Enabling an Inorganic-Rich Interface via Cationic Surfactant for High-Performance Lithium Metal Batteries
Corresponding Author: Wei Chen
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 141
Abstract
An anion-rich electric double layer (EDL) region is favorable for fabricating an inorganic-rich solid–electrolyte interphase (SEI) towards stable lithium metal anode in ester electrolyte. Herein, cetyltrimethylammonium bromide (CTAB), a cationic surfactant, is adopted to draw more anions into EDL by ionic interactions that shield the repelling force on anions during lithium plating. In situ electrochemical surface-enhanced Raman spectroscopy results combined with molecular dynamics simulations validate the enrichment of NO3−/FSI− anions in the EDL region due to the positively charged CTA+. In-depth analysis of SEI structure by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry results confirmed the formation of the inorganic-rich SEI, which helps improve the kinetics of Li+ transfer, lower the charge transfer activation energy, and homogenize Li deposition. As a result, the Li||Li symmetric cell in the designed electrolyte displays a prolongated cycling time from 500 to 1300 h compared to that in the blank electrolyte at 0.5 mA cm−2 with a capacity of 1 mAh cm−2. Moreover, Li||LiFePO4 and Li||LiCoO2 with a high cathode mass loading of > 10 mg cm−2 can be stably cycled over 180 cycles.
Highlights:
1 Cetyltrimethylammonium cations can shield the repelling force on anions to attract more anions into electric double layer region during lithium plating process, facilitating the formation of inorganic-rich solid-state electrolyte interphase (SEI).
2 An inorganic-rich (N/F-containing species) structure of SEI can be evidenced by the in-depth analysis.
3 The cycling lifetime of Li||Li symmetric cell in the designed electrolyte can be extended from 500 to 1300 h. Moreover, full cells with a high cathode mass loading of >10 mg cm-2 can be stably cycled over 180 cycles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Ren, L. Zou, S. Jiao, D. Mei, M.H. Engelhard et al., High-concentration ether electrolytes for stable high-voltage lithium metal batteries. ACS Energy Lett. 4, 896–902 (2019). https://doi.org/10.1021/acsenergylett.9b00381
- X. Ren, S. Chen, H. Lee, D. Mei, M.H. Engelhard et al., Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 4, 1877–1892 (2018). https://doi.org/10.1016/j.chempr.2018.05.002
- Y. Liu, D. Lin, Y. Li, G. Chen, A. Pei et al., Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nat. Commun. 9, 3656 (2018). https://doi.org/10.1038/s41467-018-06077-5
- X.-Q. Zhang, X.-B. Cheng, X. Chen, C. Yan, Q. Zhang, Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 27, 1605989 (2017). https://doi.org/10.1002/adfm.201605989
- Z. Yu, P.E. Rudnicki, Z. Zhang, Z. Huang, H. Celik et al., Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7, 94–106 (2022). https://doi.org/10.1038/s41560-021-00962-y
- Y. Xia, P. Zhou, X. Kong, J. Tian, W. Zhang et al., Designing an asymmetric ether-like lithium salt to enable fast-cycling high-energy lithium metal batteries. Nat. Energy 8, 934–945 (2023). https://doi.org/10.1038/s41560-023-01282-z
- Z. Yu, D.G. Mackanic, W. Michaels, M. Lee, A. Pei et al., A dynamic, electrolyte-blocking, and single-ion-conductive network for stable lithium-metal anodes. Joule 3, 2761–2776 (2019). https://doi.org/10.1016/j.joule.2019.07.025
- W. Yu, J. Yang, J. Li, K. Zhang, H. Xu et al., Facile production of phosphorene nanoribbons towards application in lithium metal battery. Adv. Mater. 33, e2102083 (2021). https://doi.org/10.1002/adma.202102083
