Facet Engineering of Advanced Electrocatalysts Toward Hydrogen/Oxygen Evolution Reactions
Corresponding Author: Shuijian He
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 52
Abstract
The electrocatalytic water splitting technology can generate high-purity hydrogen without emitting carbon dioxide, which is in favor of relieving environmental pollution and energy crisis and achieving carbon neutrality. Electrocatalysts can effectively reduce the reaction energy barrier and increase the reaction efficiency. Facet engineering is considered as a promising strategy in controlling the ratio of desired crystal planes on the surface. Owing to the anisotropy, crystal planes with different orientations usually feature facet-dependent physical and chemical properties, leading to differences in the adsorption energies of oxygen or hydrogen intermediates, and thus exhibit varied electrocatalytic activity toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this review, a brief introduction of the basic concepts, fundamental understanding of the reaction mechanisms as well as key evaluating parameters for both HER and OER are provided. The formation mechanisms of the crystal facets are comprehensively overviewed aiming to give scientific theory guides to realize dominant crystal planes. Subsequently, three strategies of selective capping agent, selective etching agent, and coordination modulation to tune crystal planes are comprehensively summarized. Then, we present an overview of significant contributions of facet-engineered catalysts toward HER, OER, and overall water splitting. In particular, we highlight that density functional theory calculations play an indispensable role in unveiling the structure–activity correlation between the crystal plane and catalytic activity. Finally, the remaining challenges in facet-engineered catalysts for HER and OER are provided and future prospects for designing advanced facet-engineered electrocatalysts are discussed.
Highlights:
1 The crystal facets featured with facet-dependent physical and chemical properties can exhibit varied electrocatalytic activity toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) attributed to their anisotropy.
2 The highly active exposed crystal facets enable increased mass activity of active sites, lower reaction energy barriers, and enhanced catalytic reaction rates for HER and OER.
3 The formation mechanism and control strategy of the crystal facet, significant contributions as well as challenges and perspectives of facet-engineered catalysts for HER and OER are provided.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Chatenet, B.G. Pollet, D.R. Dekel, F. Dionigi, J. Deseure et al., Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem. Soc. Rev. 51(11), 4583–4762 (2022). https://doi.org/10.1039/d0cs01079k
- D.H. Yang, Y. Tao, X. Ding, B.H. Han, Porous organic polymers for electrocatalysis. Chem. Soc. Rev. 51(2), 761–791 (2022). https://doi.org/10.1039/d1cs00887k
- J. Zhu, L. Hu, P. Zhao, L.Y.S. Lee, K.Y. Wong, Recent advances in electrocatalytic hydrogen evolution using nanops. Chem. Rev. 120(2), 851–918 (2020). https://doi.org/10.1021/acs.chemrev.9b00248
- Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Norskov et al., Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(146), 6321–6333 (2017). https://doi.org/10.1126/science.aad4998
- C. Du, P. Li, Z. Zhuang, Z. Fang, S. He et al., Highly porous nanostructures: rational fabrication and promising application in energy electrocatalysis. Coord. Chem. Rev. 466, 214604 (2022). https://doi.org/10.1016/j.ccr.2022.214604
- L. Zhang, R. Li, H. Zang, H. Tan, Z. Kang et al., Advanced hydrogen evolution electrocatalysts promising sustainable hydrogen and chlor-alkali co-production. Energy Environ. Sci. 14(12), 6191–6210 (2021). https://doi.org/10.1039/d1ee02798k
- B. You, M.T. Tang, C. Tsai, F. Abild-Pedersen, X. Zheng et al., Enhancing electrocatalytic water splitting by strain engineering. Adv. Mater. 31(17), 1807001 (2019). https://doi.org/10.1002/adma.201807001
- B. You, X. Liu, N. Jiang, Y. Sun, A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J. Am. Chem. Soc. 138(41), 13639–13646 (2016). https://doi.org/10.1021/jacs.6b07127
- P. Aggarwal, D. Sarkar, K. Awasthi, P.W. Menezes, Functional role of single-atom catalysts in electrocatalytic hydrogen evolution: current developments and future challenges. Coord. Chem. Rev. 452, 214289 (2022). https://doi.org/10.1016/j.ccr.2021.214289
- K. Chen, Z. Wang, L. Wang, X. Wu, B. Hu et al., Boron nanosheet-supported Rh catalysts for hydrogen evolution: a new territory for the strong metal-support interaction effect. Nano-Micro Lett. 13(1), 138 (2021). https://doi.org/10.1007/s40820-021-00662-y
- L. Li, P. Wang, Q. Shao, X. Huang, Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 49(10), 3072–3106 (2020). https://doi.org/10.1039/d0cs00013b
- Z. Zhang, X. Wu, Z. Kou, N. Song, G. Nie et al., Rational design of electrospun nanofiber-typed electrocatalysts for water splitting: a review. Chem. Eng. J. 428, 131133–131145 (2022). https://doi.org/10.1016/j.cej.2021.131133
- X. Fu, R. Shi, S. Jiao, M. Li, Q. Li, Structural design for electrocatalytic water splitting to realize industrial-scale deployment: strategies, advances, and perspectives. J. Energy Chem. 70, 129–153 (2022). https://doi.org/10.1016/j.jechem.2022.02.010
- J.N. Hausmann, R. Schlögl, P.W. Menezes, M. Driess, Is direct seawater splitting economically meaningful? Energy Environ. Sci. 14(7), 3679–3685 (2021). https://doi.org/10.1039/d0ee03659e
- S. Sanati, A. Morsali, H. García, First-row transition metal-based materials derived from bimetallic metal-organic frameworks as highly efficient electrocatalysts for electrochemical water splitting. Energy Environ. Sci. 15, 3119 (2022). https://doi.org/10.1039/d1ee03614a
- W. Li, C. Wang, X. Lu, Conducting polymers-derived fascinating electrocatalysts for advanced hydrogen and oxygen electrocatalysis. Coord. Chem. Rev. 464, 214555 (2022). https://doi.org/10.1016/j.ccr.2022.214555
- S. Jin, Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? ACS Energy Lett. 2(8), 1937–1938 (2017). https://doi.org/10.1021/acsenergylett.7b00679
- K. Zhu, X. Zhu, W. Yang, Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts. Angew. Chem. Int. Ed. 58(5), 1252–1265 (2019). https://doi.org/10.1002/anie.201802923
- M. Yu, E. Budiyanto, H. Tuysuz, Principles of water electrolysis and recent progress in cobalt-, nickel-, and iron-based oxides for the oxygen evolution reaction. Angew. Chem. Int. Ed. 60, 2–26 (2021). https://doi.org/10.1002/anie.202103824
- Z.P. Wu, H. Zhang, S. Zuo, Y. Wang, S.L. Zhang et al., Manipulating the local coordination and electronic structures for efficient electrocatalytic oxygen evolution. Adv. Mater. 33, 2103004 (2021). https://doi.org/10.1002/adma.202103004
- Q. Liang, J. Chen, F. Wang, Y. Li, Transition metal-based metal-organic frameworks for oxygen evolution reaction. Coord. Chem. Rev. 424, 213488 (2020). https://doi.org/10.1016/j.ccr.2020.213488
- H. Sun, Z. Yan, F. Liu, W. Xu, F. Cheng et al., Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 32(3), 1806326 (2020). https://doi.org/10.1002/adma.201806326
- B. You, Y. Sun, Innovative strategies for electrocatalytic water splitting. Acc. Chem. Res. 51(7), 1571–1580 (2018). https://doi.org/10.1021/acs.accounts.8b00002
- J. Yin, J. Jin, H. Lin, Z. Yin, J. Li et al., Optimized metal chalcogenides for boosting water splitting. Adv. Sci. 7(10), 1903070 (2020). https://doi.org/10.1002/advs.201903070
- J. Hou, Y. Wu, B. Zhang, S. Cao, Z. Li et al., Rational design of nanoarray architectures for electrocatalytic water splitting. Adv. Funct. Mater. 29(20), 1808367 (2019). https://doi.org/10.1002/adfm.201808367
- Q. Shi, C. Zhu, D. Du, Y. Lin, Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chem. Soc. Rev. 48(12), 3181–3192 (2019). https://doi.org/10.1039/c8cs00671g
- T. Kwon, T. Kim, Y. Son, K. Lee, Dopants in the design of noble metal nanop electrocatalysts and their effect on surface energy and coordination chemistry at the nanocrystal surface. Adv. Energy Mater. 11(22), 2100265 (2021). https://doi.org/10.1002/aenm.202100265
- Z. Chen, X. Duan, W. Wei, S. Wang, B.J. Ni, Iridium-based nanomaterials for electrochemical water splitting. Nano Energy 78, 105270–105297 (2020). https://doi.org/10.1016/j.nanoen.2020.105270
- J.S. Kim, B. Kim, H. Kim, K. Kang, Recent progress on multimetal oxide catalysts for the oxygen evolution reaction. Adv. Energy Mater. 8(11), 1702774 (2018). https://doi.org/10.1002/aenm.201702774
- C. Xiao, B.A. Lu, P. Xue, N. Tian, Z. Zhou et al., High-index-facet- and high-surface-energy nanocrystals of metals and metal oxides as highly efficient catalysts. Joule 4(12), 2562–2598 (2020). https://doi.org/10.1016/j.joule.2020.10.002
- L. Tian, X. Zhai, X. Wang, J. Li, Z. Li, Advances in manganese-based oxides for oxygen evolution reaction. J. Mater. Chem. A 8(29), 14400–14414 (2020). https://doi.org/10.1039/d0ta05116k
- F. Song, L. Bai, A. Moysiadou, S. Lee, C. Hu et al., Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance. J. Am. Chem. Soc. 140(25), 7748–7759 (2018). https://doi.org/10.1021/jacs.8b04546
- S. Anantharaj, S.R. Ede, K. Sakthikumar, K. Karthick, S. Mishra et al., Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe Co, and Ni: a review. ACS Catal. 6(12), 8069–8097 (2016). https://doi.org/10.1021/acscatal.6b02479
- Y. Li, Z. Dong, L. Jiao, Multifunctional transition metal-based phosphides in energy-related electrocatalysis. Adv. Energy Mater. 10(11), 1902104 (2019). https://doi.org/10.1002/aenm.201902104
- Z. Pu, T. Liu, I.S. Amiinu, R. Cheng, P. Wang et al., Transition-metal phosphides: activity origin, energyrelated electrocatalysis applications, and synthetic strategies. Adv. Funct. Mater. 30(45), 2004009 (2020). https://doi.org/10.1002/adfm.202004009
- Y. Shi, B. Zhang, Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 45(6), 1529–1541 (2016). https://doi.org/10.1039/c5cs00434a
- Y. Wang, B. Kong, D. Zhao, H. Wang, C. Selomulya, Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today 15, 26–55 (2017). https://doi.org/10.1016/j.nantod.2017.06.006
- Y. Zhang, Q. Zhou, J. Zhu, Q. Yan, S.X. Dou et al., Nanostructured metal chalcogenides for energy storage and electrocatalysis. Adv. Funct. Mater. 27(35), 1702317–1702350 (2017). https://doi.org/10.1002/adfm.201702317
- X. Wu, H. Zhang, J. Zhang, X.W. Lou, Recent advances on transition metal dichalcogenides for electrochemical energy conversion. Adv. Mater. 33, 2008376 (2021). https://doi.org/10.1002/adma.202008376
- M.R. Gao, Y.F. Xu, J. Jiang, S.H. Yu, Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev. 42(7), 2986–3017 (2013). https://doi.org/10.1039/c2cs35310e
- D. Kong, J.J. Cha, H. Wang, H.R. Lee, Y. Cui, First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 6(12), 3553–3558 (2013). https://doi.org/10.1039/c3ee42413h
- P. Yu, F. Wang, T.A. Shifa, X. Zhan, X. Lou et al., Earth abundant materials beyond transition metal dichalcogenides: a focus on electrocatalyzing hydrogen evolution reaction. Nano Energy 58, 244–276 (2019). https://doi.org/10.1016/j.nanoen.2019.01.017
- C.C. Hou, Q. Xu, Metal-organic frameworks for energy. Adv. Energy Mater. 9(23), 1801307 (2018). https://doi.org/10.1002/aenm.201801307
- Z. Li, R. Gao, M. Feng, Y.P. Deng, D. Xiao et al., Modulating metal-organic frameworks as advanced oxygen electrocatalysts. Adv. Energy Mater. 11(16), 2003291 (2021). https://doi.org/10.1002/aenm.202003291
