Enhancing the Performance of Perovskite Light-Emitting Diodes via Synergistic Effect of Defect Passivation and Dielectric Screening
Corresponding Author: Guichuan Xing
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 205
Abstract
Metal halide perovskites, particularly the quasi-two-dimensional perovskite subclass, have exhibited considerable potential for next-generation electroluminescent materials for lighting and display. Nevertheless, the presence of defects within these perovskites has a substantial influence on the emission efficiency and durability of the devices. In this study, we revealed a synergistic passivation mechanism on perovskite films by using a dual-functional compound of potassium bromide. The dual functional potassium bromide on the one hand can passivate the defects of halide vacancies with bromine anions and, on the other hand, can screen the charged defects at the grain boundaries with potassium cations. This approach effectively reduces the probability of carriers quenching resulting from charged defects capture and consequently enhances the radiative recombination efficiency of perovskite thin films, leading to a significant enhancement of photoluminescence quantum yield to near-unity values (95%). Meanwhile, the potassium bromide treatment promoted the growth of homogeneous and smooth film, facilitating the charge carrier injection in the devices. Consequently, the perovskite light-emitting diodes based on this strategy achieve a maximum external quantum efficiency of ~ 21% and maximum luminance of ~ 60,000 cd m−2. This work provides a deeper insight into the passivation mechanism of ionic compound additives in perovskite with the solution method.
Highlights:
1 Synergistic passivation mechanism of the dual functional compound of potassium bromide for metal halide perovskite films, that is through chemical bonding and physical screening towards the various types of defects.
2 Metal-ion additives can simultaneously passivate the defects of halide vacancies with bromine anions and dangling bond defects with metal cations.
3 Achieve the maximum external quantum efficiency of ~21% and maximum luminance of ~60,000 cd m−2.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z.-K. Tan, R.S. Moghaddam, M.L. Lai, P. Docampo, R. Higler et al., Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014). https://doi.org/10.1038/nnano.2014.149
- F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu et al., Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano 9, 4533–4542 (2015). https://doi.org/10.1021/acsnano.5b01154
- G. Xing, N. Mathews, S.S. Lim, N. Yantara, X. Liu et al., Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476–480 (2014). https://doi.org/10.1038/nmat3911
- Z. Ren, J. Yu, Z. Qin, J. Wang, J. Sun et al., High-performance blue perovskite light-emitting diodes enabled by efficient energy transfer between coupled quasi-2D perovskite layers. Adv. Mater. 33, 2005570 (2021). https://doi.org/10.1002/adma.202005570
- K. Hirose, R. Sinmyo, J. Hernlund, Perovskite in Earth’s deep interior. Science 358, 734–738 (2017). https://doi.org/10.1126/science.aam8561
- M.V. Kovalenko, L. Protesescu, M.I. Bodnarchuk, Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745–750 (2017). https://doi.org/10.1126/science.aam7093
- Q.A. Akkerman, G. Rainò, M.V. Kovalenko, L. Manna, Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018). https://doi.org/10.1038/s41563-018-0018-4
- S.A. Veldhuis, P.P. Boix, N. Yantara, M. Li, T.C. Sum et al., Perovskite materials for light-emitting diodes and lasers. Adv. Mater. 28, 6804–6834 (2016). https://doi.org/10.1002/adma.201600669
- Y. Chen, Y. Sun, J. Peng, J. Tang, K. Zheng et al., 2D ruddlesden–popper perovskites for optoelectronics. Adv. Mater. 30, 1703487 (2018). https://doi.org/10.1002/adma.201703487
