Sun, M. Liu, L. Wang, L. Xie, W. Zhao et al., Revisiting lithium-storage mechanisms of molybdenum disulfide. Chinese Chem. Lett. 33(4), 1779–1797 (2022). https://doi.org/10.1016/j.cclet.2021.08.052
- Y. Chen, W. Deng, X. Chen, Y. Wu, J. Shi et al., Carrier mobility tuning of MoS2 by strain engineering in CVD growth process. Nano Res. 14(7), 2314–2320 (2020). https://doi.org/10.1007/s12274-020-3228-4
- M. Liu, H. Li, S. Liu, L. Wang, L. Xie et al., Tailoring activation sites of metastable distorted 1T′-phase MoS2 by ni doping for enhanced hydrogen evolution. Nano Res. 15(7), 5946–5952 (2022). https://doi.org/10.1007/s12274-022-4267-9
- L. Wang, L. Xie, W. Zhao, S. Liu, Q. Zhao, Oxygen-facilitated dynamic active-site generation on strained MoS2 during photo-catalytic hydrogen evolution. Chem. Eng. J. 405, 127028 (2021). https://doi.org/10.1016/j.cej.2020.127028
- C. Liu, L. Wang, Y. Tang, S. Luo, Y. Liu et al., Vertical single or few-layer MoS2 nanosheets rooting into TiO2 nanofibers for highly efficient photocatalytic hydrogen evolution. Appl. Catal. B Environ. 164, 1–9 (2015). https://doi.org/10.1016/j.apcatb.2014.08.046
- L. Wang, X. Duan, G. Wang, C. Liu, S. Luo et al., Omnidirectional enhancement of photocatalytic hydrogen evolution over hierarchical “cauline leaf” nanoarchitectures. Appl. Catal. B Environ. 186, 88–96 (2016). https://doi.org/10.1016/j.apcatb.2015.12.056
- X. Liu, Y. Hou, M. Tang, L. Wang, Atom elimination strategy for MoS2 nanosheets to enhance photocatalytic hydrogen evolution. Chinese Chem. Lett. 34(3), 107489 (2023). https://doi.org/10.1016/j.cclet.2022.05.003
- S. Li, Z. Zhuang, L. Xia, J. Zhu, Z. Liu et al., Improving the electrophilicity of nitrogen on nitrogen-doped carbon triggers oxygen reduction by introducing covalent vanadium nitride. Sci. China Mater. 66(1), 160–168 (2022). https://doi.org/10.1007/s40843-022-2116-3
- Z. Zhuang, Y. Li, J. Huang, Z. Li, K. Zhao et al., Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 64(9), 617–624 (2019). https://doi.org/10.1016/j.scib.2019.04.005
- L. Li, P. Wang, Q. Shao, X. Huang, Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 49(10), 3072–3106 (2020). https://doi.org/10.1039/d0cs00013b
- P.X. Gao, Y. Ding, W. Mai, W.L. Hughes, C. Lao et al., Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science 309(5741), 1700–1704 (2005). https://doi.org/10.1126/science.1116495
- Y. Fu, Y. Shan, G. Zhou, L. Long, L. Wang et al., Electric strain in dual metal janus nanosheets induces structural phase transition for efficient hydrogen evolution. Joule 3(12), 2955–2967 (2019). https://doi.org/10.1016/j.joule.2019.09.006
- L. Wang, G. Zhou, H. Luo, Q. Zhang, J. Wang et al., Enhancing catalytic activity of tungsten disulfide through topology. Appl. Catal. B Environ. 256, 117802 (2019). https://doi.org/10.1016/j.apcatb.2019.117802
- Z. Xia, S. Guo, Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem. Soc. Rev. 48(12), 3265–3278 (2019). https://doi.org/10.1039/c8cs00846a
- Y. Yang, M. Luo, W. Zhang, Y. Sun, X. Chen et al., Metal surface and interface energy electrocatalysis: fundamentals, performance engineering, and opportunities. Chem 4(9), 2054–2083 (2018). https://doi.org/10.1016/j.chempr.2018.05.019
- W. Yin, Y. Cai, L. Xie, H. Huang, E. Zhu et al., Revisited electrochemical gas evolution reactions from the perspective of gas bubbles. Nano Res. 16(4), 4381–4398 (2022). https://doi.org/10.1007/s12274-022-5133-5
- Z. Huang, G. Xian, X. Xiao, X. Han, G. Qian et al., Tuning multiple landau quantization in transition-metal dichalcogenide with strain. Nano Lett. 23(8), 3274–3281 (2023). https://doi.org/10.1021/acs.nanolett.3c00110
- Y. Chang, J. Liu, H. Liu, Y.W. Zhang, J. Gao et al., Robust sandwiched B/TM/B structures by metal intercalating into bilayer borophene leading to excellent hydrogen evolution reaction. Adv. Energy Mater. 13(29), 2301331 (2023). https://doi.org/10.1002/aenm.202301331
- Y. Chang, P. Zhai, J. Hou, J. Zhao, J. Gao, Excellent HER and OER catalyzing performance of Se-vacancies in defects-engineered PtSe2: from simulation to experiment. Adv. Energy Mater. 12(1), 2102359 (2023). https://doi.org/10.1002/aenm.202102359
- S. Zhao, C. Yang, Z. Zhu, X. Yao, W. Li, Curvature-controlled band alignment transition in 1D van der Waals heterostructures. NPJ Comput. Mater. 9(1), 92 (2023). https://doi.org/10.1038/s41524-023-01052-1
- H. Zhu, S. Sun, J. Hao, Z. Zhuang, S. Zhang et al., A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 16(2), 619–628 (2023). https://doi.org/10.1039/d2ee03185j
- D.Y. Hwang, K.H. Choi, D.H. Suh, A vacancy-driven phase transition in MoX2 (X: S, Se and Te) nanoscrolls. Nanoscale 10(17), 7918–7926 (2018). https://doi.org/10.1039/c7nr08634b
- D.Y. Hwang, K.H. Choi, J.E. Park, D.H. Suh, Highly efficient hydrogen evolution reaction by strain and phase engineering in composites of Pt and MoS2 nano-scrolls. Phys. Chem. Chem. Phys. 19(28), 18356–18365 (2017). https://doi.org/10.1039/c7cp03495d
- D.Y. Hwang, D.H. Suh, Evolution of a high local strain in rolling up MoS2 sheets decorated with Ag and Au nanops for surface-enhanced Raman scattering. Nanotechnology 28(2), 025603 (2017). https://doi.org/10.1088/1361-6528/28/2/025603
- J. Liu, Y. Liu, D. Xu, Y. Zhu, W. Peng et al., Hierarchical “nanoroll” like MoS2/Ti3C2Tx hybrid with high electrocatalytic hydrogen evolution activity. Appl. Catal. B Environ. 241, 89–94 (2019). https://doi.org/10.1016/j.apcatb.2018.08.083
- Z. Jiang, W. Zhou, C. Hu, X. Luo, W. Zeng et al., Interlayer-confined NiFe dual atoms within MoS2 electrocatalyst for ultra-efficient acidic overall water splitting. Adv. Mater. (2023). https://doi.org/10.1002/adma.202300505
- Y. Li, Y. Hua, N. Sun, S. Liu, H. Li et al., Moiré superlattice engineering of two-dimensional materials for electrocatalytic hydrogen evolution reaction. Nano Res. (2023). https://doi.org/10.1007/s12274-023-5716-9