- J. Du, F. Li, L. Sun, Metal-organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction. Chem. Soc. Rev. 50(4), 2663–2695 (2021). https://doi.org/10.1039/d0cs01191f
- L. Jiao, J.Y.R. Seow, W.S. Skinner, Z.U. Wang, H.L. Jiang, Metal-organic frameworks: structures and functional applications. Mater. Today 27, 43–68 (2019). https://doi.org/10.1016/j.mattod.2018.10.038
- N. Jiang, B. You, M. Sheng, Y. Sun, Electrodeposited cobalt–phosphorous-derived films as competent bifunctional catalysts for overall water splitting. Angew. Chem. Int. Ed. 54(21), 6251–6254 (2015). https://doi.org/10.1002/anie.201501616
- B. You, Y. Zhang, Y. Jiao, K. Davey, S.Z. Qiao, Negative charging of transition-metal phosphides via strong electronic coupling for destabilization of alkaline water. Angew. Chem. Int. Ed. 58(34), 11796–11800 (2019). https://doi.org/10.1002/anie.201906683
- B. You, X. Liu, G. Hu, S. Gul, J. Yano et al., Universal surface engineering of transition metals for superior electrocatalytic hydrogen evolution in neutral water. J. Am. Chem. Soc. 139(35), 12283–12290 (2017). https://doi.org/10.1021/jacs.7b06434
- J. Shan, Y. Zheng, B. Shi, K. Davey, S.Z. Qiao, Regulating electrocatalysts via surface and interface engineering for acidic water electrooxidation. ACS Energy Lett. 4(11), 2719–2730 (2019). https://doi.org/10.1021/acsenergylett.9b01758
- Q. Shao, P. Wang, X. Huang, Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis. Adv. Funct. Mater. 29(3), 1806419 (2019). https://doi.org/10.1002/adfm.201806419
- Z. Yin, X. Liu, S. Chen, T. Ma, Y. Li, Interface engineering and anion engineering of Mo-based heterogeneous electrocatalysts for hydrogen evolution reaction. Energy Environ. Mater. (2022). https://doi.org/10.1002/eem2.12310
- Y. Huang, L.W. Jiang, B.Y. Shi, K.M. Ryan, J.J. Wang, Highly efficient oxygen evolution reaction enabled by phosphorus doping of the Fe electronic structure in iron-nickel selenide nanosheets. Adv. Sci. 8(18), 2101775 (2021). https://doi.org/10.1002/advs.202101775
- K. Zhao, W. Yang, L. Li, S. Wang, L. Wang et al., Discharge induced-activation of phosphorus-doped nickel oxyhydroxide for oxygen evolution reaction. Chem. Eng. J. 435, 135049–135057 (2022). https://doi.org/10.1016/j.cej.2022.135049
- H. Sun, W. Jung, Recent advances in doped ruthenium oxides as high-efficiency electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 9(28), 15506–15521 (2021). https://doi.org/10.1039/d1ta03452a
- S. Huang, Z. Jin, P. Ning, C. Gao, Y. Wu et al., Synergistically modulating electronic structure of NiS2 hierarchical architectures by phosphorus doping and sulfur-vacancies defect engineering enables efficient electrocatalytic water splitting. Chem. Eng. J. 420, 127630–127641 (2021). https://doi.org/10.1016/j.cej.2020.127630
- Y. Zhu, X. Liu, S. Jin, H. Chen, W. Lee et al., Anionic defect engineering of transition metal oxides for oxygen reduction and evolution reactions. J. Mater. Chem. A 7(11), 5875–5897 (2019). https://doi.org/10.1039/c8ta12477a
- C. Xie, D. Yan, W. Chen, Y. Zou, R. Chen et al., Insight into the design of defect electrocatalysts: from electronic structure to adsorption energy. Mater. Today 31, 47–68 (2019). https://doi.org/10.1016/j.mattod.2019.05.021
- P. Wang, Y. Luo, G. Zhang, Z. Chen, H. Ranganathan et al., Interface engineering of NixSy@MnOxHy nanorods to efficiently enhance overall-water-splitting activity and stability. Nano-Micro Lett. 14(1), 120–136 (2022). https://doi.org/10.1007/s40820-022-00860-2
- H. Xu, H. Shang, C. Wang, Y. Du, Surface and interface engineering of noble-metal-free electrocatalysts for efficient overall water splitting. Coord. Chem. Rev. 418, 213374 (2020). https://doi.org/10.1016/j.ccr.2020.213374
- C.-F. Li, L.-J. Xie, J.-W. Zhao, L.-F. Gu, J.-Q. Wu et al., Interfacial electronic modulation by Fe2O3/NiFe-LDHs heterostructures for efficient oxygen evolution at high current density. Appl. Catal. B 306, 121097 (2022). https://doi.org/10.1016/j.apcatb.2022.121097
- R. Li, Y. Li, P. Yang, P. Ren, D. Wang et al., Synergistic interface engineering and structural optimization of non-noble metal telluride-nitride electrocatalysts for sustainably overall seawater electrolysis. Appl. Catal. B 318, 121834 (2022). https://doi.org/10.1016/j.apcatb.2022.121834
- L. Zhang, C. Lu, F. Ye, R. Pang, Y. Liu et al., Selenic acid etching assisted vacancy engineering for designing highly active electrocatalysts toward the oxygen evolution reaction. Adv. Mater. 33(14), 2007523 (2021). https://doi.org/10.1002/adma.202007523
- L. Zhang, C. Lu, F. Ye, Z. Wu, Y. Wang et al., Vacancies boosting strategy enabling enhanced oxygen evolution activity in a library of novel amorphous selenite electrocatalysts. Appl. Catal. B 284, 119758 (2021). https://doi.org/10.1016/j.apcatb.2020.119758
- H. Jiang, L. Yan, S. Zhang, Y. Zhao, X. Yang et al., Electrochemical surface restructuring of phosphorus-doped carbon@MoP electrocatalysts for hydrogen evolution. Nano-Micro Lett. 13(1), 215 (2021). https://doi.org/10.1007/s40820-021-00737-w
- R. Li, H. Xu, P. Yang, D. Wang, Y. Li et al., Synergistic interfacial and doping engineering of heterostructured NiCo(OH)x-CoyW as an efficient alkaline hydrogen evolution electrocatalyst. Nano-Micro Lett. 13(1), 120 (2021). https://doi.org/10.1007/s40820-021-00639-x
- G. Qian, J. Chen, T. Yu, J. Liu, L. Luo et al., Three-phase heterojunction nimo-based nano-needle for water splitting at industrial alkaline condition. Nano-Micro Lett. 14(1), 20 (2021). https://doi.org/10.1007/s40820-021-00744-x
- G. Qian, J. Chen, T. Yu, L. Luo, S. Yin, N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet heterojunction for enhanced water electrolysis activity at high current density. Nano-Micro Lett. 13(1), 77 (2021). https://doi.org/10.1007/s40820-021-00607-5
- Z. Wu, T. Liao, S. Wang, J.A. Mudiyanselage, A.S. Micallef et al., Conversion of catalytically inert 2d bismuth oxide nanosheets for effective electrochemical hydrogen evolution reaction catalysis via oxygen vacancy concentration modulation. Nano-Micro Lett. 14(1), 90 (2022). https://doi.org/10.1007/s40820-022-00832-6
- H. Wu, T. Yang, Y. Du, L. Shen, G.W. Ho, Identification of facet-governing reactivity in hematite for oxygen evolution. Adv. Mater. 30(52), 1804341 (2018). https://doi.org/10.1002/adma.201804341
- K.A. Stoerzinger, L. Qiao, M.D. Biegalski, Y. Shao-Horn, Orientation-dependent oxygen evolution activities of rutile IrO2 and RuO2. J. Phys. Chem. Lett. 5(10), 1636–1641 (2014). https://doi.org/10.1021/jz500610u
- S. Wang, G. Liu, L. Wang, Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting. Chem. Rev. 119(8), 5192–5247 (2019). https://doi.org/10.1021/acs.chemrev.8b00584
- H. Hu, B. Chang, X. Sun, Q. Huo, B. Zhang et al., Intrinsic properties of macroscopically tuned gallium nitride single-crystalline facets for electrocatalytic hydrogen evolution. Chem. Eur. J. 25(44), 10420–10426 (2019). https://doi.org/10.1002/chem.201901395
- M. Peng, J. Huang, Y. Zhu, H. Zhou, Z. Hu et al., Structural anisotropy determining the oxygen evolution mechanism of strongly correlated perovskite nickelate electrocatalyst. ACS Sustain. Chem. Eng. 9(11), 4262–4270 (2021). https://doi.org/10.1021/acssuschemeng.1c00596
- B. Owens-Baird, J.P.S. Sousa, Y. Ziouani, D.Y. Petrovykh, N.A. Zarkevich et al., Crystallographic facet selective HER catalysis: exemplified in FeP and NiP2 single crystals. Chem. Sci. 11(19), 5007–5016 (2020). https://doi.org/10.1039/d0sc00676a
- C. Zhang, S. Yang, D. Rao, Theoretical study the component and facet dependence of HER performance on nickel phosphides surfaces. Int. J. Hydrog. Energy 47(5), 2992–3000 (2021). https://doi.org/10.1016/j.ijhydene.2021.10.254
- L. Yang, K. Zhang, H. Chen, L. Shi, X. Liang et al., An ultrathin two-dimensional iridium-based perovskite oxide electrocatalyst with highly efficient 001 facets for acidic water oxidation. J. Energy Chem. 66, 619–627 (2022). https://doi.org/10.1016/j.jechem.2021.09.016
- M. Risch, D.M. Morales, J. Villalobos, D. Antipin, What X-ray absorption spectroscopy can tell us about the active state of earth-abundant electrocatalysts for the oxygen evolution reaction. Angew. Chem. Int. Ed. 61(50), e202211949 (2022). https://doi.org/10.1002/anie.202211949
- C. Wu, Y. Sun, Z. Yang, J. Hu, T.-Y. Ding et al., Tuning the spin state of Co3+ by crystal facet engineering for enhancing the oxygen evolution reaction activity. Chem. Mater. 34(23), 10509–10516 (2022). https://doi.org/10.1021/acs.chemmater.2c02574
- J. Wan, D. Liu, H. Xiao, H. Rong, S. Guan et al., Facet engineering in metal organic frameworks to improve their electrochemical activity for water oxidation. Chem. Commun. 56(31), 4316–4319 (2020). https://doi.org/10.1039/d0cc00700e
- T. Wu, M.L. Stone, M.J. Shearer, M.J. Stolt, I.A. Guzei et al., Crystallographic facet dependence of the hydrogen evolution reaction on CoPS: theory and experiments. ACS Catal. 8(2), 1143–1152 (2018). https://doi.org/10.1021/acscatal.7b03167
- Y. Liang, Y. Yang, K. Xu, T. Yu, S. Yao et al., Crystal plane dependent electrocatalytic performance of NiS2 nanocrystals for hydrogen evolution reaction. J. Catal. 381, 63–69 (2020). https://doi.org/10.1016/j.jcat.2019.10.038
- T. Maiyalagan, K.R. Chemelewski, A. Manthiram, Role of the morphology and surface planes on the catalytic activity of spinel LiMn1.5Ni0.5O4 for oxygen evolution reaction. ACS Catal. 4(2), 421–425 (2014). https://doi.org/10.1021/cs400981d
- H. Zhao, L. Yu, L. Zhang, L. Dai, F. Yao et al., Facet engineering in ultrathin two-dimensional NiFe metal-organic frameworks by coordination modulation for enhanced electrocatalytic water oxidation. ACS Sustain. Chem. Eng. 9(32), 10892–10901 (2021). https://doi.org/10.1021/acssuschemeng.1c03385
- T. Odedairo, X. Yan, X. Yao, K.K. Ostrikov, Z. Zhu, Hexagonal sphericon hematite with high performance for water oxidation. Adv. Mater. 29(46), 1703792 (2017). https://doi.org/10.1002/adma.201703792
- Y. Shan, X. Deng, X. Lu, C. Gao, Y. Li et al., Surface facets dependent oxygen evolution reaction of single Cu2O nanops. Chin. Chem. Lett. 33, 5158–5161 (2022). https://doi.org/10.1016/j.cclet.2022.03.010
- S. Sun, X. Zhang, J. Cui, Q. Yang, S. Liang, High-index faceted metal oxide micro-/nanostructures: a review on their characterization, synthesis and applications. Nanoscale 11(34), 15739–15762 (2019). https://doi.org/10.1039/c9nr05107d
- Y. Zhang, W. Xie, J. Ma, L. Chen, C. Chen et al., Active facet determination of layered double hydroxide for oxygen evolution reaction. J. Energy Chem. 60, 127–134 (2021). https://doi.org/10.1016/j.jechem.2020.12.038
- J. Noh, H. Li, O.I. Osman, S.G. Aziz, P. Winget et al., Impact of hydroxylation and hydration on the reactivity of α-Fe2O3 (0001) and (102) surfaces under environmental and electrochemical conditions. Adv. Energy Mater. 8(21), 1800545 (2018). https://doi.org/10.1002/aenm.201800545
- Z. Liu, C. Yuan, F. Teng, Crystal facets-predominated oxygen evolution reaction activity of earth abundant CoMoO4 electrocatalyst. J. Alloys Compd. 781, 460–466 (2019). https://doi.org/10.1016/j.jallcom.2018.12.026
- J. Yang, G. Ning, L. Yu, Y. Wang, C. Luan et al., Morphology controllable synthesis of PtNi concave nanocubes enclosed by high-index facets supported on porous graphene for enhanced hydrogen evolution reaction. J. Mater. Chem. A 7(30), 17790–17796 (2019). https://doi.org/10.1039/c9ta03442k
- L.L. Feng, G. Yu, Y. Wu, G.D. Li, H. Li et al., High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 137(44), 14023–14026 (2015). https://doi.org/10.1021/jacs.5b08186
