Hierarchical Semiconductor Oxide Photocatalyst: A Case of the SnO2 Microflower
Corresponding Author: Xiang Wu
Nano-Micro Letters,
Vol. 5 No. 4 (2013), Article Number: 234-241
Abstract
Hierarchically assembled SnO2 microflowers were synthesized by a facile hydrothermal process. Field emission scanning electron microscope results showed these hierarchical nanostructures were built from two dimensional nanosheets with the thicknesses of about 50 nm. Photoluminescence spectrum of the as-obtained products demonstrated a strong visual emission peak at 564 nm. The photochemical measurement results indicated that the as-prepared sample exhibits excellent photocatalytic performance. These three dimensional SnO2 hierarchical nanostructures may have potential applications in waste water purification.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Wang, F. Y. Qu and X. Wu, “Synthesis of ultra-thin ZnO nanosheets: photocatalytic and superhydrophilic properties”, Sci. Adv. Mater. 5(8), 1052–1059 (2013). http://dx.doi.org/10.1166/sam.2013.1554
- W. N. Jia, X. Wu, B. X. Jia, F. Y. Qu and H. J. Fan, “Self-assembled porous ZnS nanospheres with high photocatalytic performance”, Sci. Adv. Mater. 5(10), 1329–1336 (2013). http://dx.doi.org/10.1166/sam.2013.1593
- Z. Yu, X. Wu, J. Wang, W. N. Jia, G. S. Zhu and F. Y. Qu, “Facile template-free synthesis and visible-light driven photocatalytic performances of dendritic CdS hierarchical structures”, Dalton Trans. 42(13), 4633–4638 (2013). http://dx.doi.org/10.1039/c2dt32486e
- J. Wang, F. Y. Qu and X. Wu, “Photocatalytic degradation of organic dyes with hierarchical Ag2O/ZnO heterostructures”, Sci. Adv Mater. 5(10), 1364–1371 (2013). http://dx.doi.org/10.1166/sam.2013.1597
- W. N. Jia, B.X. Jia, F. Y. Qu, X. Wu, Dalton Trans. 42: 14178 (2013)
- X. F. Wang, H.T. Huang, B. Liu, B. Liang, C. Zhang, Q Ji, D. Chen and G. Z. Shen, “Shape evolution and applications in water purification: the case of CVD-grown Zn2SiO4 straw-bundles”, J. Mater. Chem. 22, 5330–5335 (2011) http://dx.doi.org/10.1039/c1jm14551g
- L. N. Gao, F. Y. Qu and X. Wu, “Reduced graphene oxide-BiVO4 composite for enhanced photoelectrochemical cell and photocatalysis”, Sci. Adv. Mater. 5(10), 1485–1492 (2013).
- T. Q. Chang, Z. J. Li, G. Q. Yun, Y. Jia, H. J. Yang, “Enhanced photocatalytic activity of ZnO/CuO nanocomposites synthesized by hydrothermal method”, Nano-Micro Lett. 5(3), 163–168 (2013). http://dx.doi.org/10.5101/nml.v5i3.p163-168
- J. Wang, F. Y. Qu and X. Wu, “Controlled synthesis and photocatalytic properties of three dimensional hierarchical ZnO microflowers”, Mater. Express 3(3), 256–264 (2013). http://dx.doi.org/10.1166/mex.2013.1118
- K. G. Chandrappa and T. V. Venkatesha, “Electrochemical synthesis and photocatalytic property of zinc oxide nanoparticles”, Nano-Micro Lett. 4(1), 14–24 (2012). http://dx.doi.org/10.3786/nml.v4i1.p14-24
- H. W. Wei, L. Wang, Z. P. Li, S. Q. Ni and Q. Q. Zhao, “Synthesis and photocatalytic activity of one-dimensional CdS@TiO2 core-shell heterostructures”, Nano-Micro Lett. 3(1), 6–11 (2011). http://dx.doi.org/10.3786/nml.v3i1.p6-11
