Tuning Isomerism Effect in Organic Bulk Additives Enables Efficient and Stable Perovskite Solar Cells
Corresponding Author: Mingjia Xiao
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 107
Abstract
Organic additives with multiple functional groups have shown great promise in improving the performance and stability of perovskite solar cells. The functional groups can passivate undercoordinated ions to reduce nonradiative recombination losses. However, how these groups synergistically affect the enhancement beyond passivation is still unclear. Specifically, isomeric molecules with different substitution patterns or molecular shapes remain elusive in designing new organic additives. Here, we report two isomeric carbazolyl bisphosphonate additives, 2,7-CzBP and 3,6-CzBP. The isomerism effect on passivation and charge transport process was studied. The two molecules have similar passivation effects through multiple interactions, e.g., P = O···Pb, P = O···H–N and N–H···I. 2,7-CzBP can further bridge the perovskite crystallites to facilitates charge transport. Power conversion efficiencies (PCEs) of 25.88% and 21.04% were achieved for 0.09 cm2 devices and 14 cm2 modules after 2,7-CzBP treatment, respectively. The devices exhibited enhanced operational stability maintaining 95% of initial PCE after 1000 h of continuous maximum power point tracking. This study of isomerism effect hints at the importance of tuning substitution positions and molecular shapes for organic additives, which paves the way for innovation of next-generation multifunctional aromatic additives.
Highlights:
1 By anchoring the perovskite sites with the functional groups of CzBP (P = O···Pb, N–H···I and P = O···N–H), the bulk nonradiative recombination is suppressed and ion migration is inhibited. Doping perovskite films with CzBP led to enhanced intercrystallite interactions in the bulk and improved photoluminescence quantum yield.
2 Using a typical electron-rich moiety as the π-linker to replace the classic alkyl spacer in CzBP facilitated the charge-carrier transport processes and the passivation effect of carbazole further contributed to high VOC. The optimized 2,7-CzBP-treated device achieves the highest power conversion efficiency (PCE) of 25.88%, with VOC of 1.189 V for 0.090 cm2 and the perovskite solar cell module with a PCE of 21.04% for 14 cm2.
3 For 2,7-CzBP, the more extended conjugation and the more linear molecular geometry result in a more effective improvement in the performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Best research-cell efficiency chart, national renewable energy laboratory (NREL) (2024). https://www.nrel.gov/pv/cell-efficiency.html
- J. Xue, R. Wang, X. Chen, C. Yao, X. Jin et al., Reconfiguring the band-edge states of photovoltaic perovskites by conjugated organic cations. Science 371, 636–640 (2021). https://doi.org/10.1126/science.abd4860
- C. Liu, Y. Yang, K. Rakstys, A. Mahata, M. Franckevicius et al., Tuning structural isomers of phenylenediammonium to afford efficient and stable perovskite solar cells and modules. Nat. Commun. 12, 6394 (2021). https://doi.org/10.1038/s41467-021-26754-2
- Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
- Y. Zhou, L.M. Herz, A.K.-Y. Jen, M. Saliba, Advances and challenges in understanding the microscopic structure–property–performance relationship in perovskite solar cells. Nat. Energy 7, 794–807 (2022). https://doi.org/10.1038/s41560-022-01096-5