- C. Zhang, F. Zheng, Z. Zhang, D. Xiang, C. Cheng et al., Fabrication of hollow pompon-like Co3O4 nanostructures with rich defects and high-index facet exposure for enhanced oxygen evolution catalysis. J. Mater. Chem. A 7(15), 9059–9067 (2019). https://doi.org/10.1039/c9ta00330d
- Z. Kou, K. Xi, Z. Pu, S. Mu, Constructing carbon-cohered high-index (222) faceted tantalum carbide nanocrystals as a robust hydrogen evolution catalyst. Nano Energy 36, 374–380 (2017). https://doi.org/10.1016/j.nanoen.2017.04.057
- L. Li, C. Sun, B. Shang, Q. Li, J. Lei et al., Tailoring the facets of Ni3S2 as a bifunctional electrocatalyst for high-performance overall water-splitting. J. Mater. Chem. A 7(30), 18003–18011 (2019). https://doi.org/10.1039/c9ta05578a
- R. Wei, M. Fang, G. Dong, C. Lan, L. Shu et al., High-index faceted porous Co3O4 nanosheets with oxygen vacancies for highly efficient water oxidation. ACS Appl. Mater. Interfaces 10(8), 7079–7086 (2018). https://doi.org/10.1021/acsami.7b18208
- J. Xiao, S. Liu, N. Tian, Z.Y. Zhou, H.X. Liu et al., Synthesis of convex hexoctahedral Pt micro/nanocrystals with high-index facets and electrochemistry-mediated shape evolution. J. Am. Chem. Soc. 135(50), 18754–18757 (2013). https://doi.org/10.1021/ja410583b
- B. Jiang, Y. Qiu, D. Tian, Y. Zhang, X. Song et al., Crystal facet engineering induced active tin dioxide nanocatalysts for highly stable lithium–sulfur batteries. Adv. Energy Mater. 11(48), 2102995 (2021). https://doi.org/10.1002/aenm.202102995
- G. Liu, J.C. Yu, G.Q. Lu, H.M. Cheng, Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties. Chem. Commun. 47(24), 6763–6783 (2011). https://doi.org/10.1039/c1cc10665a
- X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44(15), 5148–5180 (2015). https://doi.org/10.1039/c4cs00448e
- J. Wang, H. Kong, J. Zhang, Y. Hao, Z. Shao et al., Carbon-based electrocatalysts for sustainable energy applications. Prog. Mater. Sci. 116, 100717–100770 (2021). https://doi.org/10.1016/j.pmatsci.2020.100717
- B. You, S.Z. Qiao, Destabilizing alkaline water with 3d-metal (oxy)(hydr)oxides for improved hydrogen evolution. Chem. Eur. J. 27(2), 553–564 (2021). https://doi.org/10.1002/chem.202002503
- L. Sun, Q. Luo, Z. Dai, F. Ma, Material libraries for electrocatalytic overall water splitting. Coord. Chem. Rev. 444, 214049 (2021). https://doi.org/10.1016/j.ccr.2021.214049
- X. Liu, P. Wang, X. Liang, Q. Zhang, Z. Wang et al., Research progress and surface/interfacial regulation methods for electrophotocatalytic hydrogen production from water splitting. Mater. Today Energy 18, 100524–100555 (2020). https://doi.org/10.1016/j.mtener.2020.100524
- J. Wei, M. Zhou, A. Long, Y. Xue, H. Liao et al., Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nano-Micro Lett. 10(4), 75–89 (2018). https://doi.org/10.1007/s40820-018-0229-x
- Y. Xu, C. Wang, Y. Huang, J. Fu, Recent advances in electrocatalysts for neutral and large-current-density water electrolysis. Nano Energy 80, 105545 (2021). https://doi.org/10.1016/j.nanoen.2020.105545
- D. Strmcnik, P.P. Lopes, B. Genorio, V.R. Stamenkovic, N.M. Markovic, Design principles for hydrogen evolution reaction catalyst materials. Nano Energy 29, 29–36 (2016). https://doi.org/10.1016/j.nanoen.2016.04.017
- S. Chandrasekaran, D. Ma, Y. Ge, L. Deng, C. Bowen et al., Electronic structure engineering on two-dimensional (2D) electrocatalytic materials for oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Nano Energy 77, 105080–1050123 (2020). https://doi.org/10.1016/j.nanoen.2020.105080
- C.G. Morales-Guio, L.A. Stern, X. Hu, Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 43(18), 6555–6569 (2014). https://doi.org/10.1039/c3cs60468c
- R. Miao, B. Dutta, S. Sahoo, J. He, W. Zhong et al., Mesoporous iron sulfide for highly efficient electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 139(39), 13604–13607 (2017). https://doi.org/10.1021/jacs.7b07044
- N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu et al., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46(2), 337–365 (2017). https://doi.org/10.1039/c6cs00328a
- G. Fu, X. Kang, Y. Zhang, X. Yang, L. Wang et al., Coordination effect-promoted durable Ni(OH)2 for energy-saving hydrogen evolution from water/methanol co-electrocatalysis. Nano-Micro Lett. 14(1), 200 (2022). https://doi.org/10.1007/s40820-022-00940-3
- A. Radwan, H. Jin, D. He, S. Mu, Design engineering, synthesis protocols, and energy applications of MOF-derived electrocatalysts. Nano-Micro Lett. 13(1), 132 (2021). https://doi.org/10.1007/s40820-021-00656-w
- J. Li, Oxygen evolution reaction in energy conversion and storage: design strategies under and beyond the energy scaling relationship. Nano-Micro Lett. 14(1), 112–143 (2022). https://doi.org/10.1007/s40820-022-00857-x
- N. Zhang, X. Feng, D. Rao, X. Deng, L. Cai et al., Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation. Nat. Commun. 11(1), 4066 (2020). https://doi.org/10.1038/s41467-020-17934-7
- F. Chen, Z. Wu, Z. Adler, H. Wang, Stability challenges of electrocatalytic oxygen evolution reaction: from mechanistic understanding to reactor design. Joule 5(7), 1704–1731 (2021). https://doi.org/10.1016/j.joule.2021.05.005
- L. Gao, X. Cui, C.D. Sewell, J. Li, Z. Lin, Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chem. Soc. Rev. 50(15), 8428–8469 (2021). https://doi.org/10.1039/d0cs00962h
- N. Zhang, Y. Chai, Lattice oxygen redox chemistry in solid-state electrocatalysts for water oxidation. Energy Environ. Sci. 14(9), 4647–4671 (2021). https://doi.org/10.1039/d1ee01277k
- Z. Chen, X. Duan, W. Wei, S. Wang, B.J. Ni, Electrocatalysts for acidic oxygen evolution reaction: achievements and perspectives. Nano Energy 78, 105392–105421 (2020). https://doi.org/10.1016/j.nanoen.2020.105392
- D. Liu, P. Zhou, H. Bai, H. Ai, X. Du et al., Development of perovskite oxide-based electrocatalysts for oxygen evolution reaction. Small 17(43), 2101605 (2021). https://doi.org/10.1002/smll.202101605
- H. Xu, J. Yuan, G. He, H. Chen, Current and future trends for spinel-type electrocatalysts in electrocatalytic oxygen evolution reaction. Coord. Chem. Rev. 475, 214869 (2023). https://doi.org/10.1016/j.ccr.2022.214869
- H. Sun, X. Xu, Y. Song, W. Zhou, Z. Shao, Designing high-valence metal sites for electrochemical water splitting. Adv. Funct. Mater. 31(16), 2009779 (2021). https://doi.org/10.1002/adfm.202009779
- L. An, C. Wei, M. Lu, H. Liu, Y. Chen et al., Recent development of oxygen evolution electrocatalysts in acidic environment. Adv. Mater. 33(20), 2006328 (2021). https://doi.org/10.1002/adma.202006328
- K. Zhang, R. Zou, Advanced transition metal-based OER electrocatalysts: current status, opportunities, and challenges. Small 17, 2100129 (2021). https://doi.org/10.1002/smll.202100129
- H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan et al., The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem 2(7), 724–761 (2010). https://doi.org/10.1002/cctc.201000126
- I.C. Man, H. Su, F. Calle-Vallejo, H.A. Hansen, J.I. Martínez et al., Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3(7), 1159–1165 (2011). https://doi.org/10.1002/cctc.201000397
- R. Gao, M. Deng, Q. Yan, Z. Fang, L. Li et al., Structural variations of metal oxide-based electrocatalysts for oxygen evolution reaction. Small Methods 5(12), 2100834 (2021). https://doi.org/10.1002/smtd.202100834
- J. Song, C. Wei, Z.F. Huang, C. Liu, L. Zeng et al., A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 49(7), 2196–2214 (2020). https://doi.org/10.1039/c9cs00607a
- A. Kulkarni, S. Siahrostami, A. Patel, J.K. Norskov, Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 118(5), 2302–2312 (2018). https://doi.org/10.1021/acs.chemrev.7b00488
- T. Guo, L. Li, Z. Wang, Recent development and future perspectives of amorphous transition metal-based electrocatalysts for oxygen evolution reaction. Adv. Energy Mater. 12, 2200827 (2022). https://doi.org/10.1002/aenm.202200827
- H.N. Nong, T. Reier, H. Oh, M. Gliech, P. Paciok et al., A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core–shell electrocatalysts. Nat. Catal. 1(11), 841–851 (2018). https://doi.org/10.1038/s41929-018-0153-y
- Y. Zhang, X. Zhu, G. Zhang, P. Shi, A. Wang, Rational catalyst design for oxygen evolution under acidic conditions: strategies toward enhanced electrocatalytic performance. J. Mater. Chem. A 9(10), 5890–5914 (2021). https://doi.org/10.1039/d0ta11982b
- Z. Lei, T. Wang, B. Zhao, W. Cai, Y. Liu et al., Recent progress in electrocatalysts for acidic water oxidation. Adv. Energy Mater. 10(23), 2000478 (2020). https://doi.org/10.1002/aenm.202000478
- Y.-C. Zhang, C. Han, J. Gao, L. Pan, J. Wu et al., NiCo-based electrocatalysts for the alkaline oxygen evolution reaction: a review. ACS Catal. 11(20), 12485–12509 (2021). https://doi.org/10.1021/acscatal.1c03260
- J. Yu, F. Yu, M. Yuen, C. Wang, Two-dimensional layered double hydroxides as a platform for electrocatalytic oxygen evolution. J. Mater. Chem. A 9(15), 9389–9430 (2021). https://doi.org/10.1039/d0ta11910e
- C. Wei, Z.J. Xu, The comprehensive understanding of 10 mA cmgeo−2 as an evaluation parameter for electrochemical water splitting. Small Methods 2(11), 1800168 (2018). https://doi.org/10.1002/smtd.201800168
- C.C. McCrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters et al., Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137(13), 4347–4357 (2015). https://doi.org/10.1021/ja510442p
- F. Liu, C. Shi, X. Guo, Z. He, L. Pan et al., Rational design of better hydrogen evolution electrocatalysts for water splitting: a review. Adv. Sci. 9, 2200307 (2022). https://doi.org/10.1002/advs.202200307
- C. Wang, B. Yan, Z. Chen, B. You, T. Liao et al., Recent advances in carbon substrate supported nonprecious nanoarrays for electrocatalytic oxygen evolution. J. Mater. Chem. A 9(46), 25773–25795 (2021). https://doi.org/10.1039/d1ta08039c
- Z.P. Wu, X.F. Lu, S.Q. Zang, X.W. Lou, Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction. Adv. Funct. Mater. 30(15), 1910274 (2020). https://doi.org/10.1002/adfm.201910274
- Z.Y. Yu, Y. Duan, X.Y. Feng, X. Yu, M.R. Gao et al., Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects. Adv. Mater. 33, 2007100 (2021). https://doi.org/10.1002/adma.202007100
- N.T. Thanh, N. Maclean, S. Mahiddine, Mechanisms of nucleation and growth of nanops in solution. Chem. Rev. 114(15), 7610–7630 (2014). https://doi.org/10.1021/cr400544s
- J.J.D. Yoreo, P.G. Vekilov, Principles of crystal nucleation and growth. Rev. Mineral. Geochem. 54(1), 57–93 (2003). https://doi.org/10.2113/0540057
- Q. Zhang, W. Li, L.P. Wen, J. Chen, Y. Xia, Controlling the shapes of silver nanocrystals with different capping agents. J. Am. Chem. Soc. 132, 8552–8553 (2010). https://doi.org/10.1002/chem.201000341
- H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu et al., Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453, 638–641 (2008). https://doi.org/10.1038/nature06964
- G. Liu, H.G. Yang, X. Wang, L. Cheng, J. Pan et al., Visible light responsive nitrogen doped anatase TiO2 sheets with dominant 001 facets derived from TiN. J. Am. Chem. Soc. 131(36), 12868–12869 (2009). https://doi.org/10.1021/ja903463q
- H.G. Yang, G. Liu, S.Z. Qiao, C.H. Sun, Y.G. Jin et al., Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant 001 facets. J. Am. Chem. Soc. 131(11), 4078–4083 (2009). https://doi.org/10.1021/ja808790p
