Tetris-Style Stacking Process to Tailor the Orientation of Carbon Fiber Scaffolds for Efficient Heat Dissipation
Corresponding Author: Shaoyun Guo
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 146
Abstract
As the miniaturization of electronic devices and complication of electronic packaging, there are growing demands for thermal interfacial materials with enhanced thermal conductivity and the capability to direct the heat toward heat sink for highly efficient heat dissipation. Pitch-based carbon fiber (CF) with ultrahigh axial thermal conductivity and aspect ratios exhibits great potential for developing thermally conductive composites as TIMs. However, it is still hard to fabricate composites with aligned carbon fiber in a general approach to fully utilize its excellent axial thermal conductivity in specific direction. Here, three types of CF scaffolds with different oriented structure were developed via magnetic field-assisted Tetris-style stacking and carbonization process. By regulating the magnetic field direction and initial stacking density, the self-supporting CF scaffolds with horizontally aligned (HCS), diagonally aligned and vertically aligned (VCS) fibers were constructed. After embedding the polydimethylsiloxane (PDMS), the three composites exhibited unique heat transfer properties, and the HCS/PDMS and VCS/PDMS composites presented a high thermal conductivity of 42.18 and 45.01 W m−1 K−1 in fiber alignment direction, respectively, which were about 209 and 224 times higher than that of PDMS. The excellent thermal conductivity is mainly ascribed that the oriented CF scaffolds construct effective phonon transport pathway in the matrix. In addition, fishbone-shaped CF scaffold was also produced by multiple stacking and carbonization process, and the prepared composites exhibited a controlled heat transfer path, which can allow more versatility in the design of thermal management system.
Highlights:
1 Carbon fiber (CF) scaffolds with horizontally aligned, diagonally aligned and vertically aligned structure were fabricated via magnetic field-assisted Tetris-style stacking and carbonization process.
2 The obtained CF scaffolds/ polydimethylsiloxane composites showed ultrahigh thermal conductivity (above 40 W m−1 K−1) in the fiber alignment direction.
3 Fibers with different alignment direction can be combined by multiple stacking and carbonization process, allowing for the efficient heat transfer along customized paths.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.L. Moore, L. Shi, Emerging challenges and materials for thermal management of electronics. Mater. Today 17(4), 163–174 (2014). https://doi.org/10.1016/j.mattod.2014.04.003
- K.M. Razeeb, E. Dalton, G.L.W. Cross, A.J. Robinson, Present and future thermal interface materials for electronic devices. Int. Mater. Rev. 63(1), 1–21 (2017). https://doi.org/10.1080/09506608.2017.1296605
- J. Hansson, T.M.J. Nilsson, L. Ye, J. Liu, Novel nanostructured thermal interface materials: A review. Int. Mater. Rev. 63(1), 22–45 (2017). https://doi.org/10.1080/09506608.2017.1301014
- H.Y. Chen, V.V. Ginzburg, J. Yang, Y.F. Yang, W. Liu et al., Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci. 59, 41–85 (2016). https://doi.org/10.1016/j.progpolymsci.2016.03.001
- S. Yu, X. Shen, J.K. Kim, Beyond homogeneous dispersion: Oriented conductive fillers for high kappa nanocomposites. Mater. Horiz. 8(11), 3009–3042 (2021). https://doi.org/10.1039/d1mh00907a
- Q.W. Yan, F.E. Alam, J.Y. Gao, W. Dai, X. Tan et al., Soft and self-adhesive thermal interface materials based on vertically aligned, covalently bonded graphene nanowalls for efficient microelectronic cooling. Adv. Funct. Mater. 31(36), 2104062 (2021). https://doi.org/10.1002/adfm.202104062