- M. Luo, Y. Sun, X. Zhang, Y. Qin, M. Li et al., Stable high-index faceted Pt skin on zigzag-like PtFe nanowires enhances oxygen reduction catalysis. Adv. Mater. 30(10), 1705515 (2018). https://doi.org/10.1002/adma.201705515
- M. Luo, Z. Zhao, Y. Zhang, Y. Sun, Y. Xing et al., PdMo bimetallene for oxygen reduction catalysis. Nature 574(7776), 81–85 (2019). https://doi.org/10.1038/s41586-019-1603-7
- B. Zhao, Z. Wan, Y. Liu, J. Xu, X. Yang et al., High-order superlattices by rolling up van der waals heterostructures. Nature 591(7850), 385–390 (2021). https://doi.org/10.1038/s41586-021-03338-0
- Z. Jiang, W. Zhou, A. Hong, M. Guo, X. Luo et al., MoS2 moiré superlattice for hydrogen evolution reaction. ACS Energy Lett. 4(12), 2830–2835 (2019). https://doi.org/10.1021/acsenergylett.9b02023
- W. Zhang, H. Hao, Y. Lee, Y. Zhao, L. Tong et al., One-interlayer-twisted multilayer MoS2 moiré superlattices. Adv. Funct. Mater. 32(19), 2111529 (2022). https://doi.org/10.1002/adfm.202111529
- Q. Deng, R. Huang, L.H. Shao, A.V. Mumyatov, P.A. Troshin et al., Atomic understanding of the strain-induced electrocatalysis from DFT calculation: Progress and perspective. Phys. Chem. Chem. Phys. 25, 12565–12586 (2023). https://doi.org/10.1039/d3cp01077e
- H. Guo, L. Li, Y. Chen, W. Zhang, C. Shang et al., Precise strain tuning boosts electrocatalytic hydrogen generation. Adv. Mater. (2023). https://doi.org/10.1002/adma.202302285
- R.P. Jansonius, P.A. Schauer, D.J. Dvorak, B.P. MacLeod, D.K. Fork et al., Strain influences the hydrogen evolution activity and absorption capacity of palladium. Angew. Chem. Int. Ed. 59(29), 12192–12198 (2020). https://doi.org/10.1002/anie.202005248
- C. Sun, L. Wang, W. Zhao, L. Xie, J. Wang et al., Atomic-level design of active site on two-dimensional MoS2 toward efficient hydrogen evolution: Experiment, theory, and artificial intelligence modelling. Adv. Funct. Mater. 32(38), 2206163 (2022). https://doi.org/10.1002/adfm.202206163
- L. Wang, X. Liu, Q. Zhang, G. Zhou, Y. Pei et al., Quasi-one-dimensional mo chains for efficient hydrogen evolution reaction. Nano Energy 61, 194–200 (2019). https://doi.org/10.1016/j.nanoen.2019.04.060
- Z. Luo, B. Peng, J. Zeng, Z. Yu, Y. Zhao et al., Sub-thermionic, ultra-high-gain organic transistors and circuits. Nat. Commun. 12(1), 1928 (2021). https://doi.org/10.1038/s41467-021-22192-2
- T. Zhang, Y. Liu, J. Yu, Q. Ye, L. Yang et al., Biaxially strained MoS2 nanoshells with controllable layers boost alkaline hydrogen evolution. Adv. Mater. 34(27), e2202195 (2022). https://doi.org/10.1002/adma.202202195
- H. Zhu, G. Gao, M. Du, J. Zhou, K. Wang et al., Atomic-scale core/shell structure engineering induces precise tensile strain to boost hydrogen evolution catalysis. Adv. Mater. 30(26), e1707301 (2018). https://doi.org/10.1002/adma.201707301
- L. Ji, H. Cao, W. Xing, S. Liu, Q. Deng et al., Facilitating electrocatalytic hydrogen evolution via multifunctional tungsten@tungsten disulfide core–shell nanospheres. J. Mater. Chem. A 9(14), 9272–9280 (2021). https://doi.org/10.1039/d1ta01094h
- X. Sun, C. Chen, C. Xiong, C. Zhang, X. Zheng et al., Surface modification of MoS2 nanosheets by single Ni atom for ultrasensitive dopamine detection. Nano Res. 16(1), 917–924 (2022). https://doi.org/10.1007/s12274-022-4802-8
- J. Chen, Y. Tang, S. Wang, L. Xie, C. Chang et al., Ingeniously designed Ni-Mo-S/ZnIn2S4 composite for multi-photocatalytic reaction systems. Chinese Chem. Lett. 33(3), 1468–1474 (2022). https://doi.org/10.1016/j.cclet.2021.08.103
- Y. Li, B. Yu, H. Li, B. Liu, X. Yu et al., Activation of hydrogen peroxide by molybdenum disulfide as fenton-like catalyst and cocatalyst: Phase-dependent catalytic performance and degradation mechanism. Chinese Chem. Lett. 34(5), 107874 (2023). https://doi.org/10.1016/j.cclet.2022.107874
- Z. Zhuang, F. Wang, R. Naidu, Z. Chen, Biosynthesis of Pd–Au alloys on carbon fiber paper: Towards an eco-friendly solution for catalysts fabrication. J. Power. Sources 291, 132–137 (2015). https://doi.org/10.1016/j.jpowsour.2015.05.023
- H. Wang, D. Kong, P. Johanes, J.J. Cha, G. Zheng et al., MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano Lett. 13(7), 3426–3433 (2013). https://doi.org/10.1021/nl401944f
- L. Wang, X. Liu, J. Luo, X. Duan, J. Crittenden et al., Self-optimization of the active site of molybdenum disulfide by an irreversible phase transition during photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 56(26), 7610–7614 (2017). https://doi.org/10.1002/anie.201703066
- M. Yang, K. Wu, S. Sun, J. Duan, X. Liu et al., Unprecedented relay catalysis of curved Fe1–N4 single-atom site for remarkably efficient 1O2 generation. ACS Catal. 13(1), 681–691 (2022). https://doi.org/10.1021/acscatal.2c05409
- C. Jin, S. Fan, Z. Zhuang, Y. Zhou, Single-atom nanozymes: From bench to bedside. Nano Res. 16(2), 1992–2002 (2023). https://doi.org/10.1007/s12274-022-5060-5
- Z. Zhuang, Y. Li, Y. Li, J. Huang, B. Wei et al., Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 14(2), 1016–1028 (2021). https://doi.org/10.1039/d0ee03701j
- Z. Zhuang, L. Xia, J. Huang, P. Zhu, Y. Li et al., Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem. Int. Ed. 62(5), e202212335 (2023). https://doi.org/10.1002/anie.202212335
- F. Zhuo, J. Wu, B. Li, M. Li, C.L. Tan et al., Modifying the power and performance of 2-dimensional MoS2 field effect transistors. Research 6, 0057 (2023). https://doi.org/10.34133/research.0057
- G. Zhou, Y. Shan, L. Wang, Y. Hu, J. Guo et al., Photoinduced semiconductor-metal transition in ultrathin troilite FeS nanosheets to trigger efficient hydrogen evolution. Nat. Commun. 10(1), 399 (2019). https://doi.org/10.1038/s41467-019-08358-z