- X. Han, Q. Kuang, M. Jin, Z. Xie, L. Zheng, Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 131, 3152–3153 (2009). https://doi.org/10.1021/ja8092373
- D.F. Zhang, H. Zhang, L. Guo, K. Zheng, X.D. Han et al., Delicate control of crystallographic facet-oriented Cu2O nanocrystals and the correlated adsorption ability. J. Mater. Chem. 19(29), 5220–5225 (2009). https://doi.org/10.1039/b816349a
- J. Pal, M. Ganguly, C. Mondal, A. Roy, Y. Negishi et al., Crystal-plane-dependent etching of cuprous oxide nanops of varied shapes and their application in visible light photocatalysis. J. Phys. Chem. C 117(46), 24640–24653 (2013). https://doi.org/10.1021/jp409271r
- Y.H. Tsai, C.Y. Chiu, M.H. Huang, Fabrication of diverse Cu2O nanoframes through face-selective etching. J. Phys. Chem. C 117(46), 24611–24617 (2013). https://doi.org/10.1021/jp4088018
- X. Liu, G. Dong, S. Li, G. Lu, Y. Bi, Direct observation of charge separation on anatase TiO2 crystals with selectively etched 001 facets. J. Am. Chem. Soc. 138(9), 2917–2920 (2016). https://doi.org/10.1021/jacs.5b12521
- X. Xiao, L. Zou, H. Pang, Q. Xu, Synthesis of micro/nanoscaled metal-organic frameworks and their direct electrochemical applications. Chem. Soc. Rev. 49(1), 301–331 (2020). https://doi.org/10.1039/c7cs00614d
- A. Umemura, S. Diring, S. Furukawa, H. Uehara, T. Tsuruoka et al., Morphology design of porous coordination polymer crystals by coordination modulation. J. Am. Chem. Soc. 133(39), 15506–15513 (2011). https://doi.org/10.1021/ja204233q
- S. Diring, S. Furukawa, Y. Takashima, T. Tsuruoka, S. Kitagawa, Controlled multiscale synthesis of porous coordination polymer in nano/micro regimes. Chem. Mater. 22(16), 4531–4538 (2010). https://doi.org/10.1021/cm101778g
- N. Sikdar, M. Bhogra, U.V. Waghmare, T.K. Maji, Oriented attachment growth of anisotropic meso/nanoscale MOFs: tunable surface area and CO2 separation. J. Mater. Chem. A 5(39), 20959–20968 (2017). https://doi.org/10.1039/c7ta02896b
- X. Yu, J. Zhao, L.R. Zheng, Y. Tong, M. Zhang et al., Hydrogen evolution reaction in alkaline media: alpha- or beta-nickel hydroxide on the surface of platinum? ACS Energy Lett. 3(1), 237–244 (2017). https://doi.org/10.1021/acsenergylett.7b01103
- J. Chen, Y. Ha, R. Wang, Y. Liu, H. Xu et al., Inner Co synergizing outer Ru supported on carbon nanotubes for efficient pH-universal hydrogen evolution catalysis. Nano-Micro Lett. 14(1), 186 (2022). https://doi.org/10.1007/s40820-022-00933-2
- H. Liao, D. Zherebetskyy, H. Xin, C. Czarnik, P. Ercius et al., Facet development during platinum nanocube growth. Science 345, 6199 (2014). https://doi.org/10.1126/science.1253149
- X. Bao, Y. Gong, X. Zheng, J. Chen, S. Mao et al., Highly performed platinum nanosheets synthesized under in situ reaction conditions for hydrogen generation. J. Energy Chem. 51, 272–279 (2020). https://doi.org/10.1016/j.jechem.2020.03.064
- H. Sun, Q. Zeng, C. Ye, Y. Zhu, F. Chen et al., Pt nanodendrites with (111) crystalline facet as an efficient, stable and pH-universal catalyst for electrochemical hydrogen production. Chin. Chem. Lett. 31(9), 2478–2482 (2020). https://doi.org/10.1016/j.cclet.2020.03.032
- C.Y. Chan, C.H. Chang, H.Y. Tuan, Synthesis of raspberry-like antimony-platinum (SbPt) nanops as highly active electrocatalysts for hydrogen evolution reaction. J. Colloid Interface Sci. 584, 729–737 (2021). https://doi.org/10.1016/j.jcis.2020.09.099
- T.R. Kuo, Y.C. Lee, H.L. Chou, S. M G, C.Y. Wei et al., Plasmon-enhanced hydrogen evolution on specific facet of silver nanocrystals. Chem. Mater. 31(10), 3722–3728 (2019). https://doi.org/10.1021/acs.chemmater.9b00652
- D. Xu, X. Liu, H. Lv, Y. Liu, S. Zhao et al., Ultrathin palladium nanosheets with selectively controlled surface facets. Chem. Sci. 9(19), 4451–4455 (2018). https://doi.org/10.1039/c8sc00605a
- H. Wang, Y. Xie, H. Cao, Y. Li, L. Li et al., Flower-like nickel phosphide microballs assembled by nanoplates with exposed high-energy (0 0 1) facets: efficient electrocatalyst for the hydrogen evolution reaction. Chemsuschem 10(24), 4899–4908 (2017). https://doi.org/10.1002/cssc.201701647
- Y.H. Chung, K. Gupta, J.H. Jang, H.S. Park, I. Jang et al., Rationalization of electrocatalysis of nickel phosphide nanowires for efficient hydrogen production. Nano Energy 26, 496–503 (2016). https://doi.org/10.1016/j.nanoen.2016.06.002
- E.J. Popczun, J.R. McKone, C.G. Read, A.J. Biacchi, A.M. Wiltrout et al., Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135(25), 9267–9270 (2013). https://doi.org/10.1021/ja403440e
- Q. Yan, X. Chen, T. Wei, G. Wang, M. Zhu et al., Hierarchical edge-rich nickel phosphide nanosheet arrays as efficient electrocatalysts toward hydrogen evolution in both alkaline and acidic conditions. ACS Sustain. Chem. Eng. 7(8), 7804–7811 (2019). https://doi.org/10.1021/acssuschemeng.8b06861
- P. Liu, J.A. Rodriguez, Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: the importance of ensemble effect. J. Am. Chem. Soc. 127, 14871–14878 (2005). https://doi.org/10.1021/ja0540019
- S. Ma, X. Qu, J. Huang, C. Zhang, G. Chen et al., Compositional and crystallographic design of Ni–Co phosphide heterointerfaced nanowires for high-rate, stable hydrogen generation at industry-relevant electrolysis current densities. Nano Energy 95, 106989–106999 (2022). https://doi.org/10.1016/j.nanoen.2022.106989
- L. Liao, C. Cheng, H. Zhou, Y. Qi, D. Li et al., Accelerating pH-universal hydrogen-evolving activity of a hierarchical hybrid of cobalt and dinickel phosphides by interfacial chemical bonds. Mater. Today Phys. 22, 100589–100597 (2022). https://doi.org/10.1016/j.mtphys.2021.100589
- X. Liu, Y. Li, Z. Cao, Z. Yin, T. Ma et al., Current progress of metal sulfides derived from metal-organic frameworks for advanced electrocatalysis: potential electrocatalysts with diverse applications. J. Mater. Chem. A 10(4), 1617–1641 (2022). https://doi.org/10.1039/d1ta09925f
- B. You, Y. Sun, Hierarchically porous nickel sulfide multifunctional superstructures. Adv. Energy Mater. 6(7), 1502333 (2016). https://doi.org/10.1002/aenm.201502333
- W. Zhong, B. Xiao, Z. Lin, Z. Wang, L. Huang et al., RhSe2: a superior 3D electrocatalyst with multiple active facets for hydrogen evolution reaction in both acid and alkaline solutions. Adv. Mater. 33(9), 2007894 (2021). https://doi.org/10.1002/adma.202007894
- Y. Li, Y. Wang, B. Pattengale, J. Yin, L. An et al., High-index faceted CuFeS2 nanosheets with enhanced behavior for boosting hydrogen evolution reaction. Nanoscale 9(26), 9230–9237 (2017). https://doi.org/10.1039/c7nr03182c
- Q. Gao, W. Zhang, Z. Shi, L. Yang, Y. Tang, Structural design and electronic modulation of transition-metal-carbide electrocatalysts toward efficient hydrogen evolution. Adv. Mater. 31(2), 1802880 (2019). https://doi.org/10.1002/adma.201802880
- C. Yang, R. Zhao, H. Xiang, J. Wu, W. Zhong et al., Ni-activated transition metal carbides for efficient hydrogen evolution in acidic and alkaline solutions. Adv. Energy Mater. 10(37), 2002260 (2020). https://doi.org/10.1002/aenm.202002260
- H. Xu, J. Wan, H. Zhang, L. Fang, L. Liu et al., A new platinum-like efficient electrocatalyst for hydrogen evolution reaction at all pH: single-crystal metallic interweaved V8C7 networks. Adv. Energy Mater. 8(23), 1800575 (2018). https://doi.org/10.1002/aenm.201800575
- J. Theerthagiri, S.J. Lee, A.P. Murthy, J. Madhavan, M.Y. Choi, Fundamental aspects and recent advances in transition metal nitrides as electrocatalysts for hydrogen evolution reaction: a review. Curr. Opin. Solid State Mater. Sci. 24(1), 100805–1008026 (2020). https://doi.org/10.1016/j.cossms.2020.100805
- N. Han, P. Liu, J. Jiang, L. Ai, Z. Shao et al., Recent advances in nanostructured metal nitrides for water splitting. J. Mater. Chem. A 6(41), 19912–19933 (2018). https://doi.org/10.1039/c8ta06529b
- M.S. Balogun, Y. Huang, W. Qiu, H. Yang, H. Ji et al., Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting. Mater. Today 20(8), 425–451 (2017). https://doi.org/10.1016/j.mattod.2017.03.019
- M. Xiang, M. Song, Q. Zhu, Y. Yang, C. Hu et al., Inducing two-dimensional single crystal TiN arrays with exposed 1 1 1 facets by a novel chemical vapor deposition with excellent electrocatalytic activity for hydrogen evolution reaction. Chem. Eng. J. 404, 126451–126458 (2021). https://doi.org/10.1016/j.cej.2020.126451
- K.A. Adegoke, N.W. Maxakato, Porous metal oxide electrocatalytic nanomaterials for energy conversion: oxygen defects and selection techniques. Coord. Chem. Rev. 457, 214389 (2022). https://doi.org/10.1016/j.ccr.2021.214389
- Y. Zhu, Q. Lin, Y. Zhong, H.A. Tahini, Z. Shao et al., Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts. Energy Environ. Sci. 13(10), 3361–3392 (2020). https://doi.org/10.1039/d0ee02485f
- Q. Liu, Z. Chen, Z. Yan, Y. Wang, E. Wang et al., Crystal-plane-dependent activity of spinel Co3O4 towards water splitting and the oxygen reduction reaction. ChemElectroChem 5(7), 1080–1086 (2018). https://doi.org/10.1002/celc.201701302
- J. Yu, Q. He, G. Yang, W. Zhou, Z. Shao et al., Recent advances and prospective in ruthenium-based materials for electrochemical water splitting. ACS Catal. 9(11), 9973–10011 (2019). https://doi.org/10.1021/acscatal.9b02457
- L. She, G. Zhao, T. Ma, J. Chen, W. Sun et al., On the durability of iridium-based electrocatalysts toward the oxygen evolution reaction under acid environment. Adv. Funct. Mater. 32(5), 2108465 (2021). https://doi.org/10.1002/adfm.202108465
- K.A. Stoerzinger, O. Diaz-Morales, M. Kolb, R.R. Rao, R. Frydendal et al., Orientation-dependent oxygen evolution on RuO2 without lattice exchange. ACS Energy Lett. 2(4), 876–881 (2017). https://doi.org/10.1021/acsenergylett.7b00135
- R.R. Rao, M.J. Kolb, L. Giordano, A.F. Pedersen, Y. Katayama et al., Operando identification of site-dependent water oxidation activity on ruthenium dioxide single-crystal surfaces. Nat. Catal. 3(6), 516–525 (2020). https://doi.org/10.1038/s41929-020-0457-6
- Y. Yang, Y. Yu, J. Li, Q. Chen, Y. Du et al., Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction. Nano-Micro Lett. 13(1), 160 (2021). https://doi.org/10.1007/s40820-021-00679-3
- F. Xue, X. Guo, B. Min, Y. Si, H. Huang et al., Unconventional high-index facet of iridium boosts oxygen evolution reaction: how the facet matters. ACS Catal. 11(13), 8239–8246 (2021). https://doi.org/10.1021/acscatal.1c01867
- X.F. Zhang, J.S. Li, W.S. You, Z.M. Zhu, Ag2–O with highly exposed 111 crystal facets for efficient electrochemical oxygen evolution: activity and mechanism. Chin. J. Catal. 41(11), 1706–1714 (2020). https://doi.org/10.1016/s1872-2067(20)63574-4
- J. Wang, J. Xu, Q. Wang, Z. Liu, X. Zhang et al., NiO nanobelts with exposed 110 crystal planes as an efficient electrocatalyst for the oxygen evolution reaction. Phys. Chem. Chem. Phys. 24(10), 6087–6092 (2022). https://doi.org/10.1039/d1cp05236e
- Y. Niu, Y. Yuan, Q. Zhang, F. Chang, L. Yang et al., Morphology-controlled synthesis of metal-organic frameworks derived lattice plane-altered iron oxide for efficient trifunctional electrocatalysts. Nano Energy 82, 105699–105707 (2021). https://doi.org/10.1016/j.nanoen.2020.105699
- W. Wang, Y. Zhang, X. Huang, Y. Bi, Engineering the surface atomic structure of FeVO4 nanocrystals for use as highly active and stable electrocatalysts for oxygen evolution. J. Mater. Chem. A 7(18), 10949–10953 (2019). https://doi.org/10.1039/c9ta02922b
- X. Peng, Y. Yan, X. Jin, C. Huang, W. Jin et al., Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting. Nano Energy 78, 105234–105256 (2020). https://doi.org/10.1016/j.nanoen.2020.105234