- S. Cui, J. Wang, H. Xie, Y. Zhao, Z. Li et al., Rubidium ions enhanced crystallinity for ruddlesden-popper perovskites. Adv. Sci. 7, 2002445 (2020). https://doi.org/10.1002/advs.202002445
- Y. Liang, Q. Shang, Q. Wei, L. Zhao, Z. Liu et al., Lasing from mechanically exfoliated 2D homologous ruddlesden-popper perovskite engineered by inorganic layer thickness. Adv. Mater. 31, e1903030 (2019). https://doi.org/10.1002/adma.201903030
- J. Guo, Z. Shi, J. Xia, K. Wang, Q. Wei et al., Phase tailoring of ruddlesden-popper perovskite at fixed large spacer cation ratio. Small 17, e2100560 (2021). https://doi.org/10.1002/smll.202100560
- I.C. Smith, E.T. Hoke, D. Solis-Ibarra, M.D. McGehee, H.I. Karunadasa, A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. Engl. 53, 11232–11235 (2014). https://doi.org/10.1002/anie.201406466
- D.H. Cao, C.C. Stoumpos, O.K. Farha, J.T. Hupp, M.G. Kanatzidis, 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc. 137, 7843–7850 (2015). https://doi.org/10.1021/jacs.5b03796
- W.-J. Yin, T. Shi, Y. Yan, Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014). https://doi.org/10.1063/1.4864778
- M.-H. Du, Density functional calculations of native defects in CH3NH3PbI3: effects of spin-orbit coupling and self-interaction error. J. Phys. Chem. Lett. 6, 1461–1466 (2015). https://doi.org/10.1021/acs.jpclett.5b00199
- N. Liu, C. Yam, First-principles study of intrinsic defects in formamidinium lead triiodide perovskite solar cell absorbers. Phys. Chem. Chem. Phys. 20, 6800–6804 (2018). https://doi.org/10.1039/c8cp00280k
- J.M. Ball, A. Petrozza, Defects in perovskite-halides and their effects in solar cells. Nat. Energy 1, 16149 (2016). https://doi.org/10.1038/nenergy.2016.149
- Y. Chen, N. Li, L. Wang, L. Li, Z. Xu et al., Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells. Nat. Commun. 10, 1112 (2019). https://doi.org/10.1038/s41467-019-09093-1
- J. Guo, K. Wang, T. Liu, Q. Wei, S. Mei et al., Suppressing the defects in cesium-based perovskites via polymeric interlayer assisted crystallization control. J. Mater. Chem. A 9, 26149–26158 (2021). https://doi.org/10.1039/D1TA07542J
- Z. Xiao, Q. Wang, X. Wu, Y. Wu, J. Ren et al., Efficient light-emitting devices based on mixed-cation lead halide perovskites. Org. Electron. 77, 105546 (2020). https://doi.org/10.1016/j.orgel.2019.105546
- X. Yu, T. Liu, Q. Wei, C. Liang, K. Wang et al., Tailoring the surface morphology and phase distribution for efficient perovskite electroluminescence. J. Phys. Chem. Lett. 11, 5877–5882 (2020). https://doi.org/10.1021/acs.jpclett.0c01252
- M.-H. Park, J. Park, J. Lee, H.S. So, H. Kim et al., Efficient perovskite light-emitting diodes using polycrystalline core–shell-mimicked nanograins. Adv. Funct. Mater. 29, 1902017 (2019). https://doi.org/10.1002/adfm.201902017
- H. Wang, X. Zhang, Q. Wu, F. Cao, D. Yang et al., Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nat. Commun. 10, 665 (2019). https://doi.org/10.1038/s41467-019-08425-5
- N. Li, S. Tao, Y. Chen, X. Niu, C.K. Onwudinanti et al., Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 4, 408–415 (2019). https://doi.org/10.1038/s41560-019-0382-6
- M.-C. Tang, Y. Fan, D. Barrit, R. Li, H.X. Dang et al., Efficient hybrid mixed-ion perovskite photovoltaics: in situ diagnostics of the roles of cesium and potassium alkali cation addition. Sol. RRL 4, 2000272 (2020). https://doi.org/10.1002/solr.202000272
- Y. Zhang, Y. Huang, X. Wang, J. Sun, R. Si et al., Collective and individual impacts of the cascade doping of alkali cations in perovskite single crystals. J. Mater. Chem. C 8, 15351–15360 (2020). https://doi.org/10.1039/D0TC03085F
- Y. Chu, C. Wang, L. Ma, X. Feng, B. Wang et al., Unveiling the photoluminescence regulation of colloidal perovskite quantum dots via defect passivation and lattice distortion by potassium cations doping: not the more the better. J. Colloid Interface Sci. 596, 199–205 (2021). https://doi.org/10.1016/j.jcis.2021.03.128