- Y. T. Han, X. Wu, G. Z. Shen, B. Dierre, L. Gong, F. Y. Qu, Y. Bando, T. Sekiguchi, F. Fabbri and D. Golberg, “Solution growth and cathodoluminescence of novel SnO2 core-shell homogeneous microspheres”, J. Phys. Chem. C 114(18), 8235–8240 (2010). http://dx.doi.org/10.1021/jp100942m
- Y. T. Han, X. Wu, Y. L. Ma, L. H. Gong, F. Y. Qu and H. J. Fan, “Porous SnO2 nanowire bundles for photocatalyst and Li ion battery applications”, CrystEngComm 13(10), 3506–3510 (2011). http://dx.doi.org/10.1039/c1ce05171g
- H. T. Huang, S. Q. Tian, J. Xu, Z. Xie, D. W. Zeng, D. Chen and G. Z. Shen, “Needle-like Zn-doped SnO2nanorods with enhanced photocatalytic and gas sensing properties”, Nanotechnology 23(10), 105502 (2012). http://dx.doi.org/10.1088/0957-4484/23/10/105502
- B. X. Jia, W. N. Jia, Y. L. Ma, X. Wu and F. Y. Qu, “SnO2 core-shell microspheres with excellent photocatalytic properties”, Sci. Adv. Mater. 4(7), 702–707 (2012). http://dx.doi.org/10.1166/sam.2012.1341
- B. X. Jia, W. N. Jia, F. Y. Qu and X. Wu, “Hierarchical porous SnO2 microflowers photocatalyst”, Sci. Adv. Mater. 4(11), 1127–1133 (2012). http://dx.doi.org/10.1166/sam.2012.1404
- B. X. Jia, W. N. Jia, X. Wu and F. Y. Qu, “General strategy for self assembly of mesoporous SnO2 nanospheres and their applications in water purification”, RSC Adv. 3(30), 12140–12148 (2013). http://dx.doi.org/10.1039/c3ra41638k
- L. Vayssieres and M. Graetzel, “Highly ordered SnO2 nanorod arrays from controlled aqueous growth”, Angew. Chem. 116(28), 3752–3756 (2004). http://dx.doi.org/10.1002/ange.200454000
- Z. Y. Zhang, R. J. Zou, G. S. Song, L. Yu, Z. G. Chen and J. Q. Hu, “Highly aligned SnO2 nanorods on graphene sheets for gas sensors”, J. Mater. Chem. 21, 17360–17365 (2011). http://dx.doi.org/10.1039/c1jm12987b
- Y. L. Wang, M. Guo, M. Zhang and X. D. Wang, “Hydrothermal preparation and photoelectrochemical performance of size-controlled SnO2 nanorod arrays”, CrystEngComm 12(12), 4024–4027 (2010). http://dx.doi.org/10.1039/C0CE00201A
- Y. Liu, Y. Jiao, F. Y. Qu, L. H. Gong and X. Wu, “Facile synthesis of template-induced SnO2 nanotubes”, J. Nanomater. 610964 (2013). http://dx.doi.org/10.1155/2013/610964
- J. Z. Wang, N. Du, H. Zhang, J. X. Yu and D. Yang, “Large-scale synthesis of SnO2 nanotube arrays as high-performance anode materials of Li-Ion batteries”, J. Phys. Chem. C 115(22), 11302–11305 (2011). http://dx.doi.org/10.1021/jp203168p
- X. Xu, J. Liang, H. Zhou, D. M. Lv, F. X. Liang, Z. L. Yang, S. J. Ding and D. M. Yu, “The preparation of uniform SnO2 nanotubes with a mesoporous shell for lithium storage”, J. Mater. Chem. A 1(9), 2995–2998 (2013). http://dx.doi.org/10.1039/c3ta01372c
- M. L. Lu, C. W. Lai, H. J. Pan, C. T. Chen, P. T. Chou and Y. F. Chen, “A facile integration of zero- (I–III–VI quantum dots) and one- (single SnO2 nanowire) dimensional nanomaterials: fabrication of a nanocomposite photodetector with ultrahigh gain and wide spectral response”, Nano Lett. 13(5), 1920–1927 (2013). http://dx.doi.org/10.1021/nl3041367
- H. B. Feng, J. Huang and J. H. Li, “A mechanical actuated SnO2 nanowire for small molecules sensing”, Chem. Commun. 49(10), 1017–1019 (2013). http://dx.doi.org/10.1039/c2cc38463a