- J. Li, L. Xie, G. Liu, Z. Pu, X. Tong et al., Multifunctional trifluoroborate additive for simultaneous carrier dynamics governance and defects passivation to boost efficiency and stability of inverted perovskite solar cells. Angew. Chem. Int. Ed. 63, e202316898 (2024). https://doi.org/10.1002/anie.202316898
- S. You, F.T. Eickemeyer, J. Gao, J.-H. Yum, X. Zheng et al., Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells. Nat. Energy 8, 515–525 (2023). https://doi.org/10.1038/s41560-023-01249-0
- Z. Li, X. Sun, X. Zheng, B. Li, D. Gao et al., Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells. Science 382, 284–289 (2023). https://doi.org/10.1126/science.ade9637
- H. Bi, J. Liu, L. Wang, Z. Zhang, G. Kapil, S.R. Sahamir, A.K. Baranwal, Y. Wei, Y. Yang, D. Wang, T. Kitamura, H. Segawa, Q. Shen, S. Hayase, Double side passivation of phenylethyl ammonium iodide for all perovskite tandem solar cell with efficiency of 26.8%. EcoEnergy 2(3), 369–380 (2024). https://doi.org/10.1002/ece2.51
- Q. Zhou, X. Liu, Z. Liu, Y. Zhu, J. Lu et al., Annual research review of perovskite solar cells in 2023. Mater. Futures 3, 022102 (2024). https://doi.org/10.1088/2752-5724/ad42ba
- C. Cheng, Y. Yao, L. Li, Q. Zhao, C. Zhang et al., A novel organic phosphonate additive induced stable and efficient perovskite solar cells with efficiency over 24% enabled by synergetic crystallization promotion and defect passivation. Nano Lett. 23, 8850–8859 (2023). https://doi.org/10.1021/acs.nanolett.3c01769
- J. Huang, GIWAXS-Tools, Version 2.3.18. (2024). https://gitee.com/swordshinehjy/giwaxs-script
- M.T. Weller, O.J. Weber, J.M. Frost, A. Walsh, Cubic perovskite structure of black formamidinium lead iodide, α-[HC(NH2)2]PbI3, at 298 K. J. Phys. Chem. Lett. 6, 3209–3212 (2015). https://doi.org/10.1021/acs.jpclett.5b01432
- G.A. Elbaz, D.B. Straus, O.E. Semonin, T.D. Hull, D.W. Paley et al., Unbalanced hole and electron diffusion in lead bromide perovskites. Nano Lett. 17, 1727–1732 (2017). https://doi.org/10.1021/acs.nanolett.6b05022
- C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen, P. Pracht et al., Extended tight-binding quantum chemistry methods. Wires Comput. Mol. Sci. 11, e1493 (2021). https://doi.org/10.1002/wcms.1493
- T. Lu, Molclus program, Version 1.12. (2024). http://www.keinsci.com/research/molclus.html
- Z. Zhu, Q. Xue, H. He, K. Jiang, Z. Hu et al., A PCBM electron transport layer containing small amounts of dual polymer additives that enables enhanced perovskite solar cell performance. Adv. Sci. 3, 1500353 (2015). https://doi.org/10.1002/advs.201500353
- K. Momma, F. Izumi, VESTA 3for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011). https://doi.org/10.1107/s0021889811038970
- T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012). https://doi.org/10.1002/jcc.22885
- Z. Liu, T. Lu, Q. Chen, Intermolecular interaction characteristics of the all-carboatomic ring, cyclo[18]carbon: focusing on molecular adsorption and stacking. Carbon 171, 514–523 (2021). https://doi.org/10.1016/j.carbon.2020.09.048
- J. Zhang, X. Niu, C. Peng, H. Jiang, L. Yu et al., Inhibiting ion migration through chemical polymerization and chemical chelation toward stable perovskite solar cells. Angew. Chem. Int. Ed. 62, e202314106 (2023). https://doi.org/10.1002/anie.202314106
- K.O. Ighodalo, W. Chen, Z. Liang, Y. Shi, S. Chu et al., Negligible ion migration in tin-based and tin-doped perovskites. Angew. Chem. Int. Ed. 62, e202213932 (2023). https://doi.org/10.1002/anie.202213932