- W. Dai, L. Lv, T. Ma, X. Wang, J. Ying et al., Multiscale structural modulation of anisotropic graphene framework for polymer composites achieving highly efficient thermal energy management. Adv. Sci. 8(7), 2003734 (2021). https://doi.org/10.1002/advs.202003734
- J.F. Ying, X. Tan, L. Lv, X.Z. Wang, J.Y. Gao et al., Tailoring highly ordered graphene framework in epoxy for high-performance polymer-based heat dissipation plates. ACS Nano 15(8), 12922–12934 (2021). https://doi.org/10.1021/acsnano.1c01332
- M.C. Vu, W.K. Choi, S.G. Lee, P.J. Park, D.H. Kim et al., High thermal conductivity enhancement of polymer composites with vertically aligned silicon carbide sheet scaffolds. ACS Appl. Mater. Interfaces 12(20), 23388–23398 (2020). https://doi.org/10.1021/acsami.0c02421
- Y. Han, K. Ruan, J. Gu, Multifunctional thermally conductive composite films based on fungal tree-like heterostructured silver nanowires@boron nitride nanosheets and aramid nanofibers. Angew. Chem. Int. Ed. 62(5), e202216093 (2023). https://doi.org/10.1002/anie.202216093
- Y. Zhang, C. Lei, K. Wu, Q. Fu, Fully organic bulk polymer with metallic thermal conductivity and tunable thermal pathways. Adv. Sci. 8(14), e2004821 (2021). https://doi.org/10.1002/advs.202004821
- H. He, W. Peng, J. Liu, X.Y. Chan, S. Liu et al., Microstructured bn composites with internally designed high thermal conductivity paths for 3d electronic packaging. Adv. Mater. 34(38), e2205120 (2022). https://doi.org/10.1002/adma.202205120
- H. Yu, Y. Feng, C. Chen, Z. Zhang, Y. Cai et al., Thermally conductive, self-healing, and elastic polyimide@vertically aligned carbon nanotubes composite as smart thermal interface material. Carbon 179, 348–357 (2021). https://doi.org/10.1016/j.carbon.2021.04.055
- Z.G. Wang, Y.L. Yang, Z.L. Zheng, R.T. Lan, K. Dai et al., Achieving excellent thermally conductive and electromagnetic shielding performance by nondestructive functionalization and oriented arrangement of carbon nanotubes in composite films. Compos. Sci. Technol. 194, 108190 (2020). https://doi.org/10.1016/j.compscitech.2020.108190
- T. Kim, S. Kim, E. Kim, T. Kim, J. Cho et al., High-temperature skin softening materials overcoming the trade-off between thermal conductivity and thermal contact resistance. Small 17(38), e2102128 (2021). https://doi.org/10.1002/smll.202102128
- Y. Zhang, S. Yang, Q. Zhang, Z. Ma, Y. Guo et al., Constructing interconnected asymmetric conductive network in tpu fibrous film: Achieving low-reflection electromagnetic interference shielding and surperior thermal conductivity. Carbon 206, 37–44 (2023). https://doi.org/10.1016/j.carbon.2023.01.043
- J. Chen, J.M. Zhu, Q.Z. Li, H. Wu, S.Y. Guo et al., Constructing 3d interconnected cnts network in pa6 composites with well-dispersed uhmwpe for excellent tribological and heat dissipation properties. Compos. B: Eng. 246, 110252 (2022). https://doi.org/10.1016/j.compositesb.2022.110252
- X. Zhang, J. Zhang, L. Xia, C. Li, J. Wang et al., Simple and consecutive melt extrusion method to fabricate thermally conductive composites with highly oriented boron nitrides. ACS Appl. Mater. Interfaces 9(27), 22977–22984 (2017). https://doi.org/10.1021/acsami.7b05866
- X.M. Zhang, J.J. Zhang, C.H. Li, J.F. Wang, L.C. Xia et al., Endowing the high efficiency thermally conductive and electrically insulating composites with excellent antistatic property through selectively multilayered distribution of diverse functional fillers. Chem. Eng. J. 328, 609–618 (2017). https://doi.org/10.1016/j.cej.2017.07.087
- F. Zhang, D.H. Ren, Y.H. Zhang, L.Q. Huang, Y.X. Sun et al., Production of highly-oriented graphite monoliths with high thermal conductivity. Chem. Eng. J. 431, 134102 (2022). https://doi.org/10.1016/j.cej.2021.134102