- X. S. Fang, J. Yan, L. F. Hu, H. Liu, “Thin SnO2 nanowires with uniform diameter as excellent field emitters: a stability of more than 2400 minutes”, Adv. Funct. Mater. 22(8), 1613–1622 (2012). http://dx.doi.org/10.1002/adfm.201102196
- L. F. Hu, J. Yan, M. Y. Liao, L. M. Wu, X. S. Fang, “Ultrahigh external quantum efficiency from thin SnO2 nanowire ultraviolet photodetectors”, Small 7(8), 1012–1017 (2011). http://dx.doi.org/10.1002/smll.201002379
- C. Wang, G. H. Du, K. Ståhl, H. X. Huang, Y. J. Zhong and J. Z. Jiang, “Ultrathin SnO2 nanosheets: oriented attachment mechanism, nonstoichiometric defects, and enhanced lithium-Ion battery performances”, J. Phys. Chem. C 116(6), 4000–4011 (2012). http://dx.doi.org/10.1021/jp300136p
- J. Xing, W. Q. Fang, Z. Li and H. G. Yang, “TiO2-coated ultrathin SnO2 nanosheets used as photoanodes for dye-sensitized solar cells with high efficiency”, Ind. Eng. Chem. Res. 51(11), 4247–4253 (2012). http://dx.doi.org/10.1021/ie2030823
- C. Wang, Q. Wu, H. L. Ge, T. Shang and J Z Jiang, “Magnetic stability of SnO2 nanosheets”, Nanotechnology 23(7), 075704 (2012). http://dx.doi.org/10.1088/0957-4484/23/7/075704
- H. B. Wu, J. S. Chen, X. W. Lou and H. H. Hng, “Synthesis of SnO2 hierarchical structures assembled from nanosheets and their lithium storage properties”, J. Phys. Chem. C 115(50), 24605–24610 (2011). http://dx.doi.org/10.1021/jp208158m
- X. Y. Zhao, M. H. Cao and C. W. Hu, “Binder strategy towards improving the rate performance of nanosheet-assembled SnO2 hollow microspheres”, RSC Adv. 2(31), 11737–11742 (2012). http://dx.doi.org/10.1039/c2ra21867d
- T. H. Lea, Q. D. Truong, T. Kimura, H. H. Li, C. S. Guo, S. Yin, T. Sato and Y. C. Ling, “Construction of 3D hierarchical SnO2 microspheres from porous nanosheets towards NO decomposition”, Solid State Sci. 15, 29–35 (2013). http://dx.doi.org/10.1016/j.solidstatesciences.2012.09.004
- W. F. Li, Y. G. Sun and J. L. Xu, “Controllable hydrothermal synthesis and properties of ZnO hierarchical micro/nanostructures”, Nano-Micro Lett. 4(2), 98–102 (2012). http://dx.doi.org/10.3786/nml.v4i2.p98-102
- H. Liu, L. F. Hu, K. Watanabe, X. H. Hu, B. Dierre, B. S. Kim, T. Sekiguchi and X. S. Fang, “Cathodoluminescence modulation of ZnS nanostructures by morphology, doping, and temperature”, Adv. Funct. Mater. 23(29), 3701–3709 (2013). http://dx.doi.org/10.1002/adfm.201203711
- H. Chen, X. Wu, L. H. Gong, C. Ye, F. Y. Qu and G. Z. Shen, “Hydrothermally grown ZnO micro/nanotube arrays and their properties”, Nanoscale Res. Lett. 5(3), 570–575 (2010). http://dx.doi.org/10.1007/s11671-009-9506-4
- L. J. Yu, F. Y. Qu and X. Wu, “Facile hydrothermal synthesis of novel ZnO nanocubes”, J. Alloys Compd. 504(1), L1–L4 (2010). http://dx.doi.org/10.1016/j.jallcom.2010.05.055
- X. Wu, Y. Lei, Y. F. Zheng and F. Y. Qu, “Controlled growth and cathodoluminescence property of ZnS nanobelts with large aspect ratio”, Nano-Micro Lett. 2(4), 272–276 (2010). http://dx.doi.org/10.3786/nml.v2i4.p272-276
- Y. Lei, F. Y. Qu and X. Wu, “Assembling ZnO nanorods into microflowers through a facile solution strategy: morphology control and cathodoluminescence properties”, Nano-Micro Lett. 4(1),45-51 (2012). http://dx.doi.org/10.3786/nml.v4i1.p45-51