- F. Ding, W. Xu, G.L. Graff, J. Zhang, M.L. Sushko et al., Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013). https://doi.org/10.1021/ja312241y
- Y. Lu, Z. Tu, L.A. Archer, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014). https://doi.org/10.1038/nmat4041
- H. Dai, K. Xi, X. Liu, C. Lai, S. Zhang, Cationic surfactant-based electrolyte additives for uniform lithium deposition via lithiophobic repulsion mechanisms. J. Am. Chem. Soc. 140, 17515–17521 (2018). https://doi.org/10.1021/jacs.8b08963
- J. Yang, M. Li, Z. Sun, X. Lian, Y. Wang et al., Prolonging the cycling lifetime of lithium metal batteries with a monolithic and inorganic-rich solid electrolyte interphase. Energy Environ. Sci. 16, 3837–3846 (2023). https://doi.org/10.1039/D3EE00161J
- C. Yan, H.-R. Li, X. Chen, X.-Q. Zhang, X.-B. Cheng et al., Regulating the inner Helmholtz plane for stable solid electrolyte interphase on lithium metal anodes. J. Am. Chem. Soc. 141, 9422–9429 (2019). https://doi.org/10.1021/jacs.9b05029
- X. Ren, L. Zou, X. Cao, M.H. Engelhard, W. Liu et al., Enabling high-voltage lithium-metal batteries under practical conditions. Joule 3, 1662–1676 (2019). https://doi.org/10.1016/j.joule.2019.05.006
- B.D. Adams, J. Zheng, X. Ren, W. Xu, J.-G. Zhang, Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8, 1702097 (2018). https://doi.org/10.1002/aenm.201702097
- S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039
- A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown et al., LAMMPS - a flexible simulation tool for p-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022). https://doi.org/10.1016/j.cpc.2021.108171
- H. Sun, COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 102, 7338–7364 (1998). https://doi.org/10.1021/jp980939v
- H. Sun, Z. Jin, C. Yang, R.L.C. Akkermans, S.H. Robertson et al., COMPASS II: extended coverage for polymer and drug-like molecule databases. J. Mol. Model. 22, 47 (2016). https://doi.org/10.1007/s00894-016-2909-0
- R.E. Isele-Holder, W. Mitchell, A.E. Ismail, Development and application of a p-p p-mesh Ewald method for dispersion interactions. J. Chem. Phys. 137, 174107 (2012). https://doi.org/10.1063/1.4764089
- B. Shi, S. Sinha, V.K. Dhir, Molecular dynamics simulation of the density and surface tension of water by p-p p-mesh method. J. Chem. Phys. 124, 204715 (2006). https://doi.org/10.1063/1.2199849
- G.S. Larsen, P. Lin, K.E. Hart, C.M. Colina, Molecular simulations of PIM-1-like polymers of intrinsic microporosity. Macromolecules 44, 6944–6951 (2011). https://doi.org/10.1021/ma200345v
- N. Piao, S. Liu, B. Zhang, X. Ji, X. Fan et al., Lithium metal batteries enabled by synergetic additives in commercial carbonate electrolytes. ACS Energy Lett. 6, 1839–1848 (2021). https://doi.org/10.1021/acsenergylett.1c00365
- X. Fan, L. Chen, X. Ji, T. Deng, S. Hou et al., Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4, 174–185 (2018). https://doi.org/10.1016/j.chempr.2017.10.017
- R. Xu, X. Shen, X.-X. Ma, C. Yan, X.-Q. Zhang et al., Identifying the critical anion-cation coordination to regulate the electric double layer for an efficient lithium-metal anode interface. Angew. Chem. Int. Ed. Engl. 60, 4215–4220 (2021). https://doi.org/10.1002/anie.202013271
- D.W. Kang, J. Moon, H.-Y. Choi, H.-C. Shin, B.G. Kim, Stable cycling and uniform lithium deposition in anode-free lithium-metal batteries enabled by a high-concentration dual-salt electrolyte with high LiNO3 content. J. Power Sour. 490, 229504 (2021). https://doi.org/10.1016/j.jpowsour.2021.229504
- K. Yan, Z. Lu, H.-W. Lee, F. Xiong, P.-C. Hsu et al., Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016). https://doi.org/10.1038/nenergy.2016.10