- Y.H. Zhang, W. Wang, F. Zhang, L.Q. Huang, K. Dai et al., Micro-diamond assisted bidirectional tuning of thermal conductivity in multifunctional graphene nanoplatelets/nanofibrillated cellulose films. Carbon 189, 265–275 (2022). https://doi.org/10.1016/j.carbon.2021.12.067
- H. Yu, C. Chen, J. Sun, H. Zhang, Y. Feng et al., Highly thermally conductive polymer/graphene composites with rapid room-temperature self-healing capacity. Nano-Micro Lett. 14(1), 135 (2022). https://doi.org/10.1007/s40820-022-00882-w
- Y. Chen, X. Hou, M. Liao, W. Dai, Z. Wang et al., Constructing a “pea-pod-like” alumina-graphene binary architecture for enhancing thermal conductivity of epoxy composite. Chem. Eng. J. 381, 122690 (2020). https://doi.org/10.1016/j.cej.2019.122690
- P. Liu, X. Li, P. Min, X. Chang, C. Shu et al., 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 13(1), 22 (2020). https://doi.org/10.1007/s40820-020-00548-5
- T.X. Ji, Y.Y. Feng, M.M. Qin, S.W. Li, F. Zhang et al., Thermal conductive and flexible silastic composite based on a hierarchical framework of aligned carbon fibers-carbon nanotubes. Carbon 131, 149–159 (2018). https://doi.org/10.1016/j.carbon.2018.02.002
- Z.F. Yu, S. Wei, J.D. Guo, Fabrication of aligned carbon-fiber/polymer tims using electrostatic flocking method. J. Mater. Sci. -Mater. El. 30(11), 10233–10243 (2019). https://doi.org/10.1007/s10854-019-01360-7
- K. Uetani, S. Ata, S. Tomonoh, T. Yamada, M. Yumura et al., Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking. Adv. Mater. 26(33), 5857–5862 (2014). https://doi.org/10.1002/adma.201401736
- D.L. Ding, R.Y. Huang, X. Wang, S.Y. Zhang, Y. Wu et al., Thermally conductive silicone rubber composites with vertically oriented carbon fibers: A new perspective on the heat conduction mechanism. Chem. Eng. J. 441, 136104 (2022). https://doi.org/10.1016/j.cej.2022.136104
- X. Zhang, S. Zhou, B. Xie, W. Lan, Y. Fan et al., Thermal interface materials with sufficiently vertically aligned and interconnected nickel-coated carbon fibers under high filling loads made via preset-magnetic-field method. Compos. Sci. Technol. 213, 108922 (2021). https://doi.org/10.1016/j.compscitech.2021.108922
- X.L. Hu, M. Huang, N.Z. Kong, F. Han, R.X. Tan et al., Enhancing the electrical insulation of highly thermally conductive carbon fiber powders by sic ceramic coating for efficient thermal interface materials. Compos. B: Eng. 227, 109398 (2021). https://doi.org/10.1016/j.compositesb.2021.109398
- Q. Wu, W.J. Li, C. Liu, Y.W. Xu, G.G. Li et al., Carbon fiber reinforced elastomeric thermal interface materials for spacecraft. Carbon 187, 432–438 (2022). https://doi.org/10.1016/j.carbon.2021.11.039
- G. Zhang, S. Xue, F. Chen, Q. Fu, An efficient thermal interface material with anisotropy orientation and high through-plane thermal conductivity. Compos. Sci. Technol. 231, 109784 (2023). https://doi.org/10.1016/j.compscitech.2022.109784
- M.H. Li, Z. Ali, X.Z. Wei, L.H. Li, G.C. Song et al., Stress induced carbon fiber orientation for enhanced thermal conductivity of epoxy composites. Compos. B. Eng. 208, 108599 (2021). https://doi.org/10.1016/j.compositesb.2020.108599
- X.F. Zhang, B. Xie, S.L. Zhou, X. Yang, Y.W. Fan et al., Radially oriented functional thermal materials prepared by flow field-driven self-assembly strategy. Nano Energy 104, 107986 (2022). https://doi.org/10.1016/j.nanoen.2022.107986
- J. Li, Z. Ye, P. Mo, Y. Pang, E. Gao et al., Compliance-tunable thermal interface materials based on vertically oriented carbon fiber arrays for high-performance thermal management. Compos. Sci. Technol. 234, 109948 (2023). https://doi.org/10.1016/j.compscitech.2023.109948
- Z. Zhang, J. Wang, J. Shang, Y. Xu, Y.J. Wan et al., A through‐thickness arrayed carbon fibers elastomer with horizontal segregated magnetic network for highly efficient thermal management and electromagnetic wave absorption. Small 19(4), e2205716 (2022). https://doi.org/10.1002/smll.202205716
