Boosting Chemodynamic Therapy by the Synergistic Effect of Co-Catalyze and Photothermal Effect Triggered by the Second Near-Infrared Light
Corresponding Author: Hongjie Zhang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 180
Abstract
In spite of the tumor microenvironments responsive cancer therapy based on Fenton reaction (i.e., chemodynamic therapy, CDT) has been attracted more attentions in recent years, the limited Fenton reaction efficiency is the important obstacle to further application in clinic. Herein, we synthesized novel FeO/MoS2 nanocomposites modified by bovine serum albumin (FeO/MoS2-BSA) with boosted Fenton reaction efficiency by the synergistic effect of co-catalyze and photothermal effect of MoS2 nanosheets triggered by the second near-infrared (NIR II) light. In the tumor microenvironments, the MoS2 nanosheets not only can accelerate the conversion of Fe3+ ions to Fe2+ ions by Mo4+ ions on their surface to improve Fenton reaction efficiency, but also endow FeO/MoS2-BSA with good photothermal performances for photothermal-enhanced CDT and photothermal therapy (PTT). Consequently, benefiting from the synergetic-enhanced CDT/PTT, the tumors are eradicated completely in vivo. This work provides innovative synergistic strategy for constructing nanocomposites for highly efficient CDT.
Highlights
1 The MoS2 nanosheets served as co-catalyst could reduce Fe3+ ions with lower Fenton reaction activity into the highly reactive Fe2+ ions, thereby boosting the production of hydroxyl radical (•OH) for high efficiency chemodynamic therapy (CDT).
2 The photothermal effect of MoS2 nanosheets motivated by second near-infrared light could further improve the treatment effectiveness by synergetic photothermal-enhanced CDT and photothermal therapy.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2019. CA Cancer J. Clin. 69(1), 7–34 (2019). https://doi.org/10.3322/caac.21551
- R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2018. CA Cancer J. Clin. 68(1), 7–30 (2018). https://doi.org/10.3322/caac.21442
- H.J. Bonjer, E. Haglind, I. Jeekel, G. Kazemier, L. Pahlman et al., Laparoscopic surgery versus open surgery for colon cancer: short-term outcomes of a randomised trial. Lancet Oncol. 6(7), 477–484 (2005). https://doi.org/10.1016/s1470-2045(05)70221-7
- E. Kapiteijn, C.A.M. Marijnen, I.D. Nagtegaal, H. Putter, W.H. Steup et al., Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer. N. Engl. J. Med. 345(9), 638–646 (2001). https://doi.org/10.1056/NEJMoa010580
- D. Cunningham, W.H. Allum, S.P. Stenning, J.N. Thompson, C.J.H. Van de Velde et al., Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N. Engl. J. Med. 355(1), 11–20 (2006). https://doi.org/10.1056/NEJMoa055531
- H.I. Scher, K. Fizazi, F. Saad, M.-E. Taplin, C.N. Sternberg et al., Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 367(13), 1187–1197 (2012). https://doi.org/10.1056/NEJMoa1207506
- Z. Tang, H. Zhang, Y. Liu, D. Ni, H. Zhang et al., Antiferromagnetic pyrite as the tumor microenvironment-mediated nanoplatform for self-enhanced tumor imaging and therapy. Adv. Mater. 29(47), 1701683 (2017). https://doi.org/10.1002/adma.201701683
- H. Lin, Y. Chen, J. Shi, Fenton re nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy. Chem. Soc. Rev. 47(6), 1938–1958 (2018). https://doi.org/10.1039/c7cs00471k
- M.I. Litter, M. Slodowicz, An overview on heterogeneous fenton and photofenton reactions using zerovalent iron materials. J. Adv. Oxid. Technol. 20(1), 160164 (2017). https://doi.org/10.1515/jaots-2016-0164