- A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui, Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 17, 1132–1139 (2017). https://doi.org/10.1021/acs.nanolett.6b04755
- S. Zhang, G. Yang, S. Liu, X. Li, X. Wang et al., Understanding the dropping of lithium plating potential in carbonate electrolyte. Nano Energy 70, 104486 (2020). https://doi.org/10.1016/j.nanoen.2020.104486
- C. Yan, Y.-X. Yao, X. Chen, X.-B. Cheng, X.-Q. Zhang et al., Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries. Angew. Chem. Int. Ed. 57, 14055–14059 (2018). https://doi.org/10.1002/anie.201807034
- D. Liu, X. Xiong, Q. Liang, X. Wu, H. Fu, An inorganic-rich SEI induced by LiNO3 additive for a stable lithium metal anode in carbonate electrolyte. Chem. Commun. 57, 9232–9235 (2021). https://doi.org/10.1039/D1CC03676A
- Z. Piao, P. Xiao, R. Luo, J. Ma, R. Gao et al., Constructing a stable interface layer by tailoring solvation chemistry in carbonate electrolytes for high-performance lithium-metal batteries. Adv. Mater. 34, e2108400 (2022). https://doi.org/10.1002/adma.202108400
- X. Wang, S. Wang, H. Wang, W. Tu, Y. Zhao et al., Hybrid electrolyte with dual-anion-aggregated solvation sheath for stabilizing high-voltage lithium-metal batteries. Adv. Mater. 33, e2007945 (2021). https://doi.org/10.1002/adma.202007945
- Q. Zhao, N.W. Utomo, A.L. Kocen, S. Jin, Y. Deng et al., Upgrading carbonate electrolytes for ultra-stable practical lithium metal batteries. Angew. Chem. Int. Ed. 61, e202116214 (2022). https://doi.org/10.1002/anie.202116214
- L. Fu, X. Wang, L. Wang, M. Wan, Y. Li et al., A salt-in-metal anode: stabilizing the solid electrolyte interphase to enable prolonged battery cycling. Adv. Funct. Mater. 31, 2010602 (2021). https://doi.org/10.1002/adfm.202010602
- Y. Jie, X. Liu, Z. Lei, S. Wang, Y. Chen et al., Enabling high-voltage lithium metal batteries by manipulating solvation structure in ester electrolyte. Angew. Chem. Int. Ed. Engl. 59, 3505–3510 (2020). https://doi.org/10.1002/anie.201914250
- S. Li, W. Zhang, Q. Wu, L. Fan, X. Wang et al., Synergistic dual-additive electrolyte enables practical lithium-metal batteries. Angew. Chem. Int. Ed. 59, 14935–14941 (2020). https://doi.org/10.1002/anie.202004853
- Z. Guo, X. Song, Q. Zhang, N. Zhan, Z. Hou et al., Cationic size effect promoting dissolution of nitrate anion in ester electrolyte for lithium–metal batteries. ACS Energy Lett. 7, 569–576 (2022). https://doi.org/10.1021/acsenergylett.1c02495
- Z. Wang, F. Qi, L. Yin, Y. Shi, C. Sun, et al., An Anion–Tuned Solid Electrolyte Interphase with Fast Ion Transfer Kinetics for Stable Lithium Anodes. Adv. Energy Mater. 10, 1903843 (2020). https://doi.org/10.1002/aenm.201903843
- X. Wang, H. Wang, M. Liu, W. Li, In-plane lithium growth enabled by artificial nitrate-rich layer: fast deposition kinetics and desolvation/orption mechanism. Small 16, e2000769 (2020). https://doi.org/10.1002/smll.202000769
- H. Yang, X. Chen, N. Yao, N. Piao, Z. Wang et al., Dissolution–precipitation dynamics in ester electrolyte for high-stability lithium metal batteries. ACS Energy Lett. 6, 1413–1421 (2021). https://doi.org/10.1021/acsenergylett.1c00149
- J. Chen, Z. Sun, Z. Li, J. Liu, X. Yao et al., Highly reversible Li metal anode using a binary alloy interface. Chem. Commun. 58, 13455–13458 (2022). https://doi.org/10.1039/d2cc05051j
- D. Xiao, Q. Li, D. Luo, G. Li, H. Liu et al., Regulating the Li+-solvation structure of ester electrolyte for high-energy-density lithium metal batteries. Small 16, 2004688 (2020). https://doi.org/10.1002/smll.202004688