- F. Ye, L. Zhang, C. Lu, Z. Bao, Z. Wu et al., Realizing interfacial electron/hole redistribution and superhydrophilic surface through building heterostructural 2 nm Co0.85Se–NiSe nanograins for efficient overall water splittings. Small Methods 6(7), 2200459 (2022). https://doi.org/10.1002/smtd.202200459
- K. Dang, S. Zhang, X. Wang, W. Sun, L. Wang et al., Cobalt diselenide (001) surface with short-range Co–Co interaction triggering high-performance electrocatalytic oxygen evolution. Nano Res. 14(12), 4848–4856 (2021). https://doi.org/10.1007/s12274-021-3444-6
- C. Cai, Y. Mi, S. Han, Q. Wang, W. Liu et al., Engineering ordered dendrite-like nickel selenide as electrocatalyst. Electrochim. Acta 295, 92–98 (2019). https://doi.org/10.1016/j.electacta.2018.10.083
- L. Lv, Z. Yang, K. Chen, C. Wang, Y. Xiong, 2D layered double hydroxides for oxygen evolution reaction: from fundamental design to application. Adv. Energy Mater. 9(17), 1803358 (2019). https://doi.org/10.1002/aenm.201803358
- G. Fan, F. Li, D.G. Evans, X. Duan, Catalytic applications of layered double hydroxides: recent advances and perspectives. Chem. Soc. Rev. 43(20), 7040–7066 (2014). https://doi.org/10.1039/c4cs00160e
- D. Zhou, P. Li, X. Lin, A. McKinley, Y. Kuang et al., Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly. Chem. Soc. Rev. 50, 8790–8817 (2021). https://doi.org/10.1039/d1cs00186h
- D.P. Sahoo, K.K. Das, S. Mansingh, S. Sultana, K. Parida, Recent progress in first row transition metal Layered double hydroxide (LDH) based electrocatalysts towards water splitting: a review with insights on synthesis. Coord. Chem. Rev. 469, 214666 (2022). https://doi.org/10.1016/j.ccr.2022.214666
- Z. Cai, X. Bu, P. Wang, J.C. Ho, J. Yang et al., Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 7(10), 5069–5089 (2019). https://doi.org/10.1039/c8ta11273h
- L. Yang, Z. Liu, S. Zhu, L. Feng, W. Xing, Ni-based layered double hydroxide catalysts for oxygen evolution reaction. Mater. Today Phys. 16, 100292–100315 (2021). https://doi.org/10.1016/j.mtphys.2020.100292
- N. Zhang, B. Yang, Y. He, Y. He, X. Liu et al., Serpentine Ni3Ge2O5(OH)4 nanosheets with tailored layers and size for efficient oxygen evolution reactions. Small 14(48), 1803015 (2018). https://doi.org/10.1002/smll.201803015
- J.W. Zhao, Z.X. Shi, C.F. Li, L.F. Gu, G.R. Li, Boosting the electrocatalytic performance of NiFe layered double hydroxides for the oxygen evolution reaction by exposing the highly active edge plane (012). Chem. Sci. 12(2), 650–659 (2020). https://doi.org/10.1039/d0sc04196c
- F. Li, Y. Tian, S. Su, C. Wang, D.S. Li et al., Theoretical and experimental exploration of tri-metallic organic frameworks (t-MOFs) for efficient electrocatalytic oxygen evolution reaction. Appl. Catal. B 299, 120665–120674 (2021). https://doi.org/10.1016/j.apcatb.2021.120665
- S. Jin, How to effectively utilize MOFs for electrocatalysis. ACS Energy Lett. 4(6), 1443–1445 (2019). https://doi.org/10.1021/acsenergylett.9b01134
- W. Yang, X. Li, Y. Li, R. Zhu, H. Pang, Applications of metal-organic-framework-derived carbon materials. Adv. Mater. 31(6), 1804740 (2019). https://doi.org/10.1002/adma.201804740
- L. Jiao, Y. Wang, H.L. Jiang, Q. Xu, Metal-organic frameworks as platforms for catalytic applications. Adv. Mater. 30(37), 1703663 (2018). https://doi.org/10.1002/adma.201703663
- L. Xiao, Z. Wang, J. Guan, 2D MOFs and their derivatives for electrocatalytic applications: recent advances and new challenges. Coord. Chem. Rev. 472, 214777 (2022). https://doi.org/10.1016/j.ccr.2022.214777
- J.-E. Zhou, J. Chen, Y. Peng, Y. Zheng, A. Zeb et al., Metal-organic framework-derived transition metal sulfides and their composites for alkali-ion batteries: a review. Coord. Chem. Rev. 472, 214781 (2022). https://doi.org/10.1016/j.ccr.2022.214781
- Y. Xue, Y. Guo, Q. Zhang, Z. Xie, J. Wei et al., MOF-derived Co and Fe species loaded on N-doped carbon networks as efficient oxygen electrocatalysts for Zn-air batteries. Nano-Micro Lett. 14(1), 162 (2022). https://doi.org/10.1007/s40820-022-00890-w
- J. Li, J. Li, J. Ren, H. Hong, D. Liu et al., Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 14(1), 148 (2022). https://doi.org/10.1007/s40820-022-00889-3
- N.C.S. Selvam, L. Du, B.Y. Xia, P.J. Yoo, B. You, Reconstructed water oxidation electrocatalysts: the impact of surface dynamics on intrinsic activities. Adv. Funct. Mater. 31(12), 2008190 (2021). https://doi.org/10.1002/adfm.202008190
- J. Liu, W. Qiao, Z. Zhu, J. Hu, X. Xu, Chameleon-like reconstruction on redox catalysts adaptive to alkali water electrolysis. Small 18, 2202434 (2022). https://doi.org/10.1002/smll.202202434
- Y. Zeng, M. Zhao, Z. Huang, W. Zhu, J. Zheng et al., Surface reconstruction of water splitting electrocatalysts. Adv. Energy Mater. 12, 2201713 (2022). https://doi.org/10.1002/aenm.202201713
- Z. Chen, R. Zheng, M. Graś, W. Wei, G. Lota et al., Tuning electronic property and surface reconstruction of amorphous iron borides via W-P co-doping for highly efficient oxygen evolution. Appl. Catal. B. (2021). https://doi.org/10.1016/j.apcatb.2021.120037
- B. Zhou, R. Gao, J.J. Zou, H. Yang, Surface design strategy of catalysts for water electrolysis. Small 18, 2202336 (2022). https://doi.org/10.1002/smll.202202336
- L. Liu, Z. Jiang, L. Fang, H. Xu, H. Zhang et al., Probing the crystal plane effect of Co3O4 for enhanced electrocatalytic performance toward efficient overall water splitting. ACS Appl. Mater. Interfaces 9(33), 27736–27744 (2017). https://doi.org/10.1021/acsami.7b07793
- K. Wu, D. Shen, Q. Meng, J. Wang, Octahedral Co3O4 ps with high electrochemical surface area as electrocatalyst for water splitting. Electrochim. Acta 288, 82–90 (2018). https://doi.org/10.1016/j.electacta.2018.08.067
- L. Fang, Z. Jiang, H. Xu, L. Liu, Y. Guan et al., Crystal-plane engineering of NiCo2O4 electrocatalysts towards efficient overall water splitting. J. Catal. 357, 238–246 (2018). https://doi.org/10.1016/j.jcat.2017.11.017
- S. Deng, K. Zhang, D. Xie, Y. Zhang, Y. Zhang et al., High-index-faceted Ni3S2 branch arrays as bifunctional electrocatalysts for efficient water splitting. Nano-Micro Lett. 11(1), 12–23 (2019). https://doi.org/10.1007/s40820-019-0242-8
- J. Dong, F.Q. Zhang, Y. Yang, Y.B. Zhang, H. He et al., (003)-Facet-exposed Ni3S2 nanoporous thin films on nickel foil for efficient water splitting. Appl. Catal. B 243, 693–702 (2019). https://doi.org/10.1016/j.apcatb.2018.11.003
- S. Chu, W. Chen, G. Chen, J. Huang, R. Zhang et al., Holey Ni-Cu phosphide nanosheets as a highly efficient and stable electrocatalyst for hydrogen evolution. Appl. Catal. B 243, 537–545 (2019). https://doi.org/10.1016/j.apcatb.2018.10.063
- C. Zhang, Y. Huang, Y. Yu, J. Zhang, S. Zhuo et al., Sub-11 nm ultrathin porous CoP nanosheets with dominant reactive {200}. facets: a high mass activity and efficient electrocatalyst for the hydrogen evolution reaction. Chem. Sci. 8(4), 2769–2775 (2017). https://doi.org/10.1039/c6sc05687c
- H. Xu, Z. Jiang, H. Zhang, L. Liu, L. Fang et al., New efficient electrocatalyst for the hydrogen evolution reaction: erecting a V2Se9@Poly(3,4-ethylenedioxythiophene) nanosheet array with a specific active facet exposed. ACS Energy Lett. 2(5), 1099–1104 (2017). https://doi.org/10.1021/acsenergylett.7b00209
- C.H. Kuo, I.M. Mosa, S. Thanneeru, V. Sharma, L. Zhang et al., Facet-dependent catalytic activity of MnO electrocatalysts for oxygen reduction and oxygen evolution reactions. Chem. Commun. 51(27), 5951–5954 (2015). https://doi.org/10.1039/c5cc01152c
- B. Chang, J. Yang, Y. Shao, L. Zhang, W. Fan et al., Bimetallic NiMoN nanowires with a preferential reactive facet: an ultraefficient bifunctional electrocatalyst for overall water splitting. Chemsuschem 11(18), 3198–3207 (2018). https://doi.org/10.1002/cssc.201801337
References
M. Chatenet, B.G. Pollet, D.R. Dekel, F. Dionigi, J. Deseure et al., Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem. Soc. Rev. 51(11), 4583–4762 (2022). https://doi.org/10.1039/d0cs01079k
D.H. Yang, Y. Tao, X. Ding, B.H. Han, Porous organic polymers for electrocatalysis. Chem. Soc. Rev. 51(2), 761–791 (2022). https://doi.org/10.1039/d1cs00887k
J. Zhu, L. Hu, P. Zhao, L.Y.S. Lee, K.Y. Wong, Recent advances in electrocatalytic hydrogen evolution using nanops. Chem. Rev. 120(2), 851–918 (2020). https://doi.org/10.1021/acs.chemrev.9b00248
Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Norskov et al., Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(146), 6321–6333 (2017). https://doi.org/10.1126/science.aad4998
C. Du, P. Li, Z. Zhuang, Z. Fang, S. He et al., Highly porous nanostructures: rational fabrication and promising application in energy electrocatalysis. Coord. Chem. Rev. 466, 214604 (2022). https://doi.org/10.1016/j.ccr.2022.214604
L. Zhang, R. Li, H. Zang, H. Tan, Z. Kang et al., Advanced hydrogen evolution electrocatalysts promising sustainable hydrogen and chlor-alkali co-production. Energy Environ. Sci. 14(12), 6191–6210 (2021). https://doi.org/10.1039/d1ee02798k
B. You, M.T. Tang, C. Tsai, F. Abild-Pedersen, X. Zheng et al., Enhancing electrocatalytic water splitting by strain engineering. Adv. Mater. 31(17), 1807001 (2019). https://doi.org/10.1002/adma.201807001
B. You, X. Liu, N. Jiang, Y. Sun, A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J. Am. Chem. Soc. 138(41), 13639–13646 (2016). https://doi.org/10.1021/jacs.6b07127
P. Aggarwal, D. Sarkar, K. Awasthi, P.W. Menezes, Functional role of single-atom catalysts in electrocatalytic hydrogen evolution: current developments and future challenges. Coord. Chem. Rev. 452, 214289 (2022). https://doi.org/10.1016/j.ccr.2021.214289
K. Chen, Z. Wang, L. Wang, X. Wu, B. Hu et al., Boron nanosheet-supported Rh catalysts for hydrogen evolution: a new territory for the strong metal-support interaction effect. Nano-Micro Lett. 13(1), 138 (2021). https://doi.org/10.1007/s40820-021-00662-y
L. Li, P. Wang, Q. Shao, X. Huang, Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 49(10), 3072–3106 (2020). https://doi.org/10.1039/d0cs00013b
Z. Zhang, X. Wu, Z. Kou, N. Song, G. Nie et al., Rational design of electrospun nanofiber-typed electrocatalysts for water splitting: a review. Chem. Eng. J. 428, 131133–131145 (2022). https://doi.org/10.1016/j.cej.2021.131133
X. Fu, R. Shi, S. Jiao, M. Li, Q. Li, Structural design for electrocatalytic water splitting to realize industrial-scale deployment: strategies, advances, and perspectives. J. Energy Chem. 70, 129–153 (2022). https://doi.org/10.1016/j.jechem.2022.02.010
J.N. Hausmann, R. Schlögl, P.W. Menezes, M. Driess, Is direct seawater splitting economically meaningful? Energy Environ. Sci. 14(7), 3679–3685 (2021). https://doi.org/10.1039/d0ee03659e
S. Sanati, A. Morsali, H. García, First-row transition metal-based materials derived from bimetallic metal-organic frameworks as highly efficient electrocatalysts for electrochemical water splitting. Energy Environ. Sci. 15, 3119 (2022). https://doi.org/10.1039/d1ee03614a
W. Li, C. Wang, X. Lu, Conducting polymers-derived fascinating electrocatalysts for advanced hydrogen and oxygen electrocatalysis. Coord. Chem. Rev. 464, 214555 (2022). https://doi.org/10.1016/j.ccr.2022.214555
S. Jin, Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? ACS Energy Lett. 2(8), 1937–1938 (2017). https://doi.org/10.1021/acsenergylett.7b00679
K. Zhu, X. Zhu, W. Yang, Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts. Angew. Chem. Int. Ed. 58(5), 1252–1265 (2019). https://doi.org/10.1002/anie.201802923