- X. Hou, Y.P. Chen, W. Dai, Z.W. Wang, H. Li et al., Highly thermal conductive polymer composites via constructing micro-phragmites communis structured carbon fibers. Chem. Eng. J. 375, 121921 (2019). https://doi.org/10.1016/j.cej.2019.121921
- J.K. Ma, T.Y. Shang, L.L. Ren, Y.M. Yao, T. Zhang et al., Through-plane assembly of carbon fibers into 3d skeleton achieving enhanced thermal conductivity of a thermal interface material. Chem. Eng. J. 380, 122550 (2020). https://doi.org/10.1016/j.cej.2019.122550
- M. Li, L. Li, Y. Qin, X. Wei, X. Kong et al., Crystallization induced realignment of carbon fibers in a phase change material to achieve exceptional thermal transportation properties. J. Mater. Chem. A 10(2), 593–601 (2022). https://doi.org/10.1039/d1ta09056a
- B. Wu, J.J. Li, X. Li, G. Qian, P. Chen et al., Gravity driven ice-templated oriental arrangement of functional carbon fibers for high in-plane thermal conductivity. Compos. Part A Appl. Sci. Manuf. 150, 106623 (2021). https://doi.org/10.1016/j.compositesa.2021.106623
- R.Y. Huang, D.L. Ding, X.X. Guo, C.J. Liu, X.H. Li et al., Improving through-plane thermal conductivity of pdms-based composites using highly oriented carbon fibers bridged by al2o3 ps. Compos. Sci. Technol. 230, 109717 (2022). https://doi.org/10.1016/j.compscitech.2022.109717
- M. Yamato, T. Kimura, Magnetic processing of diamagnetic materials. Polymers 12(7), 1491 (2020). https://doi.org/10.3390/polym12071491
- M.J. Matthews, M.S. Dresselhaus, G. Dresselhaus, M. Endo, Y. Nishimura et al., Magnetic alignment of mesophase pitch-based carbon fibers. Appl. Phys. Lett. 69(3), 430–432 (1996). https://doi.org/10.1063/1.118084
- M. Yamato, H. Aoki, T. Kimura, I. Yamamoto, F. Ishikawa et al., Determination of anisotropic diamagnetic susceptibility of polymeric fibers suspended in liquid. Jpn. J. Appl. Phys. 40(4a), 2237–2240 (2001). https://doi.org/10.1143/Jjap.40.2237
- T. Kimura, M. Yamato, W. Koshimizu, M. Koike, T. Kawai, Magnetic orientation of polymer fibers in suspension. Langmuir 16(2), 858–861 (2000). https://doi.org/10.1021/la990761j
- H. Wu, D. Huang, C. Ye, T. Ouyang, S.P. Zhu et al., Engineering microstructure toward split-free mesophase pitch-based carbon fibers. J. Mater. Sci. 57(4), 2411–2423 (2022). https://doi.org/10.1007/s10853-021-06770-9
- M. Tanimoto, T. Yamagata, K. Miyata, S. Ando, Anisotropic thermal diffusivity of hexagonal boron nitride-filled polyimide films: Effects of filler p size, aggregation, orientation, and polymer chain rigidity. ACS Appl. Mater. Interfaces 5(10), 4374–4382 (2013). https://doi.org/10.1021/am400615z
- Q. Wu, J. Miao, W. Li, Q. Yang, Y. Huang et al., High-performance thermal interface materials with magnetic aligned carbon fibers. Materials 15(3), 735 (2022). https://doi.org/10.3390/ma15030735
- Z. Jiang, T. Ouyang, L. Ding, W. Li, W.W. Li et al., 3D self-bonded porous graphite fiber monolith for phase change material composite with high thermal conductivity. Chem. Eng. J. 438, 135496 (2022). https://doi.org/10.1016/j.cej.2022.135496
- J.X. Zeng, Z.Q. Chen, M.X. Li, Y.X. Guo, J. Xu et al., Carbon aerogel with high thermal conductivity enabled by shrinkage control. Chem. Mater. 34(20), 9172–9181 (2022). https://doi.org/10.1021/acs.chemmater.2c02133
- M. Li, J. Liu, S. Pan, J. Zhang, Y. Liu et al., Highly oriented graphite aerogel fabricated by confined liquid-phase expansion for anisotropically thermally conductive epoxy composites. ACS Appl. Mater. Interfaces 12(24), 27476–27484 (2020). https://doi.org/10.1021/acsami.0c02151
- X.N. Zhou, S.S. Xu, Z.Y. Wang, L.C. Hao, Z.Q. Shi et al., Wood-derived, vertically aligned, and densely interconnected 3d sic frameworks for anisotropically highly thermoconductive polymer composites. Adv. Sci. 9(7), e2103592 (2022). https://doi.org/10.1002/advs.202103592