- Y. Wang, K. Qi, S. Yu, G. Jia, Z. Cheng et al., Revealing the intrinsic peroxidase-like catalytic mechanism of heterogeneous single-atom Co–MoS2. Nano Micro Lett. 11(1), 102 (2019). https://doi.org/10.1007/s40820-019-0324-7
- C. Yang, M. Zhou, C. He, Y. Gao, S. Li et al., Augmenting intrinsic fenton-like activities of mof-derived catalysts via n-molecule-assisted self-catalyzed carbonization. Nano Micro Lett. 11(1), 87 (2019). https://doi.org/10.1007/s40820-019-0319-4
- M. Huo, L. Wang, Y. Chen, J. Shi, Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 8(1), 357 (2017). https://doi.org/10.1038/s41467-017-00424-8
- W. Wang, Y. Jin, Z. Xu, X. Liu, S.Z. Bajwa, W.S. Khan, H. Yu, Stimuli-activatable nanomedicines for chemodynamic therapy of cancer. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 12(4), e1614 (2020). https://doi.org/10.1002/wnan.1614
- Z. Tang, Y. Liu, M. He, W. Bu, Chemodynamic therapy: Tumour microenvironment-mediated fenton and fenton-like reactions. Angew. Chem. Int. Ed. 58(4), 946–956 (2019). https://doi.org/10.1002/anie.201805664
- S. Wang, G. Yu, Z. Wang, O. Jacobson, L.S. Lin et al., Enhanced antitumor efficacy by a cascade of reactive oxygen species generation and drug release. Angew. Chem. Int. Ed. 58(41), 14758–14763 (2019). https://doi.org/10.1002/anie.201908997
- Y. Liu, J. Wu, Y. Jin, W. Zhen, Y. Wang et al., Copper (i) phosphide nanocrystals for in situ self-generation magnetic resonance imaging-guided photothermal-enhanced chemodynamic synergetic therapy resisting deep-seated tumor. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201904678
- Y. Liu, W. Zhen, Y. Wang, J. Liu, L. Jin et al., One-dimensional Fe2P acts as a fenton agent in response to NIR ii light and ultrasound for deep tumor synergetic theranostics. Angew. Chem. Int. Ed. 58(8), 2407–2412 (2019). https://doi.org/10.1002/anie.201813702
- L. Xu, J. Wang, Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient fenton-like heterogeneous catalyst for degradation of 4-chlorophenol. Environ. Sci. Technol. 46(18), 10145–10153 (2012). https://doi.org/10.1021/es300303f
- M. Xing, W. Xu, C. Dong, Y. Bai, J. Zeng et al., Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes. Chem 4, 1359–1372 (2018). https://doi.org/10.1016/j.chempr.2018.03.002
- X. Nie, L. Xia, H.L. Wang, G. Chen, B. Wu et al., Photothermal therapy nanomaterials boosting transformation of Fe(iii) into Fe(ii) in tumor cells for highly improving chemodynamic therapy. ACS Appl. Mater. Interfaces 11(35), 31735–31742 (2019). https://doi.org/10.1021/acsami.9b11291
- L. Zhang, S.S. Wan, C.X. Li, L. Xu, H. Cheng, X.Z. Zhang, An adenosine triphosphate-responsive autocatalytic fenton nanoparticle for tumor ablation with self-supplied H2O2 and acceleration of Fe(iii)/Fe(ii) conversion. Nano Lett. 18(12), 7609–7618 (2018). https://doi.org/10.1021/acs.nanolett.8b03178
- T. Liu, S. Shi, C. Liang, S. Shen, L. Cheng et al., Iron oxide decorated MoS2 nanosheets with double pegylation for chelator-free radio labeling and multimodal imaging guided photothermal therapy. ACS Nano 9(1), 950–960 (2015). https://doi.org/10.1021/nn506757x
- J. Yu, W. Yin, X. Zheng, G. Tian, X. Zhang et al., Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging. Theranostics 5(9), 931–945 (2015). https://doi.org/10.7150/thno.11802