M. Yu, E. Budiyanto, H. Tuysuz, Principles of water electrolysis and recent progress in cobalt-, nickel-, and iron-based oxides for the oxygen evolution reaction. Angew. Chem. Int. Ed. 60, 2–26 (2021). https://doi.org/10.1002/anie.202103824
Z.P. Wu, H. Zhang, S. Zuo, Y. Wang, S.L. Zhang et al., Manipulating the local coordination and electronic structures for efficient electrocatalytic oxygen evolution. Adv. Mater. 33, 2103004 (2021). https://doi.org/10.1002/adma.202103004
Q. Liang, J. Chen, F. Wang, Y. Li, Transition metal-based metal-organic frameworks for oxygen evolution reaction. Coord. Chem. Rev. 424, 213488 (2020). https://doi.org/10.1016/j.ccr.2020.213488
H. Sun, Z. Yan, F. Liu, W. Xu, F. Cheng et al., Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 32(3), 1806326 (2020). https://doi.org/10.1002/adma.201806326
B. You, Y. Sun, Innovative strategies for electrocatalytic water splitting. Acc. Chem. Res. 51(7), 1571–1580 (2018). https://doi.org/10.1021/acs.accounts.8b00002
J. Yin, J. Jin, H. Lin, Z. Yin, J. Li et al., Optimized metal chalcogenides for boosting water splitting. Adv. Sci. 7(10), 1903070 (2020). https://doi.org/10.1002/advs.201903070
J. Hou, Y. Wu, B. Zhang, S. Cao, Z. Li et al., Rational design of nanoarray architectures for electrocatalytic water splitting. Adv. Funct. Mater. 29(20), 1808367 (2019). https://doi.org/10.1002/adfm.201808367
Q. Shi, C. Zhu, D. Du, Y. Lin, Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chem. Soc. Rev. 48(12), 3181–3192 (2019). https://doi.org/10.1039/c8cs00671g
T. Kwon, T. Kim, Y. Son, K. Lee, Dopants in the design of noble metal nanop electrocatalysts and their effect on surface energy and coordination chemistry at the nanocrystal surface. Adv. Energy Mater. 11(22), 2100265 (2021). https://doi.org/10.1002/aenm.202100265
Z. Chen, X. Duan, W. Wei, S. Wang, B.J. Ni, Iridium-based nanomaterials for electrochemical water splitting. Nano Energy 78, 105270–105297 (2020). https://doi.org/10.1016/j.nanoen.2020.105270
J.S. Kim, B. Kim, H. Kim, K. Kang, Recent progress on multimetal oxide catalysts for the oxygen evolution reaction. Adv. Energy Mater. 8(11), 1702774 (2018). https://doi.org/10.1002/aenm.201702774
C. Xiao, B.A. Lu, P. Xue, N. Tian, Z. Zhou et al., High-index-facet- and high-surface-energy nanocrystals of metals and metal oxides as highly efficient catalysts. Joule 4(12), 2562–2598 (2020). https://doi.org/10.1016/j.joule.2020.10.002
L. Tian, X. Zhai, X. Wang, J. Li, Z. Li, Advances in manganese-based oxides for oxygen evolution reaction. J. Mater. Chem. A 8(29), 14400–14414 (2020). https://doi.org/10.1039/d0ta05116k
F. Song, L. Bai, A. Moysiadou, S. Lee, C. Hu et al., Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance. J. Am. Chem. Soc. 140(25), 7748–7759 (2018). https://doi.org/10.1021/jacs.8b04546
S. Anantharaj, S.R. Ede, K. Sakthikumar, K. Karthick, S. Mishra et al., Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe Co, and Ni: a review. ACS Catal. 6(12), 8069–8097 (2016). https://doi.org/10.1021/acscatal.6b02479
Y. Li, Z. Dong, L. Jiao, Multifunctional transition metal-based phosphides in energy-related electrocatalysis. Adv. Energy Mater. 10(11), 1902104 (2019). https://doi.org/10.1002/aenm.201902104
Z. Pu, T. Liu, I.S. Amiinu, R. Cheng, P. Wang et al., Transition-metal phosphides: activity origin, energyrelated electrocatalysis applications, and synthetic strategies. Adv. Funct. Mater. 30(45), 2004009 (2020). https://doi.org/10.1002/adfm.202004009
Y. Shi, B. Zhang, Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 45(6), 1529–1541 (2016). https://doi.org/10.1039/c5cs00434a
Y. Wang, B. Kong, D. Zhao, H. Wang, C. Selomulya, Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today 15, 26–55 (2017). https://doi.org/10.1016/j.nantod.2017.06.006
Y. Zhang, Q. Zhou, J. Zhu, Q. Yan, S.X. Dou et al., Nanostructured metal chalcogenides for energy storage and electrocatalysis. Adv. Funct. Mater. 27(35), 1702317–1702350 (2017). https://doi.org/10.1002/adfm.201702317
X. Wu, H. Zhang, J. Zhang, X.W. Lou, Recent advances on transition metal dichalcogenides for electrochemical energy conversion. Adv. Mater. 33, 2008376 (2021). https://doi.org/10.1002/adma.202008376
M.R. Gao, Y.F. Xu, J. Jiang, S.H. Yu, Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev. 42(7), 2986–3017 (2013). https://doi.org/10.1039/c2cs35310e
D. Kong, J.J. Cha, H. Wang, H.R. Lee, Y. Cui, First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 6(12), 3553–3558 (2013). https://doi.org/10.1039/c3ee42413h
P. Yu, F. Wang, T.A. Shifa, X. Zhan, X. Lou et al., Earth abundant materials beyond transition metal dichalcogenides: a focus on electrocatalyzing hydrogen evolution reaction. Nano Energy 58, 244–276 (2019). https://doi.org/10.1016/j.nanoen.2019.01.017
C.C. Hou, Q. Xu, Metal-organic frameworks for energy. Adv. Energy Mater. 9(23), 1801307 (2018). https://doi.org/10.1002/aenm.201801307
Z. Li, R. Gao, M. Feng, Y.P. Deng, D. Xiao et al., Modulating metal-organic frameworks as advanced oxygen electrocatalysts. Adv. Energy Mater. 11(16), 2003291 (2021). https://doi.org/10.1002/aenm.202003291
J. Du, F. Li, L. Sun, Metal-organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction. Chem. Soc. Rev. 50(4), 2663–2695 (2021). https://doi.org/10.1039/d0cs01191f
L. Jiao, J.Y.R. Seow, W.S. Skinner, Z.U. Wang, H.L. Jiang, Metal-organic frameworks: structures and functional applications. Mater. Today 27, 43–68 (2019). https://doi.org/10.1016/j.mattod.2018.10.038
N. Jiang, B. You, M. Sheng, Y. Sun, Electrodeposited cobalt–phosphorous-derived films as competent bifunctional catalysts for overall water splitting. Angew. Chem. Int. Ed. 54(21), 6251–6254 (2015). https://doi.org/10.1002/anie.201501616
B. You, Y. Zhang, Y. Jiao, K. Davey, S.Z. Qiao, Negative charging of transition-metal phosphides via strong electronic coupling for destabilization of alkaline water. Angew. Chem. Int. Ed. 58(34), 11796–11800 (2019). https://doi.org/10.1002/anie.201906683
B. You, X. Liu, G. Hu, S. Gul, J. Yano et al., Universal surface engineering of transition metals for superior electrocatalytic hydrogen evolution in neutral water. J. Am. Chem. Soc. 139(35), 12283–12290 (2017). https://doi.org/10.1021/jacs.7b06434
J. Shan, Y. Zheng, B. Shi, K. Davey, S.Z. Qiao, Regulating electrocatalysts via surface and interface engineering for acidic water electrooxidation. ACS Energy Lett. 4(11), 2719–2730 (2019). https://doi.org/10.1021/acsenergylett.9b01758
Q. Shao, P. Wang, X. Huang, Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis. Adv. Funct. Mater. 29(3), 1806419 (2019). https://doi.org/10.1002/adfm.201806419
Z. Yin, X. Liu, S. Chen, T. Ma, Y. Li, Interface engineering and anion engineering of Mo-based heterogeneous electrocatalysts for hydrogen evolution reaction. Energy Environ. Mater. (2022). https://doi.org/10.1002/eem2.12310
Y. Huang, L.W. Jiang, B.Y. Shi, K.M. Ryan, J.J. Wang, Highly efficient oxygen evolution reaction enabled by phosphorus doping of the Fe electronic structure in iron-nickel selenide nanosheets. Adv. Sci. 8(18), 2101775 (2021). https://doi.org/10.1002/advs.202101775
K. Zhao, W. Yang, L. Li, S. Wang, L. Wang et al., Discharge induced-activation of phosphorus-doped nickel oxyhydroxide for oxygen evolution reaction. Chem. Eng. J. 435, 135049–135057 (2022). https://doi.org/10.1016/j.cej.2022.135049
H. Sun, W. Jung, Recent advances in doped ruthenium oxides as high-efficiency electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 9(28), 15506–15521 (2021). https://doi.org/10.1039/d1ta03452a
S. Huang, Z. Jin, P. Ning, C. Gao, Y. Wu et al., Synergistically modulating electronic structure of NiS2 hierarchical architectures by phosphorus doping and sulfur-vacancies defect engineering enables efficient electrocatalytic water splitting. Chem. Eng. J. 420, 127630–127641 (2021). https://doi.org/10.1016/j.cej.2020.127630
Y. Zhu, X. Liu, S. Jin, H. Chen, W. Lee et al., Anionic defect engineering of transition metal oxides for oxygen reduction and evolution reactions. J. Mater. Chem. A 7(11), 5875–5897 (2019). https://doi.org/10.1039/c8ta12477a
C. Xie, D. Yan, W. Chen, Y. Zou, R. Chen et al., Insight into the design of defect electrocatalysts: from electronic structure to adsorption energy. Mater. Today 31, 47–68 (2019). https://doi.org/10.1016/j.mattod.2019.05.021
P. Wang, Y. Luo, G. Zhang, Z. Chen, H. Ranganathan et al., Interface engineering of NixSy@MnOxHy nanorods to efficiently enhance overall-water-splitting activity and stability. Nano-Micro Lett. 14(1), 120–136 (2022). https://doi.org/10.1007/s40820-022-00860-2
H. Xu, H. Shang, C. Wang, Y. Du, Surface and interface engineering of noble-metal-free electrocatalysts for efficient overall water splitting. Coord. Chem. Rev. 418, 213374 (2020). https://doi.org/10.1016/j.ccr.2020.213374
C.-F. Li, L.-J. Xie, J.-W. Zhao, L.-F. Gu, J.-Q. Wu et al., Interfacial electronic modulation by Fe2O3/NiFe-LDHs heterostructures for efficient oxygen evolution at high current density. Appl. Catal. B 306, 121097 (2022). https://doi.org/10.1016/j.apcatb.2022.121097
R. Li, Y. Li, P. Yang, P. Ren, D. Wang et al., Synergistic interface engineering and structural optimization of non-noble metal telluride-nitride electrocatalysts for sustainably overall seawater electrolysis. Appl. Catal. B 318, 121834 (2022). https://doi.org/10.1016/j.apcatb.2022.121834
L. Zhang, C. Lu, F. Ye, R. Pang, Y. Liu et al., Selenic acid etching assisted vacancy engineering for designing highly active electrocatalysts toward the oxygen evolution reaction. Adv. Mater. 33(14), 2007523 (2021). https://doi.org/10.1002/adma.202007523
L. Zhang, C. Lu, F. Ye, Z. Wu, Y. Wang et al., Vacancies boosting strategy enabling enhanced oxygen evolution activity in a library of novel amorphous selenite electrocatalysts. Appl. Catal. B 284, 119758 (2021). https://doi.org/10.1016/j.apcatb.2020.119758
H. Jiang, L. Yan, S. Zhang, Y. Zhao, X. Yang et al., Electrochemical surface restructuring of phosphorus-doped carbon@MoP electrocatalysts for hydrogen evolution. Nano-Micro Lett. 13(1), 215 (2021). https://doi.org/10.1007/s40820-021-00737-w
R. Li, H. Xu, P. Yang, D. Wang, Y. Li et al., Synergistic interfacial and doping engineering of heterostructured NiCo(OH)x-CoyW as an efficient alkaline hydrogen evolution electrocatalyst. Nano-Micro Lett. 13(1), 120 (2021). https://doi.org/10.1007/s40820-021-00639-x
G. Qian, J. Chen, T. Yu, J. Liu, L. Luo et al., Three-phase heterojunction nimo-based nano-needle for water splitting at industrial alkaline condition. Nano-Micro Lett. 14(1), 20 (2021). https://doi.org/10.1007/s40820-021-00744-x
G. Qian, J. Chen, T. Yu, L. Luo, S. Yin, N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet heterojunction for enhanced water electrolysis activity at high current density. Nano-Micro Lett. 13(1), 77 (2021). https://doi.org/10.1007/s40820-021-00607-5
Z. Wu, T. Liao, S. Wang, J.A. Mudiyanselage, A.S. Micallef et al., Conversion of catalytically inert 2d bismuth oxide nanosheets for effective electrochemical hydrogen evolution reaction catalysis via oxygen vacancy concentration modulation. Nano-Micro Lett. 14(1), 90 (2022). https://doi.org/10.1007/s40820-022-00832-6
H. Wu, T. Yang, Y. Du, L. Shen, G.W. Ho, Identification of facet-governing reactivity in hematite for oxygen evolution. Adv. Mater. 30(52), 1804341 (2018). https://doi.org/10.1002/adma.201804341