- Z. Luo, X. Song, X. Liu, X. Lu, Y. Yao et al., Revealing the key role of molecular packing on interface spin polarization at two-dimensional limit in spintronic devices. Sci. Adv. 9(14), eade9126 (2023). https://doi.org/10.1126/sciadv.ade9126
- K. Jiang, M. Luo, Z. Liu, M. Peng, D. Chen et al., Rational strain engineering of single-atom ruthenium on nanoporous MoS2 for highly efficient hydrogen evolution. Nat. Commun. 12(1), 1687 (2021). https://doi.org/10.1038/s41467-021-21956-0
- D. Liu, X. Li, S. Chen, H. Yan, C. Wang et al., Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 4(6), 512–518 (2019). https://doi.org/10.1038/s41560-019-0402-6
- M. Pu, Y. Guo, W. Guo, Wrinkle facilitated hydrogen evolution reaction of vacancy-defected transition metal dichalcogenide monolayers. Nanoscale 13(48), 20576–20582 (2021). https://doi.org/10.1039/d1nr06417g
- C. Martella, C. Mennucci, A. Lamperti, E. Cappelluti, F.B. de Mongeot et al., Designer shape anisotropy on transition-metal-dichalcogenide nanosheets. Adv. Mater. 30(9), 1705615 (2018). https://doi.org/10.1002/adma.201705615
- L. Bu, J. Ding, S. Guo, X. Zhang, D. Su et al., A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts. Adv. Mater. 27(44), 7204–7212 (2015). https://doi.org/10.1002/adma.201502725
- D. Rhee, Y.L. Lee, T.W. Odom, Area-specific, hierarchical nanowrinkling of two-dimensional materials. ACS Nano 17(7), 6781–6788 (2023). https://doi.org/10.1021/acsnano.3c00033
- A.B. Loginov, P.V. Fedotov, S.N. Bokova-Sirosh, I.V. Sapkov, D.N. Chmelenin et al., Synthesis, structural, and photoluminescence properties of MoS2 nanowall films. Phys. Status. Solidi. (b) 2200481 (2023). https://doi.org/10.1002/pssb.202200481
- L. Bu, S. Guo, X. Zhang, X. Shen, D. Su et al., Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat. Commun. 7(1), 11850 (2016). https://doi.org/10.1038/ncomms11850
- J. Lai, B. Huang, Y. Tang, F. Lin, P. Zhou et al., Barrier-free interface electron transfer on PtFe-Fe2C janus-like nanops boosts oxygen catalysis. Chem 4(5), 1153–1166 (2018). https://doi.org/10.1016/j.chempr.2018.02.010
- D. Rhuy, Y. Lee, J.Y. Kim, C. Kim, Y. Kwon et al., Ultraefficient electrocatalytic hydrogen evolution from strain-engineered, multilayer MoS2. Nano Lett. 22(14), 5742–5750 (2022). https://doi.org/10.1021/acs.nanolett.2c00938
- R. Ghosh, B. Papnai, Y.S. Chen, K. Yadav, R. Sankar et al., Exciton manipulation for enhancing photo-electrochemical hydrogen evolution reaction in wrinkled 2D heterostructures. Adv. Mater. 35(16), 2210746 (2023). https://doi.org/10.1002/adma.202210746
- K. Xu, F. Wang, Z. Wang, X. Zhan, Q. Wang et al., Component-controllable WS2(1–x) Se2x nanotubes for efficient hydrogen evolution reaction. ACS Nano 8(8), 8468–8476 (2014). https://doi.org/10.1021/nn503027k
- Z. Liu, Y. Du, P. Zhang, Z. Zhuang, D. Wang, Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 4(10), 3161–3194 (2021). https://doi.org/10.1016/j.matt.2021.07.019
- Z. Zhuang, Y. Li, R. Yu, L. Xia, J. Yang et al., Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 5(4), 300–310 (2022). https://doi.org/10.1038/s41929-022-00764-9
- J. Zhou, F. Wang, H. Wang, S. Hu, W. Zhou et al., Ferrocene-induced switchable preparation of metal-nonmetal codoped tungsten nitride and carbide nanoarrays for electrocatalytic her in alkaline and acid media. Nano Res. 16(2), 2085–2093 (2022). https://doi.org/10.1007/s12274-022-4901-6
- S. Jiao, M. Kong, Z. Hu, S. Zhou, X. Xu et al., Pt atom on the wall of atomic layer deposition (ALD)-made MoS2 nanotubes for efficient hydrogen evolution. Small 18(16), e2105129 (2022). https://doi.org/10.1002/smll.202105129
- W. Han, J. Ning, Y. Long, J. Qiu, W. Jiang et al., Unlocking the ultrahigh-current-density hydrogen evolution on 2H-MoS2 via simultaneous structural control across seven orders of magnitude. Adv. Energy Mater. 13(16), 2300145 (2023). https://doi.org/10.1002/aenm.202300145
- W. Cui, B. Geng, X. Chu, J. He, L. Jia et al., Coupling Fe and Mo single atoms on hierarchical N-doped carbon nanotubes enhances electrochemical nitrogen reduction reaction performance. Nano Res. 16, 5743–5749 (2022). https://doi.org/10.1007/s12274-022-5246-x
- S. Hou, A. Zhang, Q. Zhou, Y. Wen, S. Zhang et al., Designing heterostructured FeP–CoP for oxygen evolution reaction: Interface engineering to enhance electrocatalytic performance. Nano Res. (2023). https://doi.org/10.1007/s12274-023-5390-y
- C. Meng, Y. Gao, Y. Zhou, K. Sun, Y. Wang et al., P-band center theory guided activation of MoS2 basal S sites for pH-universal hydrogen evolution. Nano Res. 16, 6228–6236 (2022). https://doi.org/10.1007/s12274-022-5287-1
- G. Wang, Z. Dai, J. Xiao, S. Feng, C. Weng et al., Bending of multilayer van der waals materials. Phys. Rev. Lett. 123(11), 116101 (2019). https://doi.org/10.1103/PhysRevLett.123.116101
- K. Chen, J. Pan, W. Yin, C. Ma, L. Wang, Flexible electronics based on one-dimensional inorganic semiconductor nanowires and two-dimensional transition metal dichalcogenides. Chinese Chem. Lett. 108226 (2023). https://doi.org/10.1016/j.cclet.2023.108226
- X. Qiao, X. Yin, L. Wen, X. Chen, J. Li et al., Variable nanosheets for highly efficient oxygen evolution reaction. Chem 8(12), 3241–3251 (2022). https://doi.org/10.1016/j.chempr.2022.08.007
- J. Yang, Z. Wang, C.X. Huang, Y. Zhang, Q. Zhang et al., Compressive strain modulation of single iron sites on helical carbon support boosts electrocatalytic oxygen reduction. Angew. Chem. Int. Ed. 60(42), 22722–22728 (2021). https://doi.org/10.1002/anie.202109058
- D. Chen, M. Luo, S. Ning, J. Lan, W. Peng et al., Single-atom gold isolated onto nanoporous MoSe2 for boosting electrochemical nitrogen reduction. Small 18(4), e2104043 (2022). https://doi.org/10.1002/smll.202104043
- F. Wu, P. Hu, F. Hu, Z. Tian, J. Tang et al., Multifunctional mxene/c aerogels for enhanced microwave absorption and thermal insulation. Nano-Micro Lett. 15(1), (2023). https://doi.org/10.1007/s40820-023-01158-7