- S.S. Chou, B. Kaehr, J. Kim, B.M. Foley, M. De et al., Chemically exfoliated MoS2 as near-infrared photothermal agents. Angew. Chem. Int. Ed. 52(15), 4160–4164 (2013). https://doi.org/10.1002/anie.201209229
- C. Liu, J. Chen, Y. Zhu, X. Gong, R. Zheng et al., Highly sensitive MoS2-indocyanine green hybrid for photoacoustic imaging of orthotopic brain glioma at deep site. Nano-Micro Lett. 10(3), 48 (2018). https://doi.org/10.1007/s40820-018-0202-8
- W. Yin, J. Yu, F. Lv, L. Yan, L.R. Zheng, Z. Gu, Y. Zhao, Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano 10(12), 11000–11011 (2016). https://doi.org/10.1021/acsnano.6b05810
- F. Cao, L. Zhang, H. Wang, Y. You, Y. Wang et al., Defect-rich adhesive nanozymes as efficient antibiotics for enhanced bacterial inhibition. Angew. Chem. Int. Ed. (2019). https://doi.org/10.1002/anie.201908289
- Z. Wang, Y. Ju, Z. Ali, H. Yin, F. Sheng et al., Near-infrared light and tumor microenvironment dual responsive size-switchable nanocapsules for multimodal tumor theranostics. Nat. Commun. 10(1), 4418 (2019). https://doi.org/10.1038/s41467-019-12142-4
- S. Aktaş, S.C. Thornton, C. Binns, L. Lari, A. Pratt, R. Kröger, M.A. Horsfield, Control of gas phase nanoparticle shape and its effect on MRI relaxivity. Mater. Res. Express 2(3), 035002 (2015). https://doi.org/10.1088/2053-1591/2/3/035002
- B. Tang, W.-L. Li, Y. Chang, B. Yuan, Y. Wu et al., A supramolecular radical dimer: High-efficiency NIR-ii photothermal conversion and therapy. Angew. Chem. Int. Ed. (2019). https://doi.org/10.1002/anie.201910257
- X. Wu, Y. Suo, H. Shi, R. Liu, F. Wu et al., Deep-tissue photothermal therapy using laser illumination at NIR-iia window. Nano-Micro Lett. 12(1), 38 (2020). https://doi.org/10.1007/s40820-020-0378-6
- J.-L. Chen, H. Zhang, X.-Q. Huang, H.-Y. Wan, J. Li et al., Antiangiogenesis-combined photothermal therapy in the second near-infrared window at laser powers below the skin tolerance threshold. Nano Micro Lett. 11(1), 93 (2019). https://doi.org/10.1007/s40820-019-0327-4
- W. Feng, X. Han, R. Wang, X. Gao, P. Hu et al., Nanocatalysts-augmented and photothermal-enhanced tumor-specific sequential nanocatalytic therapy in both NIR-i and NIR-ii biowindows. Adv. Mater. 31(5), e1805919 (2019). https://doi.org/10.1002/adma.201805919
- W.P. Li, C.H. Su, Y.C. Chang, Y.J. Lin, C.S. Yeh, Ultrasound-induced reactive oxygen species mediated therapy and imaging using a fenton reaction activable polymersome. ACS Nano 10(2), 2017–2027 (2016). https://doi.org/10.1021/acsnano.5b06175
- A. Dong, X. Ye, J. Chen, Y. Kang, T. Gordon, J.M. Kikkawa, C.B. Murray, A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J. Am. Chem. Soc. 133(4), 998–1006 (2011). https://doi.org/10.1021/ja108948z
References
R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2019. CA Cancer J. Clin. 69(1), 7–34 (2019). https://doi.org/10.3322/caac.21551
R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2018. CA Cancer J. Clin. 68(1), 7–30 (2018). https://doi.org/10.3322/caac.21442
H.J. Bonjer, E. Haglind, I. Jeekel, G. Kazemier, L. Pahlman et al., Laparoscopic surgery versus open surgery for colon cancer: short-term outcomes of a randomised trial. Lancet Oncol. 6(7), 477–484 (2005). https://doi.org/10.1016/s1470-2045(05)70221-7
E. Kapiteijn, C.A.M. Marijnen, I.D. Nagtegaal, H. Putter, W.H. Steup et al., Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer. N. Engl. J. Med. 345(9), 638–646 (2001). https://doi.org/10.1056/NEJMoa010580