- J. Chang, E. Feng, H. Li, Y. Ding, C. Long et al., Crystallization and orientation modulation enable highly efficient doctor-bladed perovskite solar cells. Nano-Micro Lett. 15, 164 (2023). https://doi.org/10.1007/s40820-023-01138-x
- M. Liu, T. Pauporté, Additive engineering for stable and efficient Dion–Jacobson phase perovskite solar cells. Nano-Micro Lett. 15, 134 (2023). https://doi.org/10.1007/s40820-023-01110-9
- F. Wang, M. Li, Q. Tian, R. Sun, H. Ma et al., Monolithically-grained perovskite solar cell with Mortise–Tenon structure for charge extraction balance. Nat. Commun. 14, 3216 (2023). https://doi.org/10.1038/s41467-023-38926-3
- Z. Zhang, Z. Su, G. Li, J. Li, M.H. Aldamasy et al., Improved air stability of tin halide perovskite solar cells by an N-type active moisture barrier. Adv. Funct. Mater. 34, 2306458 (2024). https://doi.org/10.1002/adfm.202306458
- C. Ma, F.T. Eickemeyer, S.H. Lee, D.H. Kang, S.J. Kwon et al., Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells. Science 379, 173–178 (2023). https://doi.org/10.1126/science.adf3349
- D.P. McMeekin, P. Holzhey, S.O. Fürer, S.P. Harvey, L.T. Schelhas et al., Intermediate-phase engineering via dimethylammonium cation additive for stable perovskite solar cells. Nat. Mater. 22, 73–83 (2023). https://doi.org/10.1038/s41563-022-01399-8
- B. Li, T. Shen, S. Yun, Recent progress of crystal orientation engineering in halide perovskite photovoltaics. Mater. Horiz. 10, 13–40 (2023). https://doi.org/10.1039/d2mh00980c
- P. Wu, S. Wang, J.H. Heo, H. Liu, X. Chen et al., Mixed cations enabled combined bulk and interfacial passivation for efficient and stable perovskite solar cells. Nano-Micro Lett. 15, 114 (2023). https://doi.org/10.1007/s40820-023-01085-7
- K. Zhang, B. Ding, C. Wang, P. Shi, X. Zhang et al., Highly efficient and stable FAPbI3 perovskite solar cells and modules based on exposure of the (011) facet. Nano-Micro Lett. 15, 138 (2023). https://doi.org/10.1007/s40820-023-01103-8
- D.W. de Quilettes, K. Frohna, D. Emin, T. Kirchartz, V. Bulovic et al., Charge-carrier recombination in halide perovskites. Chem. Rev. 119, 11007–11019 (2019). https://doi.org/10.1021/acs.chemrev.9b00169
- A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel et al., Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020). https://doi.org/10.1126/science.abd4016
- Z. Liang, Y. Zhang, H. Xu, W. Chen, B. Liu et al., Homogenizing out-of-plane cation composition in perovskite solar cells. Nature 624, 557–563 (2023). https://doi.org/10.1038/s41586-023-06784-0
- S. Zhou, S. Fu, C. Wang, W. Meng, J. Zhou et al., Aspartate all-in-one doping strategy enables efficient all-perovskite tandems. Nature 624, 69–73 (2023). https://doi.org/10.1038/s41586-023-06707-z
- L. Zhang, L. Mei, K. Wang, Y. Lv, S. Zhang et al., Advances in the application of perovskite materials. Nano-Micro Lett. 15, 177 (2023). https://doi.org/10.1007/s40820-023-01140-3
- F. Ye, S. Zhang, J. Warby, J. Wu, E. Gutierrez-Partida et al., Overcoming C60-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane. Nat. Commun. 13, 7454 (2022). https://doi.org/10.1038/s41467-022-34203-x
- H. Chen, A. Maxwell, C. Li, S. Teale, B. Chen et al., Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 613, 676–681 (2023). https://doi.org/10.1038/s41586-022-05541-z
- T. Zhu, L. Shen, S. Xun, J.S. Sarmiento, Y. Yang et al., High-performance ternary perovskite-organic solar cells. Adv. Mater. 34, e2109348 (2022). https://doi.org/10.1002/adma.202109348
- Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen et al., Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377, 531–534 (2022). https://doi.org/10.1126/science.abp8873
- Y. Luo, K. Liu, L. Yang, W. Feng, L. Zheng et al., Dissolved-Cl2 triggered redox reaction enables high-performance perovskite solar cells. Nat. Commun. 14, 3738 (2023). https://doi.org/10.1038/s41467-023-39260-4
- T. Zhang, F. Wang, H.-B. Kim, I.-W. Choi, C. Wang et al., Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells. Science 377, 495–501 (2022). https://doi.org/10.1126/science.abo2757
- K. Jiang, J. Wang, F. Wu, Q. Xue, Q. Yao et al., Dopant-free organic hole-transporting material for efficient and stable inverted all-inorganic and hybrid perovskite solar cells. Adv. Mater. 32, e1908011 (2020). https://doi.org/10.1002/adma.201908011
- H. Xie, Z. Wang, Z. Chen, C. Pereyra, M. Pols et al., Decoupling the effects of defects on efficiency and stability through phosphonates in stable halide perovskite solar cells. Joule 5, 1246–1266 (2021). https://doi.org/10.1016/j.joule.2021.04.003
- P. Calado, A.M. Telford, D. Bryant, X. Li, J. Nelson et al., Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis. Nat. Commun. 7, 13831 (2016). https://doi.org/10.1038/ncomms13831
References
Best research-cell efficiency chart, national renewable energy laboratory (NREL) (2024). https://www.nrel.gov/pv/cell-efficiency.html
J. Xue, R. Wang, X. Chen, C. Yao, X. Jin et al., Reconfiguring the band-edge states of photovoltaic perovskites by conjugated organic cations. Science 371, 636–640 (2021). https://doi.org/10.1126/science.abd4860
C. Liu, Y. Yang, K. Rakstys, A. Mahata, M. Franckevicius et al., Tuning structural isomers of phenylenediammonium to afford efficient and stable perovskite solar cells and modules. Nat. Commun. 12, 6394 (2021). https://doi.org/10.1038/s41467-021-26754-2
Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
Y. Zhou, L.M. Herz, A.K.-Y. Jen, M. Saliba, Advances and challenges in understanding the microscopic structure–property–performance relationship in perovskite solar cells. Nat. Energy 7, 794–807 (2022). https://doi.org/10.1038/s41560-022-01096-5
J. Li, L. Xie, G. Liu, Z. Pu, X. Tong et al., Multifunctional trifluoroborate additive for simultaneous carrier dynamics governance and defects passivation to boost efficiency and stability of inverted perovskite solar cells. Angew. Chem. Int. Ed. 63, e202316898 (2024). https://doi.org/10.1002/anie.202316898
S. You, F.T. Eickemeyer, J. Gao, J.-H. Yum, X. Zheng et al., Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells. Nat. Energy 8, 515–525 (2023). https://doi.org/10.1038/s41560-023-01249-0
Z. Li, X. Sun, X. Zheng, B. Li, D. Gao et al., Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells. Science 382, 284–289 (2023). https://doi.org/10.1126/science.ade9637
H. Bi, J. Liu, L. Wang, Z. Zhang, G. Kapil, S.R. Sahamir, A.K. Baranwal, Y. Wei, Y. Yang, D. Wang, T. Kitamura, H. Segawa, Q. Shen, S. Hayase, Double side passivation of phenylethyl ammonium iodide for all perovskite tandem solar cell with efficiency of 26.8%. EcoEnergy 2(3), 369–380 (2024). https://doi.org/10.1002/ece2.51
Q. Zhou, X. Liu, Z. Liu, Y. Zhu, J. Lu et al., Annual research review of perovskite solar cells in 2023. Mater. Futures 3, 022102 (2024). https://doi.org/10.1088/2752-5724/ad42ba