- B. Lin, Y. Zhang, H. Zhang, H. Wu, J. Shao et al., Centimeter-scale two-dimensional metallenes for high-efficiency electrocatalysis and sensing. ACS Mater. Lett. 5(2), 397–405 (2023). https://doi.org/10.1021/acsmaterialslett.2c01066
- H. Guo, X. Wang, Q. Qian, F. Wang, X. Xia, A green approach to the synthesis of graphene nanosheets. ACS Nano 3(9), 2653–2659 (2009). https://doi.org/10.1021/nn900227d
- P. Zhai, C. Wang, Y. Zhao, Y. Zhang, J. Gao et al., Regulating electronic states of nitride/hydroxide to accelerate kinetics for oxygen evolution at large current density. Nat. Comm. 14(1), 1873 (2023). https://doi.org/10.1038/s41467-023-37091-x
- Y. Zhang, Y. Zhao, Y. Bai, Gao J., J. Zhao et al., Universal zigzag edge reconstruction of an α-phase puckered monolayer and its resulting robust spatial charge separation. Nano Lett. 21(19), 8095–8102 (2021). https://doi.org/10.1021/acs.nanolett.1c02461
References
Y. Zhao, D.P. Adiyeri Saseendran, C. Huang, C.A. Triana, W.R. Markset al., Oxygen evolution/reduction reaction catalysts: From in situ monitoring and reaction mechanisms to rational design. Chem. Rev. 123, 6257–6358 (2023). https://doi.org/10.1021/acs.chemrev.2c00515
Z. Liu, Z. Kong, S. Cui, L. Liu, F. Wang et al., Electrocatalytic mechanism of defect in spinels for water and organics oxidation. Small (2023). https://doi.org/10.1002/smll.202302216
J. Li, W. Yin, J. Pan, Y. Zhang, F. Wang et al., External field assisted hydrogen evolution reaction. Nano Res. (2023). https://doi.org/10.1007/s12274-023-5610-5
Z. Yin, L. Xie, W. Yin, T. Zhi, K. Chen et al., Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chin. Chem. Lett. (2023). https://doi.org/10.1016/j.cclet.2023.108628
M. Luo, S. Guo, Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2(11), (2017). https://doi.org/10.1038/natrevmats.2017.59
M. Shetty, A. Walton, S.R. Gathmann, M.A. Ardagh, J. Gopeesingh et al., The catalytic mechanics of dynamic surfaces: stimulating methods for promoting catalytic resonance. ACS Catal. 10(21), 12666–12695 (2020). https://doi.org/10.1021/acscatal.0c03336
Y. Huang, W. Quan, H. Yao, R. Yang, Z. Hong et al., Recent advances in surface reconstruction toward self-adaptive electrocatalysis: a review. Inorganic Chem. Frontiers 10(2), 352–369 (2023). https://doi.org/10.1039/d2qi02256g
T. Liang, A. Wang, D. Ma, Z. Mao, J. Wang et al., Low-dimensional transition metal sulfide-based electrocatalysts for water electrolysis: overview and perspectives. Nanoscale 14(48), 17841–17861 (2022). https://doi.org/10.1039/d2nr05205a
C. Huang, X. Chen, Z. Xue, T. Wang, Effect of structure: a new insight into nanop assemblies from inanimate to animate. Sci. Adv. 6(20), eaba1321 (2020). https://doi.org/10.1126/sciadv.aba1321
W. Zhao, B. Jin, L. Wang, C. Ding, M. Jiang et al., Ultrathin Ti3C2 nanowires derived from multi-layered bulks for high-performance hydrogen evolution reaction. Chin. Chem. Lett. 33(1), 557–561 (2022). https://doi.org/10.1016/j.cclet.2021.07.035
R. Cepitis, N. Kongi, J. Rossmeisl, V. Ivaništšev, Surface curvature effect on dual-atom site oxygen electrocatalysis. ACS Energy Lett. 8(3), 1330–1335 (2023). https://doi.org/10.1021/acsenergylett.3c00068
G. Han, X. Zhang, W. Liu, Q. Zhang, Z. Wang et al., Substrate strain tunes operando geometric distortion and oxygen reduction activity of CuN2C2 single-atom sites. Nat. Commun. 12(1), 6335 (2021). https://doi.org/10.1038/s41467-021-26747-1
S. Zhai, H. Xie, P. Cui, D. Guan, J. Wang et al., A combined ionic Lewis acid descriptor and machine-learning approach to prediction of efficient oxygen reduction electrodes for ceramic fuel cells. Nat. Energy 7(9), 866–875 (2022). https://doi.org/10.1038/s41560-022-01098-3
X. Zhou, Z. Jin, J. Zhang, K. Hu, S. Liu et al., Curvature effects on the bifunctional oxygen catalytic performance of single atom metal-N-C. Nanoscale 15(5), 2276–2284 (2023). https://doi.org/10.1039/d2nr05974f
W. Zhao, C. Cui, Y. Xu, Q. Liu, Y. Zhang et al., Triggering pt active sites in basal plane of van der Waals PtTe2 materials by amorphization engineering for hydrogen evolution. Adv. Mater. 35(29), (2023). https://doi.org/10.1002/adma.202301593
W. Yin, L. Yuan, H. Huang, Y. Cai, J. Pan et al., Strategies to accelerate bubble detachment for efficient hydrogen evolution. Chin. Chem. Lett. (2023). https://doi.org/10.1016/j.cclet.2023.108351
Z. Huang, Z. He, Y. Zhu, H. Wu, A general theory for the bending of multilayer van der waals materials. J. Mech. Phys. Solids 171, 105144 (2023). https://doi.org/10.1016/j.jmps.2022.105144
G. Cao, H. Gao, Mechanical properties characterization of two-dimensional materials via nanoindentation experiments. Prog. Mater. Sci. 103, 558–595 (2019). https://doi.org/10.1016/j.pmatsci.2019.03.002
C. Huang, X. Chen, Z. Xue, T. Wang, Nanoassembled interface for dynamics tailoring. Acc. Chem. Res. 54(1), 35–45 (2021). https://doi.org/10.1021/acs.accounts.0c00476
Z. Lai, Y. Chen, C. Tan, X. Zhang, H. Zhang, Self-assembly of two-dimensional nanosheets into one-dimensional nanostructures. Chem 1(1), 59–77 (2016). https://doi.org/10.1016/j.chempr.2016.06.011
Z. Peng, X. Chen, Y. Fan, D.J. Srolovitz, D. Lei, Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications. Light Sci. Appl. 9(1), 190 (2020). https://doi.org/10.1038/s41377-020-00421-5
Z. Dai, Y. Hou, D.A. Sanchez, G. Wang, C.J. Brennan et al., Interface-governed deformation of nanobubbles and nanotents formed by two-dimensional materials. Phys. Rev. Lett. 121(26), 266101 (2018). https://doi.org/10.1103/PhysRevLett.121.266101
P. Gentile, M. Cuoco, O.M. Volkov, Z.-J. Ying, I.J. Vera-Marun et al., Electronic materials with nanoscale curved geometries. Nat. Electron. 5(9), 551–563 (2022). https://doi.org/10.1038/s41928-022-00820-z
Q.-M. Liang, X. Wang, X.-W. Wan, L.-X. Lin, B.-J. Geng et al., Opportunities and challenges of strain engineering for advanced electrocatalyst design. Nano Res. (2023). https://doi.org/10.1007/s12274-023-5641-y