- M. Abdi-Jalebi, Z. Andaji-Garmaroudi, S. Cacovich, C. Stavrakas, B. Philippe et al., Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018). https://doi.org/10.1038/nature25989
- M. Abdi-Jalebi, Z. Andaji-Garmaroudi, A.J. Pearson, G. Divitini, S. Cacovich et al., Potassium- and rubidium-passivated alloyed perovskite films: optoelectronic properties and moisture stability. ACS Energy Lett. 3, 2671–2678 (2018). https://doi.org/10.1021/acsenergylett.8b01504
- A. Kanwat, N. Yantara, Y.F. Ng, T.J.N. Hooper, P.J.S. Rana et al., Stabilizing the electroluminescence of halide perovskites with potassium passivation. ACS Energy Lett. 5, 1804–1813 (2020). https://doi.org/10.1021/acsenergylett.0c00553
- L. Gao, Y. Zhang, X. Wei, T. Zheng, W. Zhao et al., Potassium iodide doping strategy for high-efficiency perovskite solar cells revealed by ultrafast spectroscopy. J. Phys. Chem. Lett. 13, 711–717 (2022). https://doi.org/10.1021/acs.jpclett.1c03830
- F. Yang, H. Chen, R. Zhang, X. Liu, W. Zhang et al., Efficient and spectrally stable blue perovskite light-emitting diodes based on potassium passivated nanocrystals. Adv. Funct. Mater. 30, 1908760 (2020). https://doi.org/10.1002/adfm.201908760
- Z. Guo, Y. Zhang, B. Wang, L. Wang, N. Zhou et al., Promoting energy transfer via manipulation of crystallization kinetics of quasi-2D perovskites for efficient green light-emitting diodes. Adv. Mater. 33, e2102246 (2021). https://doi.org/10.1002/adma.202102246
- R. Su, Z. Xu, J. Wu, D. Luo, Q. Hu et al., Dielectric screening in perovskite photovoltaics. Nat. Commun. 12, 2479 (2021). https://doi.org/10.1038/s41467-021-22783-z
- F. Zheng, W. Chen, T. Bu, K.P. Ghiggino, F. Huang et al., Triggering the passivation effect of potassium doping in mixed-cation mixed-halide perovskite by light illumination. Adv. Energy Mater. 9, 1901016 (2019). https://doi.org/10.1002/aenm.201901016
- J. Cao, S.X. Tao, P.A. Bobbert, C.-P. Wong, N. Zhao, Interstitial occupancy by extrinsic alkali cations in perovskites and its impact on ion migration. Adv. Mater. 30, e1707350 (2018). https://doi.org/10.1002/adma.201707350
- M.H. Du, Efficient carrier transport in halide perovskites: theoretical perspectives. J. Mater. Chem. A 2, 9091–9098 (2014). https://doi.org/10.1039/C4TA01198H
- X. Xiao, T. Ye, J. Sun, X. Qu, Z. Ren et al., Capacitance–voltage characteristics of perovskite light-emitting diodes: modeling and implementing on the analysis of carrier behaviors. Appl. Phys. Lett. 120, 243501 (2022). https://doi.org/10.1063/5.0088231
- J. Sun, Z. Ren, Z. Wang, H. Wang, D. Wu et al., Ionic liquid passivation for high-performance sky-blue quasi-2D perovskite light-emitting diodes. Adv. Opt. Mater. 11, 2202721 (2023). https://doi.org/10.1002/adom.202202721
- K. Wang, Z.-Y. Lin, Z. Zhang, L. Jin, K. Ma et al., Suppressing phase disproportionation in quasi-2D perovskite light-emitting diodes. Nat. Commun. 14, 397 (2023). https://doi.org/10.1038/s41467-023-36118-7
References
Z.-K. Tan, R.S. Moghaddam, M.L. Lai, P. Docampo, R. Higler et al., Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014). https://doi.org/10.1038/nnano.2014.149
F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu et al., Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano 9, 4533–4542 (2015). https://doi.org/10.1021/acsnano.5b01154
G. Xing, N. Mathews, S.S. Lim, N. Yantara, X. Liu et al., Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476–480 (2014). https://doi.org/10.1038/nmat3911
Z. Ren, J. Yu, Z. Qin, J. Wang, J. Sun et al., High-performance blue perovskite light-emitting diodes enabled by efficient energy transfer between coupled quasi-2D perovskite layers. Adv. Mater. 33, 2005570 (2021). https://doi.org/10.1002/adma.202005570