- P. Xiao, R. Luo, Z. Piao, C. Li, J. Wang et al., High-performance lithium metal batteries with a wide operating temperature range in carbonate electrolyte by manipulating interfacial chemistry. ACS Energy Lett. 6, 3170–3179 (2021). https://doi.org/10.1021/acsenergylett.1c01528
- K. Xu, Y. Lam, S.S. Zhang, T.R. Jow, T.B. Curtis, Solvation sheath of Li+ in nonaqueous electrolytes and its implication of graphite/electrolyte interface chemistry. J. Phys. Chem. C 111, 7411–7421 (2007). https://doi.org/10.1021/jp068691u
- X.-R. Chen, Y.-X. Yao, C. Yan, R. Zhang, X.-B. Cheng et al., A diffusion: reaction competition mechanism to tailor lithium deposition for lithium-metal batteries. Angew. Chem. Int. Ed. 59, 7743–7747 (2020). https://doi.org/10.1002/anie.202000375
- P. Bai, X. Ji, J. Zhang, W. Zhang, S. Hou et al., Formation of LiF-rich cathode-electrolyte interphase by electrolyte reduction. Angew. Chem. Int. Ed. 61, 2202731 (2022). https://doi.org/10.1002/anie.202202731
- W. Zhang, Y. Lu, L. Wan, P. Zhou, Y. Xia et al., Engineering a passivating electric double layer for high performance lithium metal batteries. Nat. Commun. 13, 2029 (2022). https://doi.org/10.1038/s41467-022-29761-z
References
X. Ren, L. Zou, S. Jiao, D. Mei, M.H. Engelhard et al., High-concentration ether electrolytes for stable high-voltage lithium metal batteries. ACS Energy Lett. 4, 896–902 (2019). https://doi.org/10.1021/acsenergylett.9b00381
X. Ren, S. Chen, H. Lee, D. Mei, M.H. Engelhard et al., Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 4, 1877–1892 (2018). https://doi.org/10.1016/j.chempr.2018.05.002
Y. Liu, D. Lin, Y. Li, G. Chen, A. Pei et al., Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nat. Commun. 9, 3656 (2018). https://doi.org/10.1038/s41467-018-06077-5
X.-Q. Zhang, X.-B. Cheng, X. Chen, C. Yan, Q. Zhang, Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 27, 1605989 (2017). https://doi.org/10.1002/adfm.201605989
Z. Yu, P.E. Rudnicki, Z. Zhang, Z. Huang, H. Celik et al., Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7, 94–106 (2022). https://doi.org/10.1038/s41560-021-00962-y
Y. Xia, P. Zhou, X. Kong, J. Tian, W. Zhang et al., Designing an asymmetric ether-like lithium salt to enable fast-cycling high-energy lithium metal batteries. Nat. Energy 8, 934–945 (2023). https://doi.org/10.1038/s41560-023-01282-z
Z. Yu, D.G. Mackanic, W. Michaels, M. Lee, A. Pei et al., A dynamic, electrolyte-blocking, and single-ion-conductive network for stable lithium-metal anodes. Joule 3, 2761–2776 (2019). https://doi.org/10.1016/j.joule.2019.07.025
W. Yu, J. Yang, J. Li, K. Zhang, H. Xu et al., Facile production of phosphorene nanoribbons towards application in lithium metal battery. Adv. Mater. 33, e2102083 (2021). https://doi.org/10.1002/adma.202102083
F. Ding, W. Xu, G.L. Graff, J. Zhang, M.L. Sushko et al., Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013). https://doi.org/10.1021/ja312241y
Y. Lu, Z. Tu, L.A. Archer, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014). https://doi.org/10.1038/nmat4041
H. Dai, K. Xi, X. Liu, C. Lai, S. Zhang, Cationic surfactant-based electrolyte additives for uniform lithium deposition via lithiophobic repulsion mechanisms. J. Am. Chem. Soc. 140, 17515–17521 (2018). https://doi.org/10.1021/jacs.8b08963
J. Yang, M. Li, Z. Sun, X. Lian, Y. Wang et al., Prolonging the cycling lifetime of lithium metal batteries with a monolithic and inorganic-rich solid electrolyte interphase. Energy Environ. Sci. 16, 3837–3846 (2023). https://doi.org/10.1039/D3EE00161J
C. Yan, H.-R. Li, X. Chen, X.-Q. Zhang, X.-B. Cheng et al., Regulating the inner Helmholtz plane for stable solid electrolyte interphase on lithium metal anodes. J. Am. Chem. Soc. 141, 9422–9429 (2019). https://doi.org/10.1021/jacs.9b05029