- Y. Cui, Z. Qin, H. Wu, M. Li, Y. Hu, Flexible thermal interface based on self-assembled boron arsenide for high-performance thermal management. Nat. Commun. 12(1), 1284 (2021). https://doi.org/10.1038/s41467-021-21531-7
- C. Guo, L. He, Y. Yao, W. Lin, Y. Zhang et al., Bifunctional liquid metals allow electrical insulating phase change materials to dual-mode thermal manage the li-ion batteries. Nano-Micro Lett. 14(1), 202 (2022). https://doi.org/10.1007/s40820-022-00947-w
- X.W. Xu, R.C. Hu, M.Y. Chen, J.F. Dong, B. Xiao et al., 3D boron nitride foam filled epoxy composites with significantly enhanced thermal conductivity by a facial and scalable approach. Chem. Eng. J. 397, 125447 (2020). https://doi.org/10.1016/j.cej.2020.125447
- Z.L. Wei, W.Q. Xie, B.Z. Ge, Z.J. Zhang, W.L. Yang et al., Enhanced thermal conductivity of epoxy composites by constructing aluminum nitride honeycomb reinforcements. Compos. Sci. Technol. 199, 108304 (2020). https://doi.org/10.1016/j.compscitech.2020.108304
- Y. Yao, Z. Ye, F. Huang, X. Zeng, T. Zhang et al., Achieving significant thermal conductivity enhancement via an ice-templated and sintered bn-sic skeleton. ACS Appl. Mater. Interfaces 12(2), 2892–2902 (2020). https://doi.org/10.1021/acsami.9b19280
References
A.L. Moore, L. Shi, Emerging challenges and materials for thermal management of electronics. Mater. Today 17(4), 163–174 (2014). https://doi.org/10.1016/j.mattod.2014.04.003
K.M. Razeeb, E. Dalton, G.L.W. Cross, A.J. Robinson, Present and future thermal interface materials for electronic devices. Int. Mater. Rev. 63(1), 1–21 (2017). https://doi.org/10.1080/09506608.2017.1296605
J. Hansson, T.M.J. Nilsson, L. Ye, J. Liu, Novel nanostructured thermal interface materials: A review. Int. Mater. Rev. 63(1), 22–45 (2017). https://doi.org/10.1080/09506608.2017.1301014
H.Y. Chen, V.V. Ginzburg, J. Yang, Y.F. Yang, W. Liu et al., Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci. 59, 41–85 (2016). https://doi.org/10.1016/j.progpolymsci.2016.03.001
S. Yu, X. Shen, J.K. Kim, Beyond homogeneous dispersion: Oriented conductive fillers for high kappa nanocomposites. Mater. Horiz. 8(11), 3009–3042 (2021). https://doi.org/10.1039/d1mh00907a
Q.W. Yan, F.E. Alam, J.Y. Gao, W. Dai, X. Tan et al., Soft and self-adhesive thermal interface materials based on vertically aligned, covalently bonded graphene nanowalls for efficient microelectronic cooling. Adv. Funct. Mater. 31(36), 2104062 (2021). https://doi.org/10.1002/adfm.202104062
W. Dai, L. Lv, T. Ma, X. Wang, J. Ying et al., Multiscale structural modulation of anisotropic graphene framework for polymer composites achieving highly efficient thermal energy management. Adv. Sci. 8(7), 2003734 (2021). https://doi.org/10.1002/advs.202003734
J.F. Ying, X. Tan, L. Lv, X.Z. Wang, J.Y. Gao et al., Tailoring highly ordered graphene framework in epoxy for high-performance polymer-based heat dissipation plates. ACS Nano 15(8), 12922–12934 (2021). https://doi.org/10.1021/acsnano.1c01332
M.C. Vu, W.K. Choi, S.G. Lee, P.J. Park, D.H. Kim et al., High thermal conductivity enhancement of polymer composites with vertically aligned silicon carbide sheet scaffolds. ACS Appl. Mater. Interfaces 12(20), 23388–23398 (2020). https://doi.org/10.1021/acsami.0c02421
Y. Han, K. Ruan, J. Gu, Multifunctional thermally conductive composite films based on fungal tree-like heterostructured silver nanowires@boron nitride nanosheets and aramid nanofibers. Angew. Chem. Int. Ed. 62(5), e202216093 (2023). https://doi.org/10.1002/anie.202216093
Y. Zhang, C. Lei, K. Wu, Q. Fu, Fully organic bulk polymer with metallic thermal conductivity and tunable thermal pathways. Adv. Sci. 8(14), e2004821 (2021). https://doi.org/10.1002/advs.202004821