K. Hirose, R. Sinmyo, J. Hernlund, Perovskite in Earth’s deep interior. Science 358, 734–738 (2017). https://doi.org/10.1126/science.aam8561
M.V. Kovalenko, L. Protesescu, M.I. Bodnarchuk, Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745–750 (2017). https://doi.org/10.1126/science.aam7093
Q.A. Akkerman, G. Rainò, M.V. Kovalenko, L. Manna, Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018). https://doi.org/10.1038/s41563-018-0018-4
S.A. Veldhuis, P.P. Boix, N. Yantara, M. Li, T.C. Sum et al., Perovskite materials for light-emitting diodes and lasers. Adv. Mater. 28, 6804–6834 (2016). https://doi.org/10.1002/adma.201600669
Y. Chen, Y. Sun, J. Peng, J. Tang, K. Zheng et al., 2D ruddlesden–popper perovskites for optoelectronics. Adv. Mater. 30, 1703487 (2018). https://doi.org/10.1002/adma.201703487
S. Cui, J. Wang, H. Xie, Y. Zhao, Z. Li et al., Rubidium ions enhanced crystallinity for ruddlesden-popper perovskites. Adv. Sci. 7, 2002445 (2020). https://doi.org/10.1002/advs.202002445
Y. Liang, Q. Shang, Q. Wei, L. Zhao, Z. Liu et al., Lasing from mechanically exfoliated 2D homologous ruddlesden-popper perovskite engineered by inorganic layer thickness. Adv. Mater. 31, e1903030 (2019). https://doi.org/10.1002/adma.201903030
J. Guo, Z. Shi, J. Xia, K. Wang, Q. Wei et al., Phase tailoring of ruddlesden-popper perovskite at fixed large spacer cation ratio. Small 17, e2100560 (2021). https://doi.org/10.1002/smll.202100560
I.C. Smith, E.T. Hoke, D. Solis-Ibarra, M.D. McGehee, H.I. Karunadasa, A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. Engl. 53, 11232–11235 (2014). https://doi.org/10.1002/anie.201406466
D.H. Cao, C.C. Stoumpos, O.K. Farha, J.T. Hupp, M.G. Kanatzidis, 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc. 137, 7843–7850 (2015). https://doi.org/10.1021/jacs.5b03796
W.-J. Yin, T. Shi, Y. Yan, Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014). https://doi.org/10.1063/1.4864778
M.-H. Du, Density functional calculations of native defects in CH3NH3PbI3: effects of spin-orbit coupling and self-interaction error. J. Phys. Chem. Lett. 6, 1461–1466 (2015). https://doi.org/10.1021/acs.jpclett.5b00199
N. Liu, C. Yam, First-principles study of intrinsic defects in formamidinium lead triiodide perovskite solar cell absorbers. Phys. Chem. Chem. Phys. 20, 6800–6804 (2018). https://doi.org/10.1039/c8cp00280k
J.M. Ball, A. Petrozza, Defects in perovskite-halides and their effects in solar cells. Nat. Energy 1, 16149 (2016). https://doi.org/10.1038/nenergy.2016.149
Y. Chen, N. Li, L. Wang, L. Li, Z. Xu et al., Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells. Nat. Commun. 10, 1112 (2019). https://doi.org/10.1038/s41467-019-09093-1
J. Guo, K. Wang, T. Liu, Q. Wei, S. Mei et al., Suppressing the defects in cesium-based perovskites via polymeric interlayer assisted crystallization control. J. Mater. Chem. A 9, 26149–26158 (2021). https://doi.org/10.1039/D1TA07542J
Z. Xiao, Q. Wang, X. Wu, Y. Wu, J. Ren et al., Efficient light-emitting devices based on mixed-cation lead halide perovskites. Org. Electron. 77, 105546 (2020). https://doi.org/10.1016/j.orgel.2019.105546
X. Yu, T. Liu, Q. Wei, C. Liang, K. Wang et al., Tailoring the surface morphology and phase distribution for efficient perovskite electroluminescence. J. Phys. Chem. Lett. 11, 5877–5882 (2020). https://doi.org/10.1021/acs.jpclett.0c01252
M.-H. Park, J. Park, J. Lee, H.S. So, H. Kim et al., Efficient perovskite light-emitting diodes using polycrystalline core–shell-mimicked nanograins. Adv. Funct. Mater. 29, 1902017 (2019). https://doi.org/10.1002/adfm.201902017
H. Wang, X. Zhang, Q. Wu, F. Cao, D. Yang et al., Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nat. Commun. 10, 665 (2019). https://doi.org/10.1038/s41467-019-08425-5