X. Ren, L. Zou, X. Cao, M.H. Engelhard, W. Liu et al., Enabling high-voltage lithium-metal batteries under practical conditions. Joule 3, 1662–1676 (2019). https://doi.org/10.1016/j.joule.2019.05.006
B.D. Adams, J. Zheng, X. Ren, W. Xu, J.-G. Zhang, Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8, 1702097 (2018). https://doi.org/10.1002/aenm.201702097
S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039
A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown et al., LAMMPS - a flexible simulation tool for p-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022). https://doi.org/10.1016/j.cpc.2021.108171
H. Sun, COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 102, 7338–7364 (1998). https://doi.org/10.1021/jp980939v
H. Sun, Z. Jin, C. Yang, R.L.C. Akkermans, S.H. Robertson et al., COMPASS II: extended coverage for polymer and drug-like molecule databases. J. Mol. Model. 22, 47 (2016). https://doi.org/10.1007/s00894-016-2909-0
R.E. Isele-Holder, W. Mitchell, A.E. Ismail, Development and application of a p-p p-mesh Ewald method for dispersion interactions. J. Chem. Phys. 137, 174107 (2012). https://doi.org/10.1063/1.4764089
B. Shi, S. Sinha, V.K. Dhir, Molecular dynamics simulation of the density and surface tension of water by p-p p-mesh method. J. Chem. Phys. 124, 204715 (2006). https://doi.org/10.1063/1.2199849
G.S. Larsen, P. Lin, K.E. Hart, C.M. Colina, Molecular simulations of PIM-1-like polymers of intrinsic microporosity. Macromolecules 44, 6944–6951 (2011). https://doi.org/10.1021/ma200345v
N. Piao, S. Liu, B. Zhang, X. Ji, X. Fan et al., Lithium metal batteries enabled by synergetic additives in commercial carbonate electrolytes. ACS Energy Lett. 6, 1839–1848 (2021). https://doi.org/10.1021/acsenergylett.1c00365
X. Fan, L. Chen, X. Ji, T. Deng, S. Hou et al., Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4, 174–185 (2018). https://doi.org/10.1016/j.chempr.2017.10.017
R. Xu, X. Shen, X.-X. Ma, C. Yan, X.-Q. Zhang et al., Identifying the critical anion-cation coordination to regulate the electric double layer for an efficient lithium-metal anode interface. Angew. Chem. Int. Ed. Engl. 60, 4215–4220 (2021). https://doi.org/10.1002/anie.202013271
D.W. Kang, J. Moon, H.-Y. Choi, H.-C. Shin, B.G. Kim, Stable cycling and uniform lithium deposition in anode-free lithium-metal batteries enabled by a high-concentration dual-salt electrolyte with high LiNO3 content. J. Power Sour. 490, 229504 (2021). https://doi.org/10.1016/j.jpowsour.2021.229504
K. Yan, Z. Lu, H.-W. Lee, F. Xiong, P.-C. Hsu et al., Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016). https://doi.org/10.1038/nenergy.2016.10
A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui, Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 17, 1132–1139 (2017). https://doi.org/10.1021/acs.nanolett.6b04755
S. Zhang, G. Yang, S. Liu, X. Li, X. Wang et al., Understanding the dropping of lithium plating potential in carbonate electrolyte. Nano Energy 70, 104486 (2020). https://doi.org/10.1016/j.nanoen.2020.104486
C. Yan, Y.-X. Yao, X. Chen, X.-B. Cheng, X.-Q. Zhang et al., Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries. Angew. Chem. Int. Ed. 57, 14055–14059 (2018). https://doi.org/10.1002/anie.201807034
D. Liu, X. Xiong, Q. Liang, X. Wu, H. Fu, An inorganic-rich SEI induced by LiNO3 additive for a stable lithium metal anode in carbonate electrolyte. Chem. Commun. 57, 9232–9235 (2021). https://doi.org/10.1039/D1CC03676A
Z. Piao, P. Xiao, R. Luo, J. Ma, R. Gao et al., Constructing a stable interface layer by tailoring solvation chemistry in carbonate electrolytes for high-performance lithium-metal batteries. Adv. Mater. 34, e2108400 (2022). https://doi.org/10.1002/adma.202108400