- Z. L. Zhang, J. Wang, Z. Yu, F. Y. Qu and X. Wu, “Assembling SnO nanosheets into microhydrangeas: gas phase synthesis and their optical property”, Nano-Micro Lett. 4(4), 215–219 (2012). http://dx.doi.org/10.3786/nml.v4i4.p215-219
- H. B. Zeng, G. T. Duan, Y. Li, S. K. Yang, X. X. Xu and W. P. Cai, “Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls”, Adv. Funct. Mater. 20(4), 561–572 (2013). http://dx.doi.org/10.1002/adfm.200901884
- R. L. Penn and J. F. Banfield, “Imperfect oriented attachment: dislocation generation in defect-free nanocrystals”, Science 281(5379), 969–971 (1998). http://dx.doi.org/10.1126/science.281.5379.969
- J. F. Banfield, S. A. Welch, H. Z. Zhang, T. T. Ebert and R. L Penn, “Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products”, Science 289(5480), 751–754 (2000). http://dx.doi.org/10.1126/science.289.5480.751
- X. S. Fang, C. H. Ye, L. D. Zhang, J. X. Zhang, J. W. Zhao and P. Yan, “Direct observation of the growth process of MgO nanoflowers by a simple chemical route”, Small 1(4), 422–428(2005). http://dx.doi.org/10.1002/smll.200400087
- H. B. Zeng, W. P. Cai, P. S. Liu, X. X. Xu, H. J. Zhou, C. Klingshirn and H. Kalt, “ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis”, ACS Nano 2(8), 1661–1670 (2008). http://dx.doi.org/10.1021/nn800353q
- M. J. Height, S. E. Pratsinis, O. Mekasuwandumrong, P. Praserthdam, “Ag-ZnO catalysts for UV-photodegradation of methylene blue”, Appl. Catal. B: Environ. 63(3-4), 305–312 (2006). http://dx.doi.org/10.1016/j.apcatb.2005.10.018
- J. J. Wu and C. H. Tseng, “Photocatalytic properties of nc-Au/ZnO nanorod composites”, Appl. Catal. B 66(1–2), 51–57 (2006). http://dx.doi.org/10.1016/j.apcatb.2006.02.013
- F. Ammari, J. Lamotte and R. Touroude, “An emergent catalytic material: Pt/ZnO catalyst for selective hydrogenation of crotonaldehyde”, J. Catal. 221(1), 32–42 (2004). http://dx.doi.org/10.1016/S0021-9517(03)00290-2
References
J. Wang, F. Y. Qu and X. Wu, “Synthesis of ultra-thin ZnO nanosheets: photocatalytic and superhydrophilic properties”, Sci. Adv. Mater. 5(8), 1052–1059 (2013). http://dx.doi.org/10.1166/sam.2013.1554
W. N. Jia, X. Wu, B. X. Jia, F. Y. Qu and H. J. Fan, “Self-assembled porous ZnS nanospheres with high photocatalytic performance”, Sci. Adv. Mater. 5(10), 1329–1336 (2013). http://dx.doi.org/10.1166/sam.2013.1593
Z. Yu, X. Wu, J. Wang, W. N. Jia, G. S. Zhu and F. Y. Qu, “Facile template-free synthesis and visible-light driven photocatalytic performances of dendritic CdS hierarchical structures”, Dalton Trans. 42(13), 4633–4638 (2013). http://dx.doi.org/10.1039/c2dt32486e
J. Wang, F. Y. Qu and X. Wu, “Photocatalytic degradation of organic dyes with hierarchical Ag2O/ZnO heterostructures”, Sci. Adv Mater. 5(10), 1364–1371 (2013). http://dx.doi.org/10.1166/sam.2013.1597
W. N. Jia, B.X. Jia, F. Y. Qu, X. Wu, Dalton Trans. 42: 14178 (2013)
X. F. Wang, H.T. Huang, B. Liu, B. Liang, C. Zhang, Q Ji, D. Chen and G. Z. Shen, “Shape evolution and applications in water purification: the case of CVD-grown Zn2SiO4 straw-bundles”, J. Mater. Chem. 22, 5330–5335 (2011) http://dx.doi.org/10.1039/c1jm14551g
L. N. Gao, F. Y. Qu and X. Wu, “Reduced graphene oxide-BiVO4 composite for enhanced photoelectrochemical cell and photocatalysis”, Sci. Adv. Mater. 5(10), 1485–1492 (2013).