M. Wei, L. Yang, L. Wang, T. Liu, C. Liu et al., In-situ potentiostatic activation to optimize electrodeposited cobalt-phosphide electrocatalyst for highly efficient hydrogen evolution in alkaline media. Chem. Phys. Lett. 681, 90–94 (2017). https://doi.org/10.1016/j.cplett.2017.05.060
J. Wang, Z. Li, N. Hu, L. Liu, C. Huang et al., From lamellar to hierarchical: overcoming the diffusion barriers of sulfide-intercalated layered double hydroxides for highly efficient water treatment. J. Mater. Chem. A 5(43), 22506–22511 (2017). https://doi.org/10.1039/c7ta08598b
F.L. Deepak, R. Esparza, B. Borges, X. López-Lozano, M. Jose-Yacaman, Rippled and helical MoS2 nanowire catalysts: an aberration corrected stem study. Catal. Lett. 141(4), 518–524 (2011). https://doi.org/10.1007/s10562-011-0550-1
Y. Tan, P. Liu, L. Chen, W. Cong, Y. Ito et al., Monolayer MoS2 films supported by 3D nanoporous metals for high-efficiency electrocatalytic hydrogen production. Adv. Mater. 26(47), 8023–8028 (2014). https://doi.org/10.1002/adma.201403808
X. Hong, J. Liu, B. Zheng, X. Huang, X. Zhang et al., A universal method for preparation of noble metal nanop-decorated transition metal dichalcogenide nanobelts. Adv. Mater. 26(36), 6250–6254 (2014). https://doi.org/10.1002/adma.201402063
F. Wang, J. Li, F. Wang, T.A. Shifa, Z. Cheng et al., Enhanced electrochemical H2 evolution by few-layered metallic WS2(1–x)Se2xnanoribbons. Adv. Funct. Mater. 25(38), 6077–6083 (2015). https://doi.org/10.1002/adfm.201502680
L. Yang, H. Hong, Q. Fu, Y. Huang, J. Zhang et al., Single-crystal atomic-layered molybdenum disulfide nanobelts with high surface activity. ACS Nano 9(6), 6478–6483 (2015). https://doi.org/10.1021/acsnano.5b02188
P. Fan, Y. He, J. Pan, N. Sun, Q. Zhang et al., Recent advances in photothermal effects for hydrogen evolution. Chinese Chem. Lett. (2023). https://doi.org/10.1016/j.cclet.2023.108513
C. Huang, Z. Guo, X. Zheng, X. Chen, Z. Xue et al., Deformable metal-organic framework nanosheets for heterogeneous catalytic reactions. J. Am. Chem. Soc. 142(20), 9408–9414 (2020). https://doi.org/10.1021/jacs.0c02272
S. Zhang, W. Wang, F. Hu, Y. Mi, S. Wang et al., 2D CoOOH sheet-encapsulated Ni2P into tubular arrays realizing 1000 ma cm-2-level-current-density hydrogen evolution over 100 h in neutral water. Nano-Micro Lett. 12(1), 140 (2020). https://doi.org/10.1007/s40820-020-00476-4
R. Ghosh, M. Singh, L.W. Chang, H.I. Lin, Y.S. Chen et al., Enhancing the photoelectrochemical hydrogen evolution reaction through nanoscrolling of two-dimensional material heterojunctions. ACS Nano 16(4), 5743–5751 (2022). https://doi.org/10.1021/acsnano.1c10772
L. Xie, L. Wang, W. Zhao, S. Liu, W. Huang et al., WS2 moiré superlattices derived from mechanical flexibility for hydrogen evolution reaction. Nat. Commun. 12(1), 5070 (2021). https://doi.org/10.1038/s41467-021-25381-1
Y. Wang, Z. Bao, M. Shi, Z. Liang, R. Cao et al., The role of surface curvature in electrocatalysts. Chemistry 28(1), e202102915 (2022). https://doi.org/10.1002/chem.202102915
X. Xu, T. Liang, D. Kong, B. Wang, L. Zhi, Strain engineering of two-dimensional materials for advanced electrocatalysts. MT. Nano 14, 100111 (2021). https://doi.org/10.1016/j.mtnano.2021.100111
W. Yao, C. Hu, Y. Zhang, H. Li, F. Wang et al., Hierarchically ordered porous carbon with atomically dispersed cobalt for oxidative esterification of furfural. Ind. Chem. Mater. 1(1), 106–116 (2023). https://doi.org/10.1039/d2im00045h
C. Chang, L. Wang, L. Xie, W. Zhao, S. Liu et al., Amorphous molybdenum sulfide and its Mo-S motifs: structural characteristics, synthetic strategies, and comprehensive applications. Nano Res. 15(9), 8613–8635 (2022). https://doi.org/10.1007/s12274-022-4507-z
Q. Wang, Y. Lei, Y. Wang, Y. Liu, C. Song et al., Atomic-scale engineering of chemical-vapor-deposition-grown 2d transition metal dichalcogenides for electrocatalysis. Energ. Environ. Sci. 13(6), 1593–1616 (2020). https://doi.org/10.1039/d0ee00450b
X. Wang, Y. Zhang, J. Wu, Z. Zhang, Q. Liao et al., Single-atom engineering to ignite 2d transition metal dichalcogenide based catalysis: Fundamentals, progress, and beyond. Chem. Rev. 122(1), 1273–1348 (2021). https://doi.org/10.1021/acs.chemrev.1c00505
Z. Liu, Y. Du, R. Yu, M. Zheng, R. Hu et al., Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem. Int. Ed. 62(3), e202212653 (2023). https://doi.org/10.1002/anie.202212653
Z. Li, Y. Lv, L. Ren, J. Li, L. Kong et al., Efficient strain modulation of 2D materials via polymer encapsulation. Nat. Commun. 11(1), 1151 (2020). https://doi.org/10.1038/s41467-020-15023-3
S. Li, B. Xu, M. Lu, M. Sun, H. Yang et al., Tensile-strained palladium nanosheets for synthetic catalytic therapy and phototherapy. Adv. Mater. 34(32), e2202609 (2022). https://doi.org/10.1002/adma.202202609
S. Wang, L. Wang, L. Xie, W. Zhao, X. Liu et al., Dislocation-strained MoS2 nanosheets for high-efficiency hydrogen evolution reaction. Nano Res. 15(6), 4996–5003 (2022). https://doi.org/10.1007/s12274-022-4158-0
C. Sun, M. Liu, L. Wang, L. Xie, W. Zhao et al., Revisiting lithium-storage mechanisms of molybdenum disulfide. Chinese Chem. Lett. 33(4), 1779–1797 (2022). https://doi.org/10.1016/j.cclet.2021.08.052
Y. Chen, W. Deng, X. Chen, Y. Wu, J. Shi et al., Carrier mobility tuning of MoS2 by strain engineering in CVD growth process. Nano Res. 14(7), 2314–2320 (2020). https://doi.org/10.1007/s12274-020-3228-4
M. Liu, H. Li, S. Liu, L. Wang, L. Xie et al., Tailoring activation sites of metastable distorted 1T′-phase MoS2 by ni doping for enhanced hydrogen evolution. Nano Res. 15(7), 5946–5952 (2022). https://doi.org/10.1007/s12274-022-4267-9