K.A. Stoerzinger, L. Qiao, M.D. Biegalski, Y. Shao-Horn, Orientation-dependent oxygen evolution activities of rutile IrO2 and RuO2. J. Phys. Chem. Lett. 5(10), 1636–1641 (2014). https://doi.org/10.1021/jz500610u
S. Wang, G. Liu, L. Wang, Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting. Chem. Rev. 119(8), 5192–5247 (2019). https://doi.org/10.1021/acs.chemrev.8b00584
H. Hu, B. Chang, X. Sun, Q. Huo, B. Zhang et al., Intrinsic properties of macroscopically tuned gallium nitride single-crystalline facets for electrocatalytic hydrogen evolution. Chem. Eur. J. 25(44), 10420–10426 (2019). https://doi.org/10.1002/chem.201901395
M. Peng, J. Huang, Y. Zhu, H. Zhou, Z. Hu et al., Structural anisotropy determining the oxygen evolution mechanism of strongly correlated perovskite nickelate electrocatalyst. ACS Sustain. Chem. Eng. 9(11), 4262–4270 (2021). https://doi.org/10.1021/acssuschemeng.1c00596
B. Owens-Baird, J.P.S. Sousa, Y. Ziouani, D.Y. Petrovykh, N.A. Zarkevich et al., Crystallographic facet selective HER catalysis: exemplified in FeP and NiP2 single crystals. Chem. Sci. 11(19), 5007–5016 (2020). https://doi.org/10.1039/d0sc00676a
C. Zhang, S. Yang, D. Rao, Theoretical study the component and facet dependence of HER performance on nickel phosphides surfaces. Int. J. Hydrog. Energy 47(5), 2992–3000 (2021). https://doi.org/10.1016/j.ijhydene.2021.10.254
L. Yang, K. Zhang, H. Chen, L. Shi, X. Liang et al., An ultrathin two-dimensional iridium-based perovskite oxide electrocatalyst with highly efficient 001 facets for acidic water oxidation. J. Energy Chem. 66, 619–627 (2022). https://doi.org/10.1016/j.jechem.2021.09.016
M. Risch, D.M. Morales, J. Villalobos, D. Antipin, What X-ray absorption spectroscopy can tell us about the active state of earth-abundant electrocatalysts for the oxygen evolution reaction. Angew. Chem. Int. Ed. 61(50), e202211949 (2022). https://doi.org/10.1002/anie.202211949
C. Wu, Y. Sun, Z. Yang, J. Hu, T.-Y. Ding et al., Tuning the spin state of Co3+ by crystal facet engineering for enhancing the oxygen evolution reaction activity. Chem. Mater. 34(23), 10509–10516 (2022). https://doi.org/10.1021/acs.chemmater.2c02574
J. Wan, D. Liu, H. Xiao, H. Rong, S. Guan et al., Facet engineering in metal organic frameworks to improve their electrochemical activity for water oxidation. Chem. Commun. 56(31), 4316–4319 (2020). https://doi.org/10.1039/d0cc00700e
T. Wu, M.L. Stone, M.J. Shearer, M.J. Stolt, I.A. Guzei et al., Crystallographic facet dependence of the hydrogen evolution reaction on CoPS: theory and experiments. ACS Catal. 8(2), 1143–1152 (2018). https://doi.org/10.1021/acscatal.7b03167
Y. Liang, Y. Yang, K. Xu, T. Yu, S. Yao et al., Crystal plane dependent electrocatalytic performance of NiS2 nanocrystals for hydrogen evolution reaction. J. Catal. 381, 63–69 (2020). https://doi.org/10.1016/j.jcat.2019.10.038
T. Maiyalagan, K.R. Chemelewski, A. Manthiram, Role of the morphology and surface planes on the catalytic activity of spinel LiMn1.5Ni0.5O4 for oxygen evolution reaction. ACS Catal. 4(2), 421–425 (2014). https://doi.org/10.1021/cs400981d
H. Zhao, L. Yu, L. Zhang, L. Dai, F. Yao et al., Facet engineering in ultrathin two-dimensional NiFe metal-organic frameworks by coordination modulation for enhanced electrocatalytic water oxidation. ACS Sustain. Chem. Eng. 9(32), 10892–10901 (2021). https://doi.org/10.1021/acssuschemeng.1c03385
T. Odedairo, X. Yan, X. Yao, K.K. Ostrikov, Z. Zhu, Hexagonal sphericon hematite with high performance for water oxidation. Adv. Mater. 29(46), 1703792 (2017). https://doi.org/10.1002/adma.201703792
Y. Shan, X. Deng, X. Lu, C. Gao, Y. Li et al., Surface facets dependent oxygen evolution reaction of single Cu2O nanops. Chin. Chem. Lett. 33, 5158–5161 (2022). https://doi.org/10.1016/j.cclet.2022.03.010
S. Sun, X. Zhang, J. Cui, Q. Yang, S. Liang, High-index faceted metal oxide micro-/nanostructures: a review on their characterization, synthesis and applications. Nanoscale 11(34), 15739–15762 (2019). https://doi.org/10.1039/c9nr05107d
Y. Zhang, W. Xie, J. Ma, L. Chen, C. Chen et al., Active facet determination of layered double hydroxide for oxygen evolution reaction. J. Energy Chem. 60, 127–134 (2021). https://doi.org/10.1016/j.jechem.2020.12.038
J. Noh, H. Li, O.I. Osman, S.G. Aziz, P. Winget et al., Impact of hydroxylation and hydration on the reactivity of α-Fe2O3 (0001) and (102) surfaces under environmental and electrochemical conditions. Adv. Energy Mater. 8(21), 1800545 (2018). https://doi.org/10.1002/aenm.201800545
Z. Liu, C. Yuan, F. Teng, Crystal facets-predominated oxygen evolution reaction activity of earth abundant CoMoO4 electrocatalyst. J. Alloys Compd. 781, 460–466 (2019). https://doi.org/10.1016/j.jallcom.2018.12.026
J. Yang, G. Ning, L. Yu, Y. Wang, C. Luan et al., Morphology controllable synthesis of PtNi concave nanocubes enclosed by high-index facets supported on porous graphene for enhanced hydrogen evolution reaction. J. Mater. Chem. A 7(30), 17790–17796 (2019). https://doi.org/10.1039/c9ta03442k
L.L. Feng, G. Yu, Y. Wu, G.D. Li, H. Li et al., High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 137(44), 14023–14026 (2015). https://doi.org/10.1021/jacs.5b08186
C. Zhang, F. Zheng, Z. Zhang, D. Xiang, C. Cheng et al., Fabrication of hollow pompon-like Co3O4 nanostructures with rich defects and high-index facet exposure for enhanced oxygen evolution catalysis. J. Mater. Chem. A 7(15), 9059–9067 (2019). https://doi.org/10.1039/c9ta00330d
Z. Kou, K. Xi, Z. Pu, S. Mu, Constructing carbon-cohered high-index (222) faceted tantalum carbide nanocrystals as a robust hydrogen evolution catalyst. Nano Energy 36, 374–380 (2017). https://doi.org/10.1016/j.nanoen.2017.04.057
L. Li, C. Sun, B. Shang, Q. Li, J. Lei et al., Tailoring the facets of Ni3S2 as a bifunctional electrocatalyst for high-performance overall water-splitting. J. Mater. Chem. A 7(30), 18003–18011 (2019). https://doi.org/10.1039/c9ta05578a
R. Wei, M. Fang, G. Dong, C. Lan, L. Shu et al., High-index faceted porous Co3O4 nanosheets with oxygen vacancies for highly efficient water oxidation. ACS Appl. Mater. Interfaces 10(8), 7079–7086 (2018). https://doi.org/10.1021/acsami.7b18208
J. Xiao, S. Liu, N. Tian, Z.Y. Zhou, H.X. Liu et al., Synthesis of convex hexoctahedral Pt micro/nanocrystals with high-index facets and electrochemistry-mediated shape evolution. J. Am. Chem. Soc. 135(50), 18754–18757 (2013). https://doi.org/10.1021/ja410583b
B. Jiang, Y. Qiu, D. Tian, Y. Zhang, X. Song et al., Crystal facet engineering induced active tin dioxide nanocatalysts for highly stable lithium–sulfur batteries. Adv. Energy Mater. 11(48), 2102995 (2021). https://doi.org/10.1002/aenm.202102995
G. Liu, J.C. Yu, G.Q. Lu, H.M. Cheng, Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties. Chem. Commun. 47(24), 6763–6783 (2011). https://doi.org/10.1039/c1cc10665a
X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44(15), 5148–5180 (2015). https://doi.org/10.1039/c4cs00448e
J. Wang, H. Kong, J. Zhang, Y. Hao, Z. Shao et al., Carbon-based electrocatalysts for sustainable energy applications. Prog. Mater. Sci. 116, 100717–100770 (2021). https://doi.org/10.1016/j.pmatsci.2020.100717
B. You, S.Z. Qiao, Destabilizing alkaline water with 3d-metal (oxy)(hydr)oxides for improved hydrogen evolution. Chem. Eur. J. 27(2), 553–564 (2021). https://doi.org/10.1002/chem.202002503
L. Sun, Q. Luo, Z. Dai, F. Ma, Material libraries for electrocatalytic overall water splitting. Coord. Chem. Rev. 444, 214049 (2021). https://doi.org/10.1016/j.ccr.2021.214049
X. Liu, P. Wang, X. Liang, Q. Zhang, Z. Wang et al., Research progress and surface/interfacial regulation methods for electrophotocatalytic hydrogen production from water splitting. Mater. Today Energy 18, 100524–100555 (2020). https://doi.org/10.1016/j.mtener.2020.100524
J. Wei, M. Zhou, A. Long, Y. Xue, H. Liao et al., Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nano-Micro Lett. 10(4), 75–89 (2018). https://doi.org/10.1007/s40820-018-0229-x
Y. Xu, C. Wang, Y. Huang, J. Fu, Recent advances in electrocatalysts for neutral and large-current-density water electrolysis. Nano Energy 80, 105545 (2021). https://doi.org/10.1016/j.nanoen.2020.105545
D. Strmcnik, P.P. Lopes, B. Genorio, V.R. Stamenkovic, N.M. Markovic, Design principles for hydrogen evolution reaction catalyst materials. Nano Energy 29, 29–36 (2016). https://doi.org/10.1016/j.nanoen.2016.04.017
S. Chandrasekaran, D. Ma, Y. Ge, L. Deng, C. Bowen et al., Electronic structure engineering on two-dimensional (2D) electrocatalytic materials for oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Nano Energy 77, 105080–1050123 (2020). https://doi.org/10.1016/j.nanoen.2020.105080
C.G. Morales-Guio, L.A. Stern, X. Hu, Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 43(18), 6555–6569 (2014). https://doi.org/10.1039/c3cs60468c
R. Miao, B. Dutta, S. Sahoo, J. He, W. Zhong et al., Mesoporous iron sulfide for highly efficient electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 139(39), 13604–13607 (2017). https://doi.org/10.1021/jacs.7b07044
N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu et al., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46(2), 337–365 (2017). https://doi.org/10.1039/c6cs00328a
G. Fu, X. Kang, Y. Zhang, X. Yang, L. Wang et al., Coordination effect-promoted durable Ni(OH)2 for energy-saving hydrogen evolution from water/methanol co-electrocatalysis. Nano-Micro Lett. 14(1), 200 (2022). https://doi.org/10.1007/s40820-022-00940-3
A. Radwan, H. Jin, D. He, S. Mu, Design engineering, synthesis protocols, and energy applications of MOF-derived electrocatalysts. Nano-Micro Lett. 13(1), 132 (2021). https://doi.org/10.1007/s40820-021-00656-w
J. Li, Oxygen evolution reaction in energy conversion and storage: design strategies under and beyond the energy scaling relationship. Nano-Micro Lett. 14(1), 112–143 (2022). https://doi.org/10.1007/s40820-022-00857-x
N. Zhang, X. Feng, D. Rao, X. Deng, L. Cai et al., Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation. Nat. Commun. 11(1), 4066 (2020). https://doi.org/10.1038/s41467-020-17934-7
F. Chen, Z. Wu, Z. Adler, H. Wang, Stability challenges of electrocatalytic oxygen evolution reaction: from mechanistic understanding to reactor design. Joule 5(7), 1704–1731 (2021). https://doi.org/10.1016/j.joule.2021.05.005
L. Gao, X. Cui, C.D. Sewell, J. Li, Z. Lin, Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chem. Soc. Rev. 50(15), 8428–8469 (2021). https://doi.org/10.1039/d0cs00962h
N. Zhang, Y. Chai, Lattice oxygen redox chemistry in solid-state electrocatalysts for water oxidation. Energy Environ. Sci. 14(9), 4647–4671 (2021). https://doi.org/10.1039/d1ee01277k
Z. Chen, X. Duan, W. Wei, S. Wang, B.J. Ni, Electrocatalysts for acidic oxygen evolution reaction: achievements and perspectives. Nano Energy 78, 105392–105421 (2020). https://doi.org/10.1016/j.nanoen.2020.105392
D. Liu, P. Zhou, H. Bai, H. Ai, X. Du et al., Development of perovskite oxide-based electrocatalysts for oxygen evolution reaction. Small 17(43), 2101605 (2021). https://doi.org/10.1002/smll.202101605
H. Xu, J. Yuan, G. He, H. Chen, Current and future trends for spinel-type electrocatalysts in electrocatalytic oxygen evolution reaction. Coord. Chem. Rev. 475, 214869 (2023). https://doi.org/10.1016/j.ccr.2022.214869
H. Sun, X. Xu, Y. Song, W. Zhou, Z. Shao, Designing high-valence metal sites for electrochemical water splitting. Adv. Funct. Mater. 31(16), 2009779 (2021). https://doi.org/10.1002/adfm.202009779