T. Q. Chang, Z. J. Li, G. Q. Yun, Y. Jia, H. J. Yang, “Enhanced photocatalytic activity of ZnO/CuO nanocomposites synthesized by hydrothermal method”, Nano-Micro Lett. 5(3), 163–168 (2013). http://dx.doi.org/10.5101/nml.v5i3.p163-168
J. Wang, F. Y. Qu and X. Wu, “Controlled synthesis and photocatalytic properties of three dimensional hierarchical ZnO microflowers”, Mater. Express 3(3), 256–264 (2013). http://dx.doi.org/10.1166/mex.2013.1118
K. G. Chandrappa and T. V. Venkatesha, “Electrochemical synthesis and photocatalytic property of zinc oxide nanoparticles”, Nano-Micro Lett. 4(1), 14–24 (2012). http://dx.doi.org/10.3786/nml.v4i1.p14-24
H. W. Wei, L. Wang, Z. P. Li, S. Q. Ni and Q. Q. Zhao, “Synthesis and photocatalytic activity of one-dimensional CdS@TiO2 core-shell heterostructures”, Nano-Micro Lett. 3(1), 6–11 (2011). http://dx.doi.org/10.3786/nml.v3i1.p6-11
Y. T. Han, X. Wu, G. Z. Shen, B. Dierre, L. Gong, F. Y. Qu, Y. Bando, T. Sekiguchi, F. Fabbri and D. Golberg, “Solution growth and cathodoluminescence of novel SnO2 core-shell homogeneous microspheres”, J. Phys. Chem. C 114(18), 8235–8240 (2010). http://dx.doi.org/10.1021/jp100942m
Y. T. Han, X. Wu, Y. L. Ma, L. H. Gong, F. Y. Qu and H. J. Fan, “Porous SnO2 nanowire bundles for photocatalyst and Li ion battery applications”, CrystEngComm 13(10), 3506–3510 (2011). http://dx.doi.org/10.1039/c1ce05171g
H. T. Huang, S. Q. Tian, J. Xu, Z. Xie, D. W. Zeng, D. Chen and G. Z. Shen, “Needle-like Zn-doped SnO2nanorods with enhanced photocatalytic and gas sensing properties”, Nanotechnology 23(10), 105502 (2012). http://dx.doi.org/10.1088/0957-4484/23/10/105502
B. X. Jia, W. N. Jia, Y. L. Ma, X. Wu and F. Y. Qu, “SnO2 core-shell microspheres with excellent photocatalytic properties”, Sci. Adv. Mater. 4(7), 702–707 (2012). http://dx.doi.org/10.1166/sam.2012.1341
B. X. Jia, W. N. Jia, F. Y. Qu and X. Wu, “Hierarchical porous SnO2 microflowers photocatalyst”, Sci. Adv. Mater. 4(11), 1127–1133 (2012). http://dx.doi.org/10.1166/sam.2012.1404
B. X. Jia, W. N. Jia, X. Wu and F. Y. Qu, “General strategy for self assembly of mesoporous SnO2 nanospheres and their applications in water purification”, RSC Adv. 3(30), 12140–12148 (2013). http://dx.doi.org/10.1039/c3ra41638k
L. Vayssieres and M. Graetzel, “Highly ordered SnO2 nanorod arrays from controlled aqueous growth”, Angew. Chem. 116(28), 3752–3756 (2004). http://dx.doi.org/10.1002/ange.200454000
Z. Y. Zhang, R. J. Zou, G. S. Song, L. Yu, Z. G. Chen and J. Q. Hu, “Highly aligned SnO2 nanorods on graphene sheets for gas sensors”, J. Mater. Chem. 21, 17360–17365 (2011). http://dx.doi.org/10.1039/c1jm12987b
Y. L. Wang, M. Guo, M. Zhang and X. D. Wang, “Hydrothermal preparation and photoelectrochemical performance of size-controlled SnO2 nanorod arrays”, CrystEngComm 12(12), 4024–4027 (2010). http://dx.doi.org/10.1039/C0CE00201A
Y. Liu, Y. Jiao, F. Y. Qu, L. H. Gong and X. Wu, “Facile synthesis of template-induced SnO2 nanotubes”, J. Nanomater. 610964 (2013). http://dx.doi.org/10.1155/2013/610964