H. He, W. Peng, J. Liu, X.Y. Chan, S. Liu et al., Microstructured bn composites with internally designed high thermal conductivity paths for 3d electronic packaging. Adv. Mater. 34(38), e2205120 (2022). https://doi.org/10.1002/adma.202205120
H. Yu, Y. Feng, C. Chen, Z. Zhang, Y. Cai et al., Thermally conductive, self-healing, and elastic polyimide@vertically aligned carbon nanotubes composite as smart thermal interface material. Carbon 179, 348–357 (2021). https://doi.org/10.1016/j.carbon.2021.04.055
Z.G. Wang, Y.L. Yang, Z.L. Zheng, R.T. Lan, K. Dai et al., Achieving excellent thermally conductive and electromagnetic shielding performance by nondestructive functionalization and oriented arrangement of carbon nanotubes in composite films. Compos. Sci. Technol. 194, 108190 (2020). https://doi.org/10.1016/j.compscitech.2020.108190
T. Kim, S. Kim, E. Kim, T. Kim, J. Cho et al., High-temperature skin softening materials overcoming the trade-off between thermal conductivity and thermal contact resistance. Small 17(38), e2102128 (2021). https://doi.org/10.1002/smll.202102128
Y. Zhang, S. Yang, Q. Zhang, Z. Ma, Y. Guo et al., Constructing interconnected asymmetric conductive network in tpu fibrous film: Achieving low-reflection electromagnetic interference shielding and surperior thermal conductivity. Carbon 206, 37–44 (2023). https://doi.org/10.1016/j.carbon.2023.01.043
J. Chen, J.M. Zhu, Q.Z. Li, H. Wu, S.Y. Guo et al., Constructing 3d interconnected cnts network in pa6 composites with well-dispersed uhmwpe for excellent tribological and heat dissipation properties. Compos. B: Eng. 246, 110252 (2022). https://doi.org/10.1016/j.compositesb.2022.110252
X. Zhang, J. Zhang, L. Xia, C. Li, J. Wang et al., Simple and consecutive melt extrusion method to fabricate thermally conductive composites with highly oriented boron nitrides. ACS Appl. Mater. Interfaces 9(27), 22977–22984 (2017). https://doi.org/10.1021/acsami.7b05866
X.M. Zhang, J.J. Zhang, C.H. Li, J.F. Wang, L.C. Xia et al., Endowing the high efficiency thermally conductive and electrically insulating composites with excellent antistatic property through selectively multilayered distribution of diverse functional fillers. Chem. Eng. J. 328, 609–618 (2017). https://doi.org/10.1016/j.cej.2017.07.087
F. Zhang, D.H. Ren, Y.H. Zhang, L.Q. Huang, Y.X. Sun et al., Production of highly-oriented graphite monoliths with high thermal conductivity. Chem. Eng. J. 431, 134102 (2022). https://doi.org/10.1016/j.cej.2021.134102
Y.H. Zhang, W. Wang, F. Zhang, L.Q. Huang, K. Dai et al., Micro-diamond assisted bidirectional tuning of thermal conductivity in multifunctional graphene nanoplatelets/nanofibrillated cellulose films. Carbon 189, 265–275 (2022). https://doi.org/10.1016/j.carbon.2021.12.067
H. Yu, C. Chen, J. Sun, H. Zhang, Y. Feng et al., Highly thermally conductive polymer/graphene composites with rapid room-temperature self-healing capacity. Nano-Micro Lett. 14(1), 135 (2022). https://doi.org/10.1007/s40820-022-00882-w
Y. Chen, X. Hou, M. Liao, W. Dai, Z. Wang et al., Constructing a “pea-pod-like” alumina-graphene binary architecture for enhancing thermal conductivity of epoxy composite. Chem. Eng. J. 381, 122690 (2020). https://doi.org/10.1016/j.cej.2019.122690
P. Liu, X. Li, P. Min, X. Chang, C. Shu et al., 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 13(1), 22 (2020). https://doi.org/10.1007/s40820-020-00548-5
T.X. Ji, Y.Y. Feng, M.M. Qin, S.W. Li, F. Zhang et al., Thermal conductive and flexible silastic composite based on a hierarchical framework of aligned carbon fibers-carbon nanotubes. Carbon 131, 149–159 (2018). https://doi.org/10.1016/j.carbon.2018.02.002
Z.F. Yu, S. Wei, J.D. Guo, Fabrication of aligned carbon-fiber/polymer tims using electrostatic flocking method. J. Mater. Sci. -Mater. El. 30(11), 10233–10243 (2019). https://doi.org/10.1007/s10854-019-01360-7