N. Li, S. Tao, Y. Chen, X. Niu, C.K. Onwudinanti et al., Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 4, 408–415 (2019). https://doi.org/10.1038/s41560-019-0382-6
M.-C. Tang, Y. Fan, D. Barrit, R. Li, H.X. Dang et al., Efficient hybrid mixed-ion perovskite photovoltaics: in situ diagnostics of the roles of cesium and potassium alkali cation addition. Sol. RRL 4, 2000272 (2020). https://doi.org/10.1002/solr.202000272
Y. Zhang, Y. Huang, X. Wang, J. Sun, R. Si et al., Collective and individual impacts of the cascade doping of alkali cations in perovskite single crystals. J. Mater. Chem. C 8, 15351–15360 (2020). https://doi.org/10.1039/D0TC03085F
Y. Chu, C. Wang, L. Ma, X. Feng, B. Wang et al., Unveiling the photoluminescence regulation of colloidal perovskite quantum dots via defect passivation and lattice distortion by potassium cations doping: not the more the better. J. Colloid Interface Sci. 596, 199–205 (2021). https://doi.org/10.1016/j.jcis.2021.03.128
M. Abdi-Jalebi, Z. Andaji-Garmaroudi, S. Cacovich, C. Stavrakas, B. Philippe et al., Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018). https://doi.org/10.1038/nature25989
M. Abdi-Jalebi, Z. Andaji-Garmaroudi, A.J. Pearson, G. Divitini, S. Cacovich et al., Potassium- and rubidium-passivated alloyed perovskite films: optoelectronic properties and moisture stability. ACS Energy Lett. 3, 2671–2678 (2018). https://doi.org/10.1021/acsenergylett.8b01504
A. Kanwat, N. Yantara, Y.F. Ng, T.J.N. Hooper, P.J.S. Rana et al., Stabilizing the electroluminescence of halide perovskites with potassium passivation. ACS Energy Lett. 5, 1804–1813 (2020). https://doi.org/10.1021/acsenergylett.0c00553
L. Gao, Y. Zhang, X. Wei, T. Zheng, W. Zhao et al., Potassium iodide doping strategy for high-efficiency perovskite solar cells revealed by ultrafast spectroscopy. J. Phys. Chem. Lett. 13, 711–717 (2022). https://doi.org/10.1021/acs.jpclett.1c03830
F. Yang, H. Chen, R. Zhang, X. Liu, W. Zhang et al., Efficient and spectrally stable blue perovskite light-emitting diodes based on potassium passivated nanocrystals. Adv. Funct. Mater. 30, 1908760 (2020). https://doi.org/10.1002/adfm.201908760
Z. Guo, Y. Zhang, B. Wang, L. Wang, N. Zhou et al., Promoting energy transfer via manipulation of crystallization kinetics of quasi-2D perovskites for efficient green light-emitting diodes. Adv. Mater. 33, e2102246 (2021). https://doi.org/10.1002/adma.202102246
R. Su, Z. Xu, J. Wu, D. Luo, Q. Hu et al., Dielectric screening in perovskite photovoltaics. Nat. Commun. 12, 2479 (2021). https://doi.org/10.1038/s41467-021-22783-z
F. Zheng, W. Chen, T. Bu, K.P. Ghiggino, F. Huang et al., Triggering the passivation effect of potassium doping in mixed-cation mixed-halide perovskite by light illumination. Adv. Energy Mater. 9, 1901016 (2019). https://doi.org/10.1002/aenm.201901016
J. Cao, S.X. Tao, P.A. Bobbert, C.-P. Wong, N. Zhao, Interstitial occupancy by extrinsic alkali cations in perovskites and its impact on ion migration. Adv. Mater. 30, e1707350 (2018). https://doi.org/10.1002/adma.201707350
M.H. Du, Efficient carrier transport in halide perovskites: theoretical perspectives. J. Mater. Chem. A 2, 9091–9098 (2014). https://doi.org/10.1039/C4TA01198H
X. Xiao, T. Ye, J. Sun, X. Qu, Z. Ren et al., Capacitance–voltage characteristics of perovskite light-emitting diodes: modeling and implementing on the analysis of carrier behaviors. Appl. Phys. Lett. 120, 243501 (2022). https://doi.org/10.1063/5.0088231
J. Sun, Z. Ren, Z. Wang, H. Wang, D. Wu et al., Ionic liquid passivation for high-performance sky-blue quasi-2D perovskite light-emitting diodes. Adv. Opt. Mater. 11, 2202721 (2023). https://doi.org/10.1002/adom.202202721
K. Wang, Z.-Y. Lin, Z. Zhang, L. Jin, K. Ma et al., Suppressing phase disproportionation in quasi-2D perovskite light-emitting diodes. Nat. Commun. 14, 397 (2023). https://doi.org/10.1038/s41467-023-36118-7