J. Z. Wang, N. Du, H. Zhang, J. X. Yu and D. Yang, “Large-scale synthesis of SnO2 nanotube arrays as high-performance anode materials of Li-Ion batteries”, J. Phys. Chem. C 115(22), 11302–11305 (2011). http://dx.doi.org/10.1021/jp203168p
X. Xu, J. Liang, H. Zhou, D. M. Lv, F. X. Liang, Z. L. Yang, S. J. Ding and D. M. Yu, “The preparation of uniform SnO2 nanotubes with a mesoporous shell for lithium storage”, J. Mater. Chem. A 1(9), 2995–2998 (2013). http://dx.doi.org/10.1039/c3ta01372c
M. L. Lu, C. W. Lai, H. J. Pan, C. T. Chen, P. T. Chou and Y. F. Chen, “A facile integration of zero- (I–III–VI quantum dots) and one- (single SnO2 nanowire) dimensional nanomaterials: fabrication of a nanocomposite photodetector with ultrahigh gain and wide spectral response”, Nano Lett. 13(5), 1920–1927 (2013). http://dx.doi.org/10.1021/nl3041367
H. B. Feng, J. Huang and J. H. Li, “A mechanical actuated SnO2 nanowire for small molecules sensing”, Chem. Commun. 49(10), 1017–1019 (2013). http://dx.doi.org/10.1039/c2cc38463a
X. S. Fang, J. Yan, L. F. Hu, H. Liu, “Thin SnO2 nanowires with uniform diameter as excellent field emitters: a stability of more than 2400 minutes”, Adv. Funct. Mater. 22(8), 1613–1622 (2012). http://dx.doi.org/10.1002/adfm.201102196
L. F. Hu, J. Yan, M. Y. Liao, L. M. Wu, X. S. Fang, “Ultrahigh external quantum efficiency from thin SnO2 nanowire ultraviolet photodetectors”, Small 7(8), 1012–1017 (2011). http://dx.doi.org/10.1002/smll.201002379
C. Wang, G. H. Du, K. Ståhl, H. X. Huang, Y. J. Zhong and J. Z. Jiang, “Ultrathin SnO2 nanosheets: oriented attachment mechanism, nonstoichiometric defects, and enhanced lithium-Ion battery performances”, J. Phys. Chem. C 116(6), 4000–4011 (2012). http://dx.doi.org/10.1021/jp300136p
J. Xing, W. Q. Fang, Z. Li and H. G. Yang, “TiO2-coated ultrathin SnO2 nanosheets used as photoanodes for dye-sensitized solar cells with high efficiency”, Ind. Eng. Chem. Res. 51(11), 4247–4253 (2012). http://dx.doi.org/10.1021/ie2030823
C. Wang, Q. Wu, H. L. Ge, T. Shang and J Z Jiang, “Magnetic stability of SnO2 nanosheets”, Nanotechnology 23(7), 075704 (2012). http://dx.doi.org/10.1088/0957-4484/23/7/075704
H. B. Wu, J. S. Chen, X. W. Lou and H. H. Hng, “Synthesis of SnO2 hierarchical structures assembled from nanosheets and their lithium storage properties”, J. Phys. Chem. C 115(50), 24605–24610 (2011). http://dx.doi.org/10.1021/jp208158m
X. Y. Zhao, M. H. Cao and C. W. Hu, “Binder strategy towards improving the rate performance of nanosheet-assembled SnO2 hollow microspheres”, RSC Adv. 2(31), 11737–11742 (2012). http://dx.doi.org/10.1039/c2ra21867d
T. H. Lea, Q. D. Truong, T. Kimura, H. H. Li, C. S. Guo, S. Yin, T. Sato and Y. C. Ling, “Construction of 3D hierarchical SnO2 microspheres from porous nanosheets towards NO decomposition”, Solid State Sci. 15, 29–35 (2013). http://dx.doi.org/10.1016/j.solidstatesciences.2012.09.004
W. F. Li, Y. G. Sun and J. L. Xu, “Controllable hydrothermal synthesis and properties of ZnO hierarchical micro/nanostructures”, Nano-Micro Lett. 4(2), 98–102 (2012). http://dx.doi.org/10.3786/nml.v4i2.p98-102