C. Cheng, Y. Yao, L. Li, Q. Zhao, C. Zhang et al., A novel organic phosphonate additive induced stable and efficient perovskite solar cells with efficiency over 24% enabled by synergetic crystallization promotion and defect passivation. Nano Lett. 23, 8850–8859 (2023). https://doi.org/10.1021/acs.nanolett.3c01769
J. Huang, GIWAXS-Tools, Version 2.3.18. (2024). https://gitee.com/swordshinehjy/giwaxs-script
M.T. Weller, O.J. Weber, J.M. Frost, A. Walsh, Cubic perovskite structure of black formamidinium lead iodide, α-[HC(NH2)2]PbI3, at 298 K. J. Phys. Chem. Lett. 6, 3209–3212 (2015). https://doi.org/10.1021/acs.jpclett.5b01432
G.A. Elbaz, D.B. Straus, O.E. Semonin, T.D. Hull, D.W. Paley et al., Unbalanced hole and electron diffusion in lead bromide perovskites. Nano Lett. 17, 1727–1732 (2017). https://doi.org/10.1021/acs.nanolett.6b05022
C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen, P. Pracht et al., Extended tight-binding quantum chemistry methods. Wires Comput. Mol. Sci. 11, e1493 (2021). https://doi.org/10.1002/wcms.1493
T. Lu, Molclus program, Version 1.12. (2024). http://www.keinsci.com/research/molclus.html
Z. Zhu, Q. Xue, H. He, K. Jiang, Z. Hu et al., A PCBM electron transport layer containing small amounts of dual polymer additives that enables enhanced perovskite solar cell performance. Adv. Sci. 3, 1500353 (2015). https://doi.org/10.1002/advs.201500353
K. Momma, F. Izumi, VESTA 3for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011). https://doi.org/10.1107/s0021889811038970
T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012). https://doi.org/10.1002/jcc.22885
Z. Liu, T. Lu, Q. Chen, Intermolecular interaction characteristics of the all-carboatomic ring, cyclo[18]carbon: focusing on molecular adsorption and stacking. Carbon 171, 514–523 (2021). https://doi.org/10.1016/j.carbon.2020.09.048
J. Zhang, X. Niu, C. Peng, H. Jiang, L. Yu et al., Inhibiting ion migration through chemical polymerization and chemical chelation toward stable perovskite solar cells. Angew. Chem. Int. Ed. 62, e202314106 (2023). https://doi.org/10.1002/anie.202314106
K.O. Ighodalo, W. Chen, Z. Liang, Y. Shi, S. Chu et al., Negligible ion migration in tin-based and tin-doped perovskites. Angew. Chem. Int. Ed. 62, e202213932 (2023). https://doi.org/10.1002/anie.202213932
J. Chang, E. Feng, H. Li, Y. Ding, C. Long et al., Crystallization and orientation modulation enable highly efficient doctor-bladed perovskite solar cells. Nano-Micro Lett. 15, 164 (2023). https://doi.org/10.1007/s40820-023-01138-x
M. Liu, T. Pauporté, Additive engineering for stable and efficient Dion–Jacobson phase perovskite solar cells. Nano-Micro Lett. 15, 134 (2023). https://doi.org/10.1007/s40820-023-01110-9
F. Wang, M. Li, Q. Tian, R. Sun, H. Ma et al., Monolithically-grained perovskite solar cell with Mortise–Tenon structure for charge extraction balance. Nat. Commun. 14, 3216 (2023). https://doi.org/10.1038/s41467-023-38926-3
Z. Zhang, Z. Su, G. Li, J. Li, M.H. Aldamasy et al., Improved air stability of tin halide perovskite solar cells by an N-type active moisture barrier. Adv. Funct. Mater. 34, 2306458 (2024). https://doi.org/10.1002/adfm.202306458
C. Ma, F.T. Eickemeyer, S.H. Lee, D.H. Kang, S.J. Kwon et al., Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells. Science 379, 173–178 (2023). https://doi.org/10.1126/science.adf3349
D.P. McMeekin, P. Holzhey, S.O. Fürer, S.P. Harvey, L.T. Schelhas et al., Intermediate-phase engineering via dimethylammonium cation additive for stable perovskite solar cells. Nat. Mater. 22, 73–83 (2023). https://doi.org/10.1038/s41563-022-01399-8