L. Wang, L. Xie, W. Zhao, S. Liu, Q. Zhao, Oxygen-facilitated dynamic active-site generation on strained MoS2 during photo-catalytic hydrogen evolution. Chem. Eng. J. 405, 127028 (2021). https://doi.org/10.1016/j.cej.2020.127028
C. Liu, L. Wang, Y. Tang, S. Luo, Y. Liu et al., Vertical single or few-layer MoS2 nanosheets rooting into TiO2 nanofibers for highly efficient photocatalytic hydrogen evolution. Appl. Catal. B Environ. 164, 1–9 (2015). https://doi.org/10.1016/j.apcatb.2014.08.046
L. Wang, X. Duan, G. Wang, C. Liu, S. Luo et al., Omnidirectional enhancement of photocatalytic hydrogen evolution over hierarchical “cauline leaf” nanoarchitectures. Appl. Catal. B Environ. 186, 88–96 (2016). https://doi.org/10.1016/j.apcatb.2015.12.056
X. Liu, Y. Hou, M. Tang, L. Wang, Atom elimination strategy for MoS2 nanosheets to enhance photocatalytic hydrogen evolution. Chinese Chem. Lett. 34(3), 107489 (2023). https://doi.org/10.1016/j.cclet.2022.05.003
S. Li, Z. Zhuang, L. Xia, J. Zhu, Z. Liu et al., Improving the electrophilicity of nitrogen on nitrogen-doped carbon triggers oxygen reduction by introducing covalent vanadium nitride. Sci. China Mater. 66(1), 160–168 (2022). https://doi.org/10.1007/s40843-022-2116-3
Z. Zhuang, Y. Li, J. Huang, Z. Li, K. Zhao et al., Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 64(9), 617–624 (2019). https://doi.org/10.1016/j.scib.2019.04.005
L. Li, P. Wang, Q. Shao, X. Huang, Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 49(10), 3072–3106 (2020). https://doi.org/10.1039/d0cs00013b
P.X. Gao, Y. Ding, W. Mai, W.L. Hughes, C. Lao et al., Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science 309(5741), 1700–1704 (2005). https://doi.org/10.1126/science.1116495
Y. Fu, Y. Shan, G. Zhou, L. Long, L. Wang et al., Electric strain in dual metal janus nanosheets induces structural phase transition for efficient hydrogen evolution. Joule 3(12), 2955–2967 (2019). https://doi.org/10.1016/j.joule.2019.09.006
L. Wang, G. Zhou, H. Luo, Q. Zhang, J. Wang et al., Enhancing catalytic activity of tungsten disulfide through topology. Appl. Catal. B Environ. 256, 117802 (2019). https://doi.org/10.1016/j.apcatb.2019.117802
Z. Xia, S. Guo, Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem. Soc. Rev. 48(12), 3265–3278 (2019). https://doi.org/10.1039/c8cs00846a
Y. Yang, M. Luo, W. Zhang, Y. Sun, X. Chen et al., Metal surface and interface energy electrocatalysis: fundamentals, performance engineering, and opportunities. Chem 4(9), 2054–2083 (2018). https://doi.org/10.1016/j.chempr.2018.05.019
W. Yin, Y. Cai, L. Xie, H. Huang, E. Zhu et al., Revisited electrochemical gas evolution reactions from the perspective of gas bubbles. Nano Res. 16(4), 4381–4398 (2022). https://doi.org/10.1007/s12274-022-5133-5
Z. Huang, G. Xian, X. Xiao, X. Han, G. Qian et al., Tuning multiple landau quantization in transition-metal dichalcogenide with strain. Nano Lett. 23(8), 3274–3281 (2023). https://doi.org/10.1021/acs.nanolett.3c00110
Y. Chang, J. Liu, H. Liu, Y.W. Zhang, J. Gao et al., Robust sandwiched B/TM/B structures by metal intercalating into bilayer borophene leading to excellent hydrogen evolution reaction. Adv. Energy Mater. 13(29), 2301331 (2023). https://doi.org/10.1002/aenm.202301331
Y. Chang, P. Zhai, J. Hou, J. Zhao, J. Gao, Excellent HER and OER catalyzing performance of Se-vacancies in defects-engineered PtSe2: from simulation to experiment. Adv. Energy Mater. 12(1), 2102359 (2023). https://doi.org/10.1002/aenm.202102359
S. Zhao, C. Yang, Z. Zhu, X. Yao, W. Li, Curvature-controlled band alignment transition in 1D van der Waals heterostructures. NPJ Comput. Mater. 9(1), 92 (2023). https://doi.org/10.1038/s41524-023-01052-1
H. Zhu, S. Sun, J. Hao, Z. Zhuang, S. Zhang et al., A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 16(2), 619–628 (2023). https://doi.org/10.1039/d2ee03185j
D.Y. Hwang, K.H. Choi, D.H. Suh, A vacancy-driven phase transition in MoX2 (X: S, Se and Te) nanoscrolls. Nanoscale 10(17), 7918–7926 (2018). https://doi.org/10.1039/c7nr08634b
D.Y. Hwang, K.H. Choi, J.E. Park, D.H. Suh, Highly efficient hydrogen evolution reaction by strain and phase engineering in composites of Pt and MoS2 nano-scrolls. Phys. Chem. Chem. Phys. 19(28), 18356–18365 (2017). https://doi.org/10.1039/c7cp03495d
D.Y. Hwang, D.H. Suh, Evolution of a high local strain in rolling up MoS2 sheets decorated with Ag and Au nanops for surface-enhanced Raman scattering. Nanotechnology 28(2), 025603 (2017). https://doi.org/10.1088/1361-6528/28/2/025603
J. Liu, Y. Liu, D. Xu, Y. Zhu, W. Peng et al., Hierarchical “nanoroll” like MoS2/Ti3C2Tx hybrid with high electrocatalytic hydrogen evolution activity. Appl. Catal. B Environ. 241, 89–94 (2019). https://doi.org/10.1016/j.apcatb.2018.08.083
Z. Jiang, W. Zhou, C. Hu, X. Luo, W. Zeng et al., Interlayer-confined NiFe dual atoms within MoS2 electrocatalyst for ultra-efficient acidic overall water splitting. Adv. Mater. (2023). https://doi.org/10.1002/adma.202300505
Y. Li, Y. Hua, N. Sun, S. Liu, H. Li et al., Moiré superlattice engineering of two-dimensional materials for electrocatalytic hydrogen evolution reaction. Nano Res. (2023). https://doi.org/10.1007/s12274-023-5716-9
M. Luo, Y. Sun, X. Zhang, Y. Qin, M. Li et al., Stable high-index faceted Pt skin on zigzag-like PtFe nanowires enhances oxygen reduction catalysis. Adv. Mater. 30(10), 1705515 (2018). https://doi.org/10.1002/adma.201705515
M. Luo, Z. Zhao, Y. Zhang, Y. Sun, Y. Xing et al., PdMo bimetallene for oxygen reduction catalysis. Nature 574(7776), 81–85 (2019). https://doi.org/10.1038/s41586-019-1603-7
B. Zhao, Z. Wan, Y. Liu, J. Xu, X. Yang et al., High-order superlattices by rolling up van der waals heterostructures. Nature 591(7850), 385–390 (2021). https://doi.org/10.1038/s41586-021-03338-0
Z. Jiang, W. Zhou, A. Hong, M. Guo, X. Luo et al., MoS2 moiré superlattice for hydrogen evolution reaction. ACS Energy Lett. 4(12), 2830–2835 (2019). https://doi.org/10.1021/acsenergylett.9b02023