K. Uetani, S. Ata, S. Tomonoh, T. Yamada, M. Yumura et al., Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking. Adv. Mater. 26(33), 5857–5862 (2014). https://doi.org/10.1002/adma.201401736
D.L. Ding, R.Y. Huang, X. Wang, S.Y. Zhang, Y. Wu et al., Thermally conductive silicone rubber composites with vertically oriented carbon fibers: A new perspective on the heat conduction mechanism. Chem. Eng. J. 441, 136104 (2022). https://doi.org/10.1016/j.cej.2022.136104
X. Zhang, S. Zhou, B. Xie, W. Lan, Y. Fan et al., Thermal interface materials with sufficiently vertically aligned and interconnected nickel-coated carbon fibers under high filling loads made via preset-magnetic-field method. Compos. Sci. Technol. 213, 108922 (2021). https://doi.org/10.1016/j.compscitech.2021.108922
X.L. Hu, M. Huang, N.Z. Kong, F. Han, R.X. Tan et al., Enhancing the electrical insulation of highly thermally conductive carbon fiber powders by sic ceramic coating for efficient thermal interface materials. Compos. B: Eng. 227, 109398 (2021). https://doi.org/10.1016/j.compositesb.2021.109398
Q. Wu, W.J. Li, C. Liu, Y.W. Xu, G.G. Li et al., Carbon fiber reinforced elastomeric thermal interface materials for spacecraft. Carbon 187, 432–438 (2022). https://doi.org/10.1016/j.carbon.2021.11.039
G. Zhang, S. Xue, F. Chen, Q. Fu, An efficient thermal interface material with anisotropy orientation and high through-plane thermal conductivity. Compos. Sci. Technol. 231, 109784 (2023). https://doi.org/10.1016/j.compscitech.2022.109784
M.H. Li, Z. Ali, X.Z. Wei, L.H. Li, G.C. Song et al., Stress induced carbon fiber orientation for enhanced thermal conductivity of epoxy composites. Compos. B. Eng. 208, 108599 (2021). https://doi.org/10.1016/j.compositesb.2020.108599
X.F. Zhang, B. Xie, S.L. Zhou, X. Yang, Y.W. Fan et al., Radially oriented functional thermal materials prepared by flow field-driven self-assembly strategy. Nano Energy 104, 107986 (2022). https://doi.org/10.1016/j.nanoen.2022.107986
J. Li, Z. Ye, P. Mo, Y. Pang, E. Gao et al., Compliance-tunable thermal interface materials based on vertically oriented carbon fiber arrays for high-performance thermal management. Compos. Sci. Technol. 234, 109948 (2023). https://doi.org/10.1016/j.compscitech.2023.109948
Z. Zhang, J. Wang, J. Shang, Y. Xu, Y.J. Wan et al., A through‐thickness arrayed carbon fibers elastomer with horizontal segregated magnetic network for highly efficient thermal management and electromagnetic wave absorption. Small 19(4), e2205716 (2022). https://doi.org/10.1002/smll.202205716
X. Hou, Y.P. Chen, W. Dai, Z.W. Wang, H. Li et al., Highly thermal conductive polymer composites via constructing micro-phragmites communis structured carbon fibers. Chem. Eng. J. 375, 121921 (2019). https://doi.org/10.1016/j.cej.2019.121921
J.K. Ma, T.Y. Shang, L.L. Ren, Y.M. Yao, T. Zhang et al., Through-plane assembly of carbon fibers into 3d skeleton achieving enhanced thermal conductivity of a thermal interface material. Chem. Eng. J. 380, 122550 (2020). https://doi.org/10.1016/j.cej.2019.122550
M. Li, L. Li, Y. Qin, X. Wei, X. Kong et al., Crystallization induced realignment of carbon fibers in a phase change material to achieve exceptional thermal transportation properties. J. Mater. Chem. A 10(2), 593–601 (2022). https://doi.org/10.1039/d1ta09056a
B. Wu, J.J. Li, X. Li, G. Qian, P. Chen et al., Gravity driven ice-templated oriental arrangement of functional carbon fibers for high in-plane thermal conductivity. Compos. Part A Appl. Sci. Manuf. 150, 106623 (2021). https://doi.org/10.1016/j.compositesa.2021.106623
R.Y. Huang, D.L. Ding, X.X. Guo, C.J. Liu, X.H. Li et al., Improving through-plane thermal conductivity of pdms-based composites using highly oriented carbon fibers bridged by al2o3 ps. Compos. Sci. Technol. 230, 109717 (2022). https://doi.org/10.1016/j.compscitech.2022.109717