B. Li, T. Shen, S. Yun, Recent progress of crystal orientation engineering in halide perovskite photovoltaics. Mater. Horiz. 10, 13–40 (2023). https://doi.org/10.1039/d2mh00980c
P. Wu, S. Wang, J.H. Heo, H. Liu, X. Chen et al., Mixed cations enabled combined bulk and interfacial passivation for efficient and stable perovskite solar cells. Nano-Micro Lett. 15, 114 (2023). https://doi.org/10.1007/s40820-023-01085-7
K. Zhang, B. Ding, C. Wang, P. Shi, X. Zhang et al., Highly efficient and stable FAPbI3 perovskite solar cells and modules based on exposure of the (011) facet. Nano-Micro Lett. 15, 138 (2023). https://doi.org/10.1007/s40820-023-01103-8
D.W. de Quilettes, K. Frohna, D. Emin, T. Kirchartz, V. Bulovic et al., Charge-carrier recombination in halide perovskites. Chem. Rev. 119, 11007–11019 (2019). https://doi.org/10.1021/acs.chemrev.9b00169
A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel et al., Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020). https://doi.org/10.1126/science.abd4016
Z. Liang, Y. Zhang, H. Xu, W. Chen, B. Liu et al., Homogenizing out-of-plane cation composition in perovskite solar cells. Nature 624, 557–563 (2023). https://doi.org/10.1038/s41586-023-06784-0
S. Zhou, S. Fu, C. Wang, W. Meng, J. Zhou et al., Aspartate all-in-one doping strategy enables efficient all-perovskite tandems. Nature 624, 69–73 (2023). https://doi.org/10.1038/s41586-023-06707-z
L. Zhang, L. Mei, K. Wang, Y. Lv, S. Zhang et al., Advances in the application of perovskite materials. Nano-Micro Lett. 15, 177 (2023). https://doi.org/10.1007/s40820-023-01140-3
F. Ye, S. Zhang, J. Warby, J. Wu, E. Gutierrez-Partida et al., Overcoming C60-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane. Nat. Commun. 13, 7454 (2022). https://doi.org/10.1038/s41467-022-34203-x
H. Chen, A. Maxwell, C. Li, S. Teale, B. Chen et al., Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 613, 676–681 (2023). https://doi.org/10.1038/s41586-022-05541-z
T. Zhu, L. Shen, S. Xun, J.S. Sarmiento, Y. Yang et al., High-performance ternary perovskite-organic solar cells. Adv. Mater. 34, e2109348 (2022). https://doi.org/10.1002/adma.202109348
Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen et al., Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377, 531–534 (2022). https://doi.org/10.1126/science.abp8873
Y. Luo, K. Liu, L. Yang, W. Feng, L. Zheng et al., Dissolved-Cl2 triggered redox reaction enables high-performance perovskite solar cells. Nat. Commun. 14, 3738 (2023). https://doi.org/10.1038/s41467-023-39260-4
T. Zhang, F. Wang, H.-B. Kim, I.-W. Choi, C. Wang et al., Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells. Science 377, 495–501 (2022). https://doi.org/10.1126/science.abo2757
K. Jiang, J. Wang, F. Wu, Q. Xue, Q. Yao et al., Dopant-free organic hole-transporting material for efficient and stable inverted all-inorganic and hybrid perovskite solar cells. Adv. Mater. 32, e1908011 (2020). https://doi.org/10.1002/adma.201908011
H. Xie, Z. Wang, Z. Chen, C. Pereyra, M. Pols et al., Decoupling the effects of defects on efficiency and stability through phosphonates in stable halide perovskite solar cells. Joule 5, 1246–1266 (2021). https://doi.org/10.1016/j.joule.2021.04.003
P. Calado, A.M. Telford, D. Bryant, X. Li, J. Nelson et al., Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis. Nat. Commun. 7, 13831 (2016). https://doi.org/10.1038/ncomms13831