W. Zhang, H. Hao, Y. Lee, Y. Zhao, L. Tong et al., One-interlayer-twisted multilayer MoS2 moiré superlattices. Adv. Funct. Mater. 32(19), 2111529 (2022). https://doi.org/10.1002/adfm.202111529
Q. Deng, R. Huang, L.H. Shao, A.V. Mumyatov, P.A. Troshin et al., Atomic understanding of the strain-induced electrocatalysis from DFT calculation: Progress and perspective. Phys. Chem. Chem. Phys. 25, 12565–12586 (2023). https://doi.org/10.1039/d3cp01077e
H. Guo, L. Li, Y. Chen, W. Zhang, C. Shang et al., Precise strain tuning boosts electrocatalytic hydrogen generation. Adv. Mater. (2023). https://doi.org/10.1002/adma.202302285
R.P. Jansonius, P.A. Schauer, D.J. Dvorak, B.P. MacLeod, D.K. Fork et al., Strain influences the hydrogen evolution activity and absorption capacity of palladium. Angew. Chem. Int. Ed. 59(29), 12192–12198 (2020). https://doi.org/10.1002/anie.202005248
C. Sun, L. Wang, W. Zhao, L. Xie, J. Wang et al., Atomic-level design of active site on two-dimensional MoS2 toward efficient hydrogen evolution: Experiment, theory, and artificial intelligence modelling. Adv. Funct. Mater. 32(38), 2206163 (2022). https://doi.org/10.1002/adfm.202206163
L. Wang, X. Liu, Q. Zhang, G. Zhou, Y. Pei et al., Quasi-one-dimensional mo chains for efficient hydrogen evolution reaction. Nano Energy 61, 194–200 (2019). https://doi.org/10.1016/j.nanoen.2019.04.060
Z. Luo, B. Peng, J. Zeng, Z. Yu, Y. Zhao et al., Sub-thermionic, ultra-high-gain organic transistors and circuits. Nat. Commun. 12(1), 1928 (2021). https://doi.org/10.1038/s41467-021-22192-2
T. Zhang, Y. Liu, J. Yu, Q. Ye, L. Yang et al., Biaxially strained MoS2 nanoshells with controllable layers boost alkaline hydrogen evolution. Adv. Mater. 34(27), e2202195 (2022). https://doi.org/10.1002/adma.202202195
H. Zhu, G. Gao, M. Du, J. Zhou, K. Wang et al., Atomic-scale core/shell structure engineering induces precise tensile strain to boost hydrogen evolution catalysis. Adv. Mater. 30(26), e1707301 (2018). https://doi.org/10.1002/adma.201707301
L. Ji, H. Cao, W. Xing, S. Liu, Q. Deng et al., Facilitating electrocatalytic hydrogen evolution via multifunctional tungsten@tungsten disulfide core–shell nanospheres. J. Mater. Chem. A 9(14), 9272–9280 (2021). https://doi.org/10.1039/d1ta01094h
X. Sun, C. Chen, C. Xiong, C. Zhang, X. Zheng et al., Surface modification of MoS2 nanosheets by single Ni atom for ultrasensitive dopamine detection. Nano Res. 16(1), 917–924 (2022). https://doi.org/10.1007/s12274-022-4802-8
J. Chen, Y. Tang, S. Wang, L. Xie, C. Chang et al., Ingeniously designed Ni-Mo-S/ZnIn2S4 composite for multi-photocatalytic reaction systems. Chinese Chem. Lett. 33(3), 1468–1474 (2022). https://doi.org/10.1016/j.cclet.2021.08.103
Y. Li, B. Yu, H. Li, B. Liu, X. Yu et al., Activation of hydrogen peroxide by molybdenum disulfide as fenton-like catalyst and cocatalyst: Phase-dependent catalytic performance and degradation mechanism. Chinese Chem. Lett. 34(5), 107874 (2023). https://doi.org/10.1016/j.cclet.2022.107874
Z. Zhuang, F. Wang, R. Naidu, Z. Chen, Biosynthesis of Pd–Au alloys on carbon fiber paper: Towards an eco-friendly solution for catalysts fabrication. J. Power. Sources 291, 132–137 (2015). https://doi.org/10.1016/j.jpowsour.2015.05.023
H. Wang, D. Kong, P. Johanes, J.J. Cha, G. Zheng et al., MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano Lett. 13(7), 3426–3433 (2013). https://doi.org/10.1021/nl401944f
L. Wang, X. Liu, J. Luo, X. Duan, J. Crittenden et al., Self-optimization of the active site of molybdenum disulfide by an irreversible phase transition during photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 56(26), 7610–7614 (2017). https://doi.org/10.1002/anie.201703066
M. Yang, K. Wu, S. Sun, J. Duan, X. Liu et al., Unprecedented relay catalysis of curved Fe1–N4 single-atom site for remarkably efficient 1O2 generation. ACS Catal. 13(1), 681–691 (2022). https://doi.org/10.1021/acscatal.2c05409
C. Jin, S. Fan, Z. Zhuang, Y. Zhou, Single-atom nanozymes: From bench to bedside. Nano Res. 16(2), 1992–2002 (2023). https://doi.org/10.1007/s12274-022-5060-5
Z. Zhuang, Y. Li, Y. Li, J. Huang, B. Wei et al., Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 14(2), 1016–1028 (2021). https://doi.org/10.1039/d0ee03701j
Z. Zhuang, L. Xia, J. Huang, P. Zhu, Y. Li et al., Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem. Int. Ed. 62(5), e202212335 (2023). https://doi.org/10.1002/anie.202212335
F. Zhuo, J. Wu, B. Li, M. Li, C.L. Tan et al., Modifying the power and performance of 2-dimensional MoS2 field effect transistors. Research 6, 0057 (2023). https://doi.org/10.34133/research.0057
G. Zhou, Y. Shan, L. Wang, Y. Hu, J. Guo et al., Photoinduced semiconductor-metal transition in ultrathin troilite FeS nanosheets to trigger efficient hydrogen evolution. Nat. Commun. 10(1), 399 (2019). https://doi.org/10.1038/s41467-019-08358-z
Z. Luo, X. Song, X. Liu, X. Lu, Y. Yao et al., Revealing the key role of molecular packing on interface spin polarization at two-dimensional limit in spintronic devices. Sci. Adv. 9(14), eade9126 (2023). https://doi.org/10.1126/sciadv.ade9126
K. Jiang, M. Luo, Z. Liu, M. Peng, D. Chen et al., Rational strain engineering of single-atom ruthenium on nanoporous MoS2 for highly efficient hydrogen evolution. Nat. Commun. 12(1), 1687 (2021). https://doi.org/10.1038/s41467-021-21956-0
D. Liu, X. Li, S. Chen, H. Yan, C. Wang et al., Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 4(6), 512–518 (2019). https://doi.org/10.1038/s41560-019-0402-6
M. Pu, Y. Guo, W. Guo, Wrinkle facilitated hydrogen evolution reaction of vacancy-defected transition metal dichalcogenide monolayers. Nanoscale 13(48), 20576–20582 (2021). https://doi.org/10.1039/d1nr06417g