M. Yamato, T. Kimura, Magnetic processing of diamagnetic materials. Polymers 12(7), 1491 (2020). https://doi.org/10.3390/polym12071491
M.J. Matthews, M.S. Dresselhaus, G. Dresselhaus, M. Endo, Y. Nishimura et al., Magnetic alignment of mesophase pitch-based carbon fibers. Appl. Phys. Lett. 69(3), 430–432 (1996). https://doi.org/10.1063/1.118084
M. Yamato, H. Aoki, T. Kimura, I. Yamamoto, F. Ishikawa et al., Determination of anisotropic diamagnetic susceptibility of polymeric fibers suspended in liquid. Jpn. J. Appl. Phys. 40(4a), 2237–2240 (2001). https://doi.org/10.1143/Jjap.40.2237
T. Kimura, M. Yamato, W. Koshimizu, M. Koike, T. Kawai, Magnetic orientation of polymer fibers in suspension. Langmuir 16(2), 858–861 (2000). https://doi.org/10.1021/la990761j
H. Wu, D. Huang, C. Ye, T. Ouyang, S.P. Zhu et al., Engineering microstructure toward split-free mesophase pitch-based carbon fibers. J. Mater. Sci. 57(4), 2411–2423 (2022). https://doi.org/10.1007/s10853-021-06770-9
M. Tanimoto, T. Yamagata, K. Miyata, S. Ando, Anisotropic thermal diffusivity of hexagonal boron nitride-filled polyimide films: Effects of filler p size, aggregation, orientation, and polymer chain rigidity. ACS Appl. Mater. Interfaces 5(10), 4374–4382 (2013). https://doi.org/10.1021/am400615z
Q. Wu, J. Miao, W. Li, Q. Yang, Y. Huang et al., High-performance thermal interface materials with magnetic aligned carbon fibers. Materials 15(3), 735 (2022). https://doi.org/10.3390/ma15030735
Z. Jiang, T. Ouyang, L. Ding, W. Li, W.W. Li et al., 3D self-bonded porous graphite fiber monolith for phase change material composite with high thermal conductivity. Chem. Eng. J. 438, 135496 (2022). https://doi.org/10.1016/j.cej.2022.135496
J.X. Zeng, Z.Q. Chen, M.X. Li, Y.X. Guo, J. Xu et al., Carbon aerogel with high thermal conductivity enabled by shrinkage control. Chem. Mater. 34(20), 9172–9181 (2022). https://doi.org/10.1021/acs.chemmater.2c02133
M. Li, J. Liu, S. Pan, J. Zhang, Y. Liu et al., Highly oriented graphite aerogel fabricated by confined liquid-phase expansion for anisotropically thermally conductive epoxy composites. ACS Appl. Mater. Interfaces 12(24), 27476–27484 (2020). https://doi.org/10.1021/acsami.0c02151
X.N. Zhou, S.S. Xu, Z.Y. Wang, L.C. Hao, Z.Q. Shi et al., Wood-derived, vertically aligned, and densely interconnected 3d sic frameworks for anisotropically highly thermoconductive polymer composites. Adv. Sci. 9(7), e2103592 (2022). https://doi.org/10.1002/advs.202103592
Y. Cui, Z. Qin, H. Wu, M. Li, Y. Hu, Flexible thermal interface based on self-assembled boron arsenide for high-performance thermal management. Nat. Commun. 12(1), 1284 (2021). https://doi.org/10.1038/s41467-021-21531-7
C. Guo, L. He, Y. Yao, W. Lin, Y. Zhang et al., Bifunctional liquid metals allow electrical insulating phase change materials to dual-mode thermal manage the li-ion batteries. Nano-Micro Lett. 14(1), 202 (2022). https://doi.org/10.1007/s40820-022-00947-w
X.W. Xu, R.C. Hu, M.Y. Chen, J.F. Dong, B. Xiao et al., 3D boron nitride foam filled epoxy composites with significantly enhanced thermal conductivity by a facial and scalable approach. Chem. Eng. J. 397, 125447 (2020). https://doi.org/10.1016/j.cej.2020.125447
Z.L. Wei, W.Q. Xie, B.Z. Ge, Z.J. Zhang, W.L. Yang et al., Enhanced thermal conductivity of epoxy composites by constructing aluminum nitride honeycomb reinforcements. Compos. Sci. Technol. 199, 108304 (2020). https://doi.org/10.1016/j.compscitech.2020.108304
Y. Yao, Z. Ye, F. Huang, X. Zeng, T. Zhang et al., Achieving significant thermal conductivity enhancement via an ice-templated and sintered bn-sic skeleton. ACS Appl. Mater. Interfaces 12(2), 2892–2902 (2020). https://doi.org/10.1021/acsami.9b19280