H. Liu, L. F. Hu, K. Watanabe, X. H. Hu, B. Dierre, B. S. Kim, T. Sekiguchi and X. S. Fang, “Cathodoluminescence modulation of ZnS nanostructures by morphology, doping, and temperature”, Adv. Funct. Mater. 23(29), 3701–3709 (2013). http://dx.doi.org/10.1002/adfm.201203711
H. Chen, X. Wu, L. H. Gong, C. Ye, F. Y. Qu and G. Z. Shen, “Hydrothermally grown ZnO micro/nanotube arrays and their properties”, Nanoscale Res. Lett. 5(3), 570–575 (2010). http://dx.doi.org/10.1007/s11671-009-9506-4
L. J. Yu, F. Y. Qu and X. Wu, “Facile hydrothermal synthesis of novel ZnO nanocubes”, J. Alloys Compd. 504(1), L1–L4 (2010). http://dx.doi.org/10.1016/j.jallcom.2010.05.055
X. Wu, Y. Lei, Y. F. Zheng and F. Y. Qu, “Controlled growth and cathodoluminescence property of ZnS nanobelts with large aspect ratio”, Nano-Micro Lett. 2(4), 272–276 (2010). http://dx.doi.org/10.3786/nml.v2i4.p272-276
Y. Lei, F. Y. Qu and X. Wu, “Assembling ZnO nanorods into microflowers through a facile solution strategy: morphology control and cathodoluminescence properties”, Nano-Micro Lett. 4(1),45-51 (2012). http://dx.doi.org/10.3786/nml.v4i1.p45-51
Z. L. Zhang, J. Wang, Z. Yu, F. Y. Qu and X. Wu, “Assembling SnO nanosheets into microhydrangeas: gas phase synthesis and their optical property”, Nano-Micro Lett. 4(4), 215–219 (2012). http://dx.doi.org/10.3786/nml.v4i4.p215-219
H. B. Zeng, G. T. Duan, Y. Li, S. K. Yang, X. X. Xu and W. P. Cai, “Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls”, Adv. Funct. Mater. 20(4), 561–572 (2013). http://dx.doi.org/10.1002/adfm.200901884
R. L. Penn and J. F. Banfield, “Imperfect oriented attachment: dislocation generation in defect-free nanocrystals”, Science 281(5379), 969–971 (1998). http://dx.doi.org/10.1126/science.281.5379.969
J. F. Banfield, S. A. Welch, H. Z. Zhang, T. T. Ebert and R. L Penn, “Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products”, Science 289(5480), 751–754 (2000). http://dx.doi.org/10.1126/science.289.5480.751
X. S. Fang, C. H. Ye, L. D. Zhang, J. X. Zhang, J. W. Zhao and P. Yan, “Direct observation of the growth process of MgO nanoflowers by a simple chemical route”, Small 1(4), 422–428(2005). http://dx.doi.org/10.1002/smll.200400087
H. B. Zeng, W. P. Cai, P. S. Liu, X. X. Xu, H. J. Zhou, C. Klingshirn and H. Kalt, “ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis”, ACS Nano 2(8), 1661–1670 (2008). http://dx.doi.org/10.1021/nn800353q
M. J. Height, S. E. Pratsinis, O. Mekasuwandumrong, P. Praserthdam, “Ag-ZnO catalysts for UV-photodegradation of methylene blue”, Appl. Catal. B: Environ. 63(3-4), 305–312 (2006). http://dx.doi.org/10.1016/j.apcatb.2005.10.018
J. J. Wu and C. H. Tseng, “Photocatalytic properties of nc-Au/ZnO nanorod composites”, Appl. Catal. B 66(1–2), 51–57 (2006). http://dx.doi.org/10.1016/j.apcatb.2006.02.013
F. Ammari, J. Lamotte and R. Touroude, “An emergent catalytic material: Pt/ZnO catalyst for selective hydrogenation of crotonaldehyde”, J. Catal. 221(1), 32–42 (2004). http://dx.doi.org/10.1016/S0021-9517(03)00290-2