C. Martella, C. Mennucci, A. Lamperti, E. Cappelluti, F.B. de Mongeot et al., Designer shape anisotropy on transition-metal-dichalcogenide nanosheets. Adv. Mater. 30(9), 1705615 (2018). https://doi.org/10.1002/adma.201705615
L. Bu, J. Ding, S. Guo, X. Zhang, D. Su et al., A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts. Adv. Mater. 27(44), 7204–7212 (2015). https://doi.org/10.1002/adma.201502725
D. Rhee, Y.L. Lee, T.W. Odom, Area-specific, hierarchical nanowrinkling of two-dimensional materials. ACS Nano 17(7), 6781–6788 (2023). https://doi.org/10.1021/acsnano.3c00033
A.B. Loginov, P.V. Fedotov, S.N. Bokova-Sirosh, I.V. Sapkov, D.N. Chmelenin et al., Synthesis, structural, and photoluminescence properties of MoS2 nanowall films. Phys. Status. Solidi. (b) 2200481 (2023). https://doi.org/10.1002/pssb.202200481
L. Bu, S. Guo, X. Zhang, X. Shen, D. Su et al., Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat. Commun. 7(1), 11850 (2016). https://doi.org/10.1038/ncomms11850
J. Lai, B. Huang, Y. Tang, F. Lin, P. Zhou et al., Barrier-free interface electron transfer on PtFe-Fe2C janus-like nanops boosts oxygen catalysis. Chem 4(5), 1153–1166 (2018). https://doi.org/10.1016/j.chempr.2018.02.010
D. Rhuy, Y. Lee, J.Y. Kim, C. Kim, Y. Kwon et al., Ultraefficient electrocatalytic hydrogen evolution from strain-engineered, multilayer MoS2. Nano Lett. 22(14), 5742–5750 (2022). https://doi.org/10.1021/acs.nanolett.2c00938
R. Ghosh, B. Papnai, Y.S. Chen, K. Yadav, R. Sankar et al., Exciton manipulation for enhancing photo-electrochemical hydrogen evolution reaction in wrinkled 2D heterostructures. Adv. Mater. 35(16), 2210746 (2023). https://doi.org/10.1002/adma.202210746
K. Xu, F. Wang, Z. Wang, X. Zhan, Q. Wang et al., Component-controllable WS2(1–x) Se2x nanotubes for efficient hydrogen evolution reaction. ACS Nano 8(8), 8468–8476 (2014). https://doi.org/10.1021/nn503027k
Z. Liu, Y. Du, P. Zhang, Z. Zhuang, D. Wang, Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 4(10), 3161–3194 (2021). https://doi.org/10.1016/j.matt.2021.07.019
Z. Zhuang, Y. Li, R. Yu, L. Xia, J. Yang et al., Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 5(4), 300–310 (2022). https://doi.org/10.1038/s41929-022-00764-9
J. Zhou, F. Wang, H. Wang, S. Hu, W. Zhou et al., Ferrocene-induced switchable preparation of metal-nonmetal codoped tungsten nitride and carbide nanoarrays for electrocatalytic her in alkaline and acid media. Nano Res. 16(2), 2085–2093 (2022). https://doi.org/10.1007/s12274-022-4901-6
S. Jiao, M. Kong, Z. Hu, S. Zhou, X. Xu et al., Pt atom on the wall of atomic layer deposition (ALD)-made MoS2 nanotubes for efficient hydrogen evolution. Small 18(16), e2105129 (2022). https://doi.org/10.1002/smll.202105129
W. Han, J. Ning, Y. Long, J. Qiu, W. Jiang et al., Unlocking the ultrahigh-current-density hydrogen evolution on 2H-MoS2 via simultaneous structural control across seven orders of magnitude. Adv. Energy Mater. 13(16), 2300145 (2023). https://doi.org/10.1002/aenm.202300145
W. Cui, B. Geng, X. Chu, J. He, L. Jia et al., Coupling Fe and Mo single atoms on hierarchical N-doped carbon nanotubes enhances electrochemical nitrogen reduction reaction performance. Nano Res. 16, 5743–5749 (2022). https://doi.org/10.1007/s12274-022-5246-x
S. Hou, A. Zhang, Q. Zhou, Y. Wen, S. Zhang et al., Designing heterostructured FeP–CoP for oxygen evolution reaction: Interface engineering to enhance electrocatalytic performance. Nano Res. (2023). https://doi.org/10.1007/s12274-023-5390-y
C. Meng, Y. Gao, Y. Zhou, K. Sun, Y. Wang et al., P-band center theory guided activation of MoS2 basal S sites for pH-universal hydrogen evolution. Nano Res. 16, 6228–6236 (2022). https://doi.org/10.1007/s12274-022-5287-1
G. Wang, Z. Dai, J. Xiao, S. Feng, C. Weng et al., Bending of multilayer van der waals materials. Phys. Rev. Lett. 123(11), 116101 (2019). https://doi.org/10.1103/PhysRevLett.123.116101
K. Chen, J. Pan, W. Yin, C. Ma, L. Wang, Flexible electronics based on one-dimensional inorganic semiconductor nanowires and two-dimensional transition metal dichalcogenides. Chinese Chem. Lett. 108226 (2023). https://doi.org/10.1016/j.cclet.2023.108226
X. Qiao, X. Yin, L. Wen, X. Chen, J. Li et al., Variable nanosheets for highly efficient oxygen evolution reaction. Chem 8(12), 3241–3251 (2022). https://doi.org/10.1016/j.chempr.2022.08.007
J. Yang, Z. Wang, C.X. Huang, Y. Zhang, Q. Zhang et al., Compressive strain modulation of single iron sites on helical carbon support boosts electrocatalytic oxygen reduction. Angew. Chem. Int. Ed. 60(42), 22722–22728 (2021). https://doi.org/10.1002/anie.202109058
D. Chen, M. Luo, S. Ning, J. Lan, W. Peng et al., Single-atom gold isolated onto nanoporous MoSe2 for boosting electrochemical nitrogen reduction. Small 18(4), e2104043 (2022). https://doi.org/10.1002/smll.202104043
F. Wu, P. Hu, F. Hu, Z. Tian, J. Tang et al., Multifunctional mxene/c aerogels for enhanced microwave absorption and thermal insulation. Nano-Micro Lett. 15(1), (2023). https://doi.org/10.1007/s40820-023-01158-7
B. Lin, Y. Zhang, H. Zhang, H. Wu, J. Shao et al., Centimeter-scale two-dimensional metallenes for high-efficiency electrocatalysis and sensing. ACS Mater. Lett. 5(2), 397–405 (2023). https://doi.org/10.1021/acsmaterialslett.2c01066
H. Guo, X. Wang, Q. Qian, F. Wang, X. Xia, A green approach to the synthesis of graphene nanosheets. ACS Nano 3(9), 2653–2659 (2009). https://doi.org/10.1021/nn900227d
P. Zhai, C. Wang, Y. Zhao, Y. Zhang, J. Gao et al., Regulating electronic states of nitride/hydroxide to accelerate kinetics for oxygen evolution at large current density. Nat. Comm. 14(1), 1873 (2023). https://doi.org/10.1038/s41467-023-37091-x
Y. Zhang, Y. Zhao, Y. Bai, Gao J., J. Zhao et al., Universal zigzag edge reconstruction of an α-phase puckered monolayer and its resulting robust spatial charge separation. Nano Lett. 21(19), 8095–8102 (2021). https://doi.org/10.1021/acs.nanolett.1c02461