D. Cunningham, W.H. Allum, S.P. Stenning, J.N. Thompson, C.J.H. Van de Velde et al., Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N. Engl. J. Med. 355(1), 11–20 (2006). https://doi.org/10.1056/NEJMoa055531
H.I. Scher, K. Fizazi, F. Saad, M.-E. Taplin, C.N. Sternberg et al., Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 367(13), 1187–1197 (2012). https://doi.org/10.1056/NEJMoa1207506
Z. Tang, H. Zhang, Y. Liu, D. Ni, H. Zhang et al., Antiferromagnetic pyrite as the tumor microenvironment-mediated nanoplatform for self-enhanced tumor imaging and therapy. Adv. Mater. 29(47), 1701683 (2017). https://doi.org/10.1002/adma.201701683
H. Lin, Y. Chen, J. Shi, Fenton re nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy. Chem. Soc. Rev. 47(6), 1938–1958 (2018). https://doi.org/10.1039/c7cs00471k
M.I. Litter, M. Slodowicz, An overview on heterogeneous fenton and photofenton reactions using zerovalent iron materials. J. Adv. Oxid. Technol. 20(1), 160164 (2017). https://doi.org/10.1515/jaots-2016-0164
Y. Wang, K. Qi, S. Yu, G. Jia, Z. Cheng et al., Revealing the intrinsic peroxidase-like catalytic mechanism of heterogeneous single-atom Co–MoS2. Nano Micro Lett. 11(1), 102 (2019). https://doi.org/10.1007/s40820-019-0324-7
C. Yang, M. Zhou, C. He, Y. Gao, S. Li et al., Augmenting intrinsic fenton-like activities of mof-derived catalysts via n-molecule-assisted self-catalyzed carbonization. Nano Micro Lett. 11(1), 87 (2019). https://doi.org/10.1007/s40820-019-0319-4
M. Huo, L. Wang, Y. Chen, J. Shi, Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 8(1), 357 (2017). https://doi.org/10.1038/s41467-017-00424-8
W. Wang, Y. Jin, Z. Xu, X. Liu, S.Z. Bajwa, W.S. Khan, H. Yu, Stimuli-activatable nanomedicines for chemodynamic therapy of cancer. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 12(4), e1614 (2020). https://doi.org/10.1002/wnan.1614
Z. Tang, Y. Liu, M. He, W. Bu, Chemodynamic therapy: Tumour microenvironment-mediated fenton and fenton-like reactions. Angew. Chem. Int. Ed. 58(4), 946–956 (2019). https://doi.org/10.1002/anie.201805664
S. Wang, G. Yu, Z. Wang, O. Jacobson, L.S. Lin et al., Enhanced antitumor efficacy by a cascade of reactive oxygen species generation and drug release. Angew. Chem. Int. Ed. 58(41), 14758–14763 (2019). https://doi.org/10.1002/anie.201908997
Y. Liu, J. Wu, Y. Jin, W. Zhen, Y. Wang et al., Copper (i) phosphide nanocrystals for in situ self-generation magnetic resonance imaging-guided photothermal-enhanced chemodynamic synergetic therapy resisting deep-seated tumor. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201904678
Y. Liu, W. Zhen, Y. Wang, J. Liu, L. Jin et al., One-dimensional Fe2P acts as a fenton agent in response to NIR ii light and ultrasound for deep tumor synergetic theranostics. Angew. Chem. Int. Ed. 58(8), 2407–2412 (2019). https://doi.org/10.1002/anie.201813702
L. Xu, J. Wang, Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient fenton-like heterogeneous catalyst for degradation of 4-chlorophenol. Environ. Sci. Technol. 46(18), 10145–10153 (2012). https://doi.org/10.1021/es300303f
M. Xing, W. Xu, C. Dong, Y. Bai, J. Zeng et al., Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes. Chem 4, 1359–1372 (2018). https://doi.org/10.1016/j.chempr.2018.03.002
X. Nie, L. Xia, H.L. Wang, G. Chen, B. Wu et al., Photothermal therapy nanomaterials boosting transformation of Fe(iii) into Fe(ii) in tumor cells for highly improving chemodynamic therapy. ACS Appl. Mater. Interfaces 11(35), 31735–31742 (2019). https://doi.org/10.1021/acsami.9b11291