X. Wang, S. Wang, H. Wang, W. Tu, Y. Zhao et al., Hybrid electrolyte with dual-anion-aggregated solvation sheath for stabilizing high-voltage lithium-metal batteries. Adv. Mater. 33, e2007945 (2021). https://doi.org/10.1002/adma.202007945
Q. Zhao, N.W. Utomo, A.L. Kocen, S. Jin, Y. Deng et al., Upgrading carbonate electrolytes for ultra-stable practical lithium metal batteries. Angew. Chem. Int. Ed. 61, e202116214 (2022). https://doi.org/10.1002/anie.202116214
L. Fu, X. Wang, L. Wang, M. Wan, Y. Li et al., A salt-in-metal anode: stabilizing the solid electrolyte interphase to enable prolonged battery cycling. Adv. Funct. Mater. 31, 2010602 (2021). https://doi.org/10.1002/adfm.202010602
Y. Jie, X. Liu, Z. Lei, S. Wang, Y. Chen et al., Enabling high-voltage lithium metal batteries by manipulating solvation structure in ester electrolyte. Angew. Chem. Int. Ed. Engl. 59, 3505–3510 (2020). https://doi.org/10.1002/anie.201914250
S. Li, W. Zhang, Q. Wu, L. Fan, X. Wang et al., Synergistic dual-additive electrolyte enables practical lithium-metal batteries. Angew. Chem. Int. Ed. 59, 14935–14941 (2020). https://doi.org/10.1002/anie.202004853
Z. Guo, X. Song, Q. Zhang, N. Zhan, Z. Hou et al., Cationic size effect promoting dissolution of nitrate anion in ester electrolyte for lithium–metal batteries. ACS Energy Lett. 7, 569–576 (2022). https://doi.org/10.1021/acsenergylett.1c02495
Z. Wang, F. Qi, L. Yin, Y. Shi, C. Sun, et al., An Anion–Tuned Solid Electrolyte Interphase with Fast Ion Transfer Kinetics for Stable Lithium Anodes. Adv. Energy Mater. 10, 1903843 (2020). https://doi.org/10.1002/aenm.201903843
X. Wang, H. Wang, M. Liu, W. Li, In-plane lithium growth enabled by artificial nitrate-rich layer: fast deposition kinetics and desolvation/orption mechanism. Small 16, e2000769 (2020). https://doi.org/10.1002/smll.202000769
H. Yang, X. Chen, N. Yao, N. Piao, Z. Wang et al., Dissolution–precipitation dynamics in ester electrolyte for high-stability lithium metal batteries. ACS Energy Lett. 6, 1413–1421 (2021). https://doi.org/10.1021/acsenergylett.1c00149
J. Chen, Z. Sun, Z. Li, J. Liu, X. Yao et al., Highly reversible Li metal anode using a binary alloy interface. Chem. Commun. 58, 13455–13458 (2022). https://doi.org/10.1039/d2cc05051j
D. Xiao, Q. Li, D. Luo, G. Li, H. Liu et al., Regulating the Li+-solvation structure of ester electrolyte for high-energy-density lithium metal batteries. Small 16, 2004688 (2020). https://doi.org/10.1002/smll.202004688
P. Xiao, R. Luo, Z. Piao, C. Li, J. Wang et al., High-performance lithium metal batteries with a wide operating temperature range in carbonate electrolyte by manipulating interfacial chemistry. ACS Energy Lett. 6, 3170–3179 (2021). https://doi.org/10.1021/acsenergylett.1c01528
K. Xu, Y. Lam, S.S. Zhang, T.R. Jow, T.B. Curtis, Solvation sheath of Li+ in nonaqueous electrolytes and its implication of graphite/electrolyte interface chemistry. J. Phys. Chem. C 111, 7411–7421 (2007). https://doi.org/10.1021/jp068691u
X.-R. Chen, Y.-X. Yao, C. Yan, R. Zhang, X.-B. Cheng et al., A diffusion: reaction competition mechanism to tailor lithium deposition for lithium-metal batteries. Angew. Chem. Int. Ed. 59, 7743–7747 (2020). https://doi.org/10.1002/anie.202000375
P. Bai, X. Ji, J. Zhang, W. Zhang, S. Hou et al., Formation of LiF-rich cathode-electrolyte interphase by electrolyte reduction. Angew. Chem. Int. Ed. 61, 2202731 (2022). https://doi.org/10.1002/anie.202202731
W. Zhang, Y. Lu, L. Wan, P. Zhou, Y. Xia et al., Engineering a passivating electric double layer for high performance lithium metal batteries. Nat. Commun. 13, 2029 (2022). https://doi.org/10.1038/s41467-022-29761-z