L. Zhang, S.S. Wan, C.X. Li, L. Xu, H. Cheng, X.Z. Zhang, An adenosine triphosphate-responsive autocatalytic fenton nanoparticle for tumor ablation with self-supplied H2O2 and acceleration of Fe(iii)/Fe(ii) conversion. Nano Lett. 18(12), 7609–7618 (2018). https://doi.org/10.1021/acs.nanolett.8b03178
T. Liu, S. Shi, C. Liang, S. Shen, L. Cheng et al., Iron oxide decorated MoS2 nanosheets with double pegylation for chelator-free radio labeling and multimodal imaging guided photothermal therapy. ACS Nano 9(1), 950–960 (2015). https://doi.org/10.1021/nn506757x
J. Yu, W. Yin, X. Zheng, G. Tian, X. Zhang et al., Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging. Theranostics 5(9), 931–945 (2015). https://doi.org/10.7150/thno.11802
S.S. Chou, B. Kaehr, J. Kim, B.M. Foley, M. De et al., Chemically exfoliated MoS2 as near-infrared photothermal agents. Angew. Chem. Int. Ed. 52(15), 4160–4164 (2013). https://doi.org/10.1002/anie.201209229
C. Liu, J. Chen, Y. Zhu, X. Gong, R. Zheng et al., Highly sensitive MoS2-indocyanine green hybrid for photoacoustic imaging of orthotopic brain glioma at deep site. Nano-Micro Lett. 10(3), 48 (2018). https://doi.org/10.1007/s40820-018-0202-8
W. Yin, J. Yu, F. Lv, L. Yan, L.R. Zheng, Z. Gu, Y. Zhao, Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano 10(12), 11000–11011 (2016). https://doi.org/10.1021/acsnano.6b05810
F. Cao, L. Zhang, H. Wang, Y. You, Y. Wang et al., Defect-rich adhesive nanozymes as efficient antibiotics for enhanced bacterial inhibition. Angew. Chem. Int. Ed. (2019). https://doi.org/10.1002/anie.201908289
Z. Wang, Y. Ju, Z. Ali, H. Yin, F. Sheng et al., Near-infrared light and tumor microenvironment dual responsive size-switchable nanocapsules for multimodal tumor theranostics. Nat. Commun. 10(1), 4418 (2019). https://doi.org/10.1038/s41467-019-12142-4
S. Aktaş, S.C. Thornton, C. Binns, L. Lari, A. Pratt, R. Kröger, M.A. Horsfield, Control of gas phase nanoparticle shape and its effect on MRI relaxivity. Mater. Res. Express 2(3), 035002 (2015). https://doi.org/10.1088/2053-1591/2/3/035002
B. Tang, W.-L. Li, Y. Chang, B. Yuan, Y. Wu et al., A supramolecular radical dimer: High-efficiency NIR-ii photothermal conversion and therapy. Angew. Chem. Int. Ed. (2019). https://doi.org/10.1002/anie.201910257
X. Wu, Y. Suo, H. Shi, R. Liu, F. Wu et al., Deep-tissue photothermal therapy using laser illumination at NIR-iia window. Nano-Micro Lett. 12(1), 38 (2020). https://doi.org/10.1007/s40820-020-0378-6
J.-L. Chen, H. Zhang, X.-Q. Huang, H.-Y. Wan, J. Li et al., Antiangiogenesis-combined photothermal therapy in the second near-infrared window at laser powers below the skin tolerance threshold. Nano Micro Lett. 11(1), 93 (2019). https://doi.org/10.1007/s40820-019-0327-4
W. Feng, X. Han, R. Wang, X. Gao, P. Hu et al., Nanocatalysts-augmented and photothermal-enhanced tumor-specific sequential nanocatalytic therapy in both NIR-i and NIR-ii biowindows. Adv. Mater. 31(5), e1805919 (2019). https://doi.org/10.1002/adma.201805919
W.P. Li, C.H. Su, Y.C. Chang, Y.J. Lin, C.S. Yeh, Ultrasound-induced reactive oxygen species mediated therapy and imaging using a fenton reaction activable polymersome. ACS Nano 10(2), 2017–2027 (2016). https://doi.org/10.1021/acsnano.5b06175
A. Dong, X. Ye, J. Chen, Y. Kang, T. Gordon, J.M. Kikkawa, C.B. Murray, A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J. Am. Chem. Soc. 133(4), 998–1006 (2011). https://doi.org/10.1021/ja108948z