L. An, C. Wei, M. Lu, H. Liu, Y. Chen et al., Recent development of oxygen evolution electrocatalysts in acidic environment. Adv. Mater. 33(20), 2006328 (2021). https://doi.org/10.1002/adma.202006328
K. Zhang, R. Zou, Advanced transition metal-based OER electrocatalysts: current status, opportunities, and challenges. Small 17, 2100129 (2021). https://doi.org/10.1002/smll.202100129
H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan et al., The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem 2(7), 724–761 (2010). https://doi.org/10.1002/cctc.201000126
I.C. Man, H. Su, F. Calle-Vallejo, H.A. Hansen, J.I. Martínez et al., Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3(7), 1159–1165 (2011). https://doi.org/10.1002/cctc.201000397
R. Gao, M. Deng, Q. Yan, Z. Fang, L. Li et al., Structural variations of metal oxide-based electrocatalysts for oxygen evolution reaction. Small Methods 5(12), 2100834 (2021). https://doi.org/10.1002/smtd.202100834
J. Song, C. Wei, Z.F. Huang, C. Liu, L. Zeng et al., A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 49(7), 2196–2214 (2020). https://doi.org/10.1039/c9cs00607a
A. Kulkarni, S. Siahrostami, A. Patel, J.K. Norskov, Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 118(5), 2302–2312 (2018). https://doi.org/10.1021/acs.chemrev.7b00488
T. Guo, L. Li, Z. Wang, Recent development and future perspectives of amorphous transition metal-based electrocatalysts for oxygen evolution reaction. Adv. Energy Mater. 12, 2200827 (2022). https://doi.org/10.1002/aenm.202200827
H.N. Nong, T. Reier, H. Oh, M. Gliech, P. Paciok et al., A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core–shell electrocatalysts. Nat. Catal. 1(11), 841–851 (2018). https://doi.org/10.1038/s41929-018-0153-y
Y. Zhang, X. Zhu, G. Zhang, P. Shi, A. Wang, Rational catalyst design for oxygen evolution under acidic conditions: strategies toward enhanced electrocatalytic performance. J. Mater. Chem. A 9(10), 5890–5914 (2021). https://doi.org/10.1039/d0ta11982b
Z. Lei, T. Wang, B. Zhao, W. Cai, Y. Liu et al., Recent progress in electrocatalysts for acidic water oxidation. Adv. Energy Mater. 10(23), 2000478 (2020). https://doi.org/10.1002/aenm.202000478
Y.-C. Zhang, C. Han, J. Gao, L. Pan, J. Wu et al., NiCo-based electrocatalysts for the alkaline oxygen evolution reaction: a review. ACS Catal. 11(20), 12485–12509 (2021). https://doi.org/10.1021/acscatal.1c03260
J. Yu, F. Yu, M. Yuen, C. Wang, Two-dimensional layered double hydroxides as a platform for electrocatalytic oxygen evolution. J. Mater. Chem. A 9(15), 9389–9430 (2021). https://doi.org/10.1039/d0ta11910e
C. Wei, Z.J. Xu, The comprehensive understanding of 10 mA cmgeo−2 as an evaluation parameter for electrochemical water splitting. Small Methods 2(11), 1800168 (2018). https://doi.org/10.1002/smtd.201800168
C.C. McCrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters et al., Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137(13), 4347–4357 (2015). https://doi.org/10.1021/ja510442p
F. Liu, C. Shi, X. Guo, Z. He, L. Pan et al., Rational design of better hydrogen evolution electrocatalysts for water splitting: a review. Adv. Sci. 9, 2200307 (2022). https://doi.org/10.1002/advs.202200307
C. Wang, B. Yan, Z. Chen, B. You, T. Liao et al., Recent advances in carbon substrate supported nonprecious nanoarrays for electrocatalytic oxygen evolution. J. Mater. Chem. A 9(46), 25773–25795 (2021). https://doi.org/10.1039/d1ta08039c
Z.P. Wu, X.F. Lu, S.Q. Zang, X.W. Lou, Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction. Adv. Funct. Mater. 30(15), 1910274 (2020). https://doi.org/10.1002/adfm.201910274
Z.Y. Yu, Y. Duan, X.Y. Feng, X. Yu, M.R. Gao et al., Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects. Adv. Mater. 33, 2007100 (2021). https://doi.org/10.1002/adma.202007100
N.T. Thanh, N. Maclean, S. Mahiddine, Mechanisms of nucleation and growth of nanops in solution. Chem. Rev. 114(15), 7610–7630 (2014). https://doi.org/10.1021/cr400544s
J.J.D. Yoreo, P.G. Vekilov, Principles of crystal nucleation and growth. Rev. Mineral. Geochem. 54(1), 57–93 (2003). https://doi.org/10.2113/0540057
Q. Zhang, W. Li, L.P. Wen, J. Chen, Y. Xia, Controlling the shapes of silver nanocrystals with different capping agents. J. Am. Chem. Soc. 132, 8552–8553 (2010). https://doi.org/10.1002/chem.201000341
H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu et al., Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453, 638–641 (2008). https://doi.org/10.1038/nature06964
G. Liu, H.G. Yang, X. Wang, L. Cheng, J. Pan et al., Visible light responsive nitrogen doped anatase TiO2 sheets with dominant 001 facets derived from TiN. J. Am. Chem. Soc. 131(36), 12868–12869 (2009). https://doi.org/10.1021/ja903463q
H.G. Yang, G. Liu, S.Z. Qiao, C.H. Sun, Y.G. Jin et al., Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant 001 facets. J. Am. Chem. Soc. 131(11), 4078–4083 (2009). https://doi.org/10.1021/ja808790p
X. Han, Q. Kuang, M. Jin, Z. Xie, L. Zheng, Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 131, 3152–3153 (2009). https://doi.org/10.1021/ja8092373
D.F. Zhang, H. Zhang, L. Guo, K. Zheng, X.D. Han et al., Delicate control of crystallographic facet-oriented Cu2O nanocrystals and the correlated adsorption ability. J. Mater. Chem. 19(29), 5220–5225 (2009). https://doi.org/10.1039/b816349a
J. Pal, M. Ganguly, C. Mondal, A. Roy, Y. Negishi et al., Crystal-plane-dependent etching of cuprous oxide nanops of varied shapes and their application in visible light photocatalysis. J. Phys. Chem. C 117(46), 24640–24653 (2013). https://doi.org/10.1021/jp409271r
Y.H. Tsai, C.Y. Chiu, M.H. Huang, Fabrication of diverse Cu2O nanoframes through face-selective etching. J. Phys. Chem. C 117(46), 24611–24617 (2013). https://doi.org/10.1021/jp4088018
X. Liu, G. Dong, S. Li, G. Lu, Y. Bi, Direct observation of charge separation on anatase TiO2 crystals with selectively etched 001 facets. J. Am. Chem. Soc. 138(9), 2917–2920 (2016). https://doi.org/10.1021/jacs.5b12521
X. Xiao, L. Zou, H. Pang, Q. Xu, Synthesis of micro/nanoscaled metal-organic frameworks and their direct electrochemical applications. Chem. Soc. Rev. 49(1), 301–331 (2020). https://doi.org/10.1039/c7cs00614d
A. Umemura, S. Diring, S. Furukawa, H. Uehara, T. Tsuruoka et al., Morphology design of porous coordination polymer crystals by coordination modulation. J. Am. Chem. Soc. 133(39), 15506–15513 (2011). https://doi.org/10.1021/ja204233q
S. Diring, S. Furukawa, Y. Takashima, T. Tsuruoka, S. Kitagawa, Controlled multiscale synthesis of porous coordination polymer in nano/micro regimes. Chem. Mater. 22(16), 4531–4538 (2010). https://doi.org/10.1021/cm101778g
N. Sikdar, M. Bhogra, U.V. Waghmare, T.K. Maji, Oriented attachment growth of anisotropic meso/nanoscale MOFs: tunable surface area and CO2 separation. J. Mater. Chem. A 5(39), 20959–20968 (2017). https://doi.org/10.1039/c7ta02896b
X. Yu, J. Zhao, L.R. Zheng, Y. Tong, M. Zhang et al., Hydrogen evolution reaction in alkaline media: alpha- or beta-nickel hydroxide on the surface of platinum? ACS Energy Lett. 3(1), 237–244 (2017). https://doi.org/10.1021/acsenergylett.7b01103
J. Chen, Y. Ha, R. Wang, Y. Liu, H. Xu et al., Inner Co synergizing outer Ru supported on carbon nanotubes for efficient pH-universal hydrogen evolution catalysis. Nano-Micro Lett. 14(1), 186 (2022). https://doi.org/10.1007/s40820-022-00933-2
H. Liao, D. Zherebetskyy, H. Xin, C. Czarnik, P. Ercius et al., Facet development during platinum nanocube growth. Science 345, 6199 (2014). https://doi.org/10.1126/science.1253149
X. Bao, Y. Gong, X. Zheng, J. Chen, S. Mao et al., Highly performed platinum nanosheets synthesized under in situ reaction conditions for hydrogen generation. J. Energy Chem. 51, 272–279 (2020). https://doi.org/10.1016/j.jechem.2020.03.064
H. Sun, Q. Zeng, C. Ye, Y. Zhu, F. Chen et al., Pt nanodendrites with (111) crystalline facet as an efficient, stable and pH-universal catalyst for electrochemical hydrogen production. Chin. Chem. Lett. 31(9), 2478–2482 (2020). https://doi.org/10.1016/j.cclet.2020.03.032
C.Y. Chan, C.H. Chang, H.Y. Tuan, Synthesis of raspberry-like antimony-platinum (SbPt) nanops as highly active electrocatalysts for hydrogen evolution reaction. J. Colloid Interface Sci. 584, 729–737 (2021). https://doi.org/10.1016/j.jcis.2020.09.099
T.R. Kuo, Y.C. Lee, H.L. Chou, S. M G, C.Y. Wei et al., Plasmon-enhanced hydrogen evolution on specific facet of silver nanocrystals. Chem. Mater. 31(10), 3722–3728 (2019). https://doi.org/10.1021/acs.chemmater.9b00652
D. Xu, X. Liu, H. Lv, Y. Liu, S. Zhao et al., Ultrathin palladium nanosheets with selectively controlled surface facets. Chem. Sci. 9(19), 4451–4455 (2018). https://doi.org/10.1039/c8sc00605a
H. Wang, Y. Xie, H. Cao, Y. Li, L. Li et al., Flower-like nickel phosphide microballs assembled by nanoplates with exposed high-energy (0 0 1) facets: efficient electrocatalyst for the hydrogen evolution reaction. Chemsuschem 10(24), 4899–4908 (2017). https://doi.org/10.1002/cssc.201701647
Y.H. Chung, K. Gupta, J.H. Jang, H.S. Park, I. Jang et al., Rationalization of electrocatalysis of nickel phosphide nanowires for efficient hydrogen production. Nano Energy 26, 496–503 (2016). https://doi.org/10.1016/j.nanoen.2016.06.002
E.J. Popczun, J.R. McKone, C.G. Read, A.J. Biacchi, A.M. Wiltrout et al., Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135(25), 9267–9270 (2013). https://doi.org/10.1021/ja403440e
Q. Yan, X. Chen, T. Wei, G. Wang, M. Zhu et al., Hierarchical edge-rich nickel phosphide nanosheet arrays as efficient electrocatalysts toward hydrogen evolution in both alkaline and acidic conditions. ACS Sustain. Chem. Eng. 7(8), 7804–7811 (2019). https://doi.org/10.1021/acssuschemeng.8b06861
P. Liu, J.A. Rodriguez, Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: the importance of ensemble effect. J. Am. Chem. Soc. 127, 14871–14878 (2005). https://doi.org/10.1021/ja0540019
S. Ma, X. Qu, J. Huang, C. Zhang, G. Chen et al., Compositional and crystallographic design of Ni–Co phosphide heterointerfaced nanowires for high-rate, stable hydrogen generation at industry-relevant electrolysis current densities. Nano Energy 95, 106989–106999 (2022). https://doi.org/10.1016/j.nanoen.2022.106989
L. Liao, C. Cheng, H. Zhou, Y. Qi, D. Li et al., Accelerating pH-universal hydrogen-evolving activity of a hierarchical hybrid of cobalt and dinickel phosphides by interfacial chemical bonds. Mater. Today Phys. 22, 100589–100597 (2022). https://doi.org/10.1016/j.mtphys.2021.100589
X. Liu, Y. Li, Z. Cao, Z. Yin, T. Ma et al., Current progress of metal sulfides derived from metal-organic frameworks for advanced electrocatalysis: potential electrocatalysts with diverse applications. J. Mater. Chem. A 10(4), 1617–1641 (2022). https://doi.org/10.1039/d1ta09925f
B. You, Y. Sun, Hierarchically porous nickel sulfide multifunctional superstructures. Adv. Energy Mater. 6(7), 1502333 (2016). https://doi.org/10.1002/aenm.201502333
W. Zhong, B. Xiao, Z. Lin, Z. Wang, L. Huang et al., RhSe2: a superior 3D electrocatalyst with multiple active facets for hydrogen evolution reaction in both acid and alkaline solutions. Adv. Mater. 33(9), 2007894 (2021). https://doi.org/10.1002/adma.202007894
Y. Li, Y. Wang, B. Pattengale, J. Yin, L. An et al., High-index faceted CuFeS2 nanosheets with enhanced behavior for boosting hydrogen evolution reaction. Nanoscale 9(26), 9230–9237 (2017). https://doi.org/10.1039/c7nr03182c
Q. Gao, W. Zhang, Z. Shi, L. Yang, Y. Tang, Structural design and electronic modulation of transition-metal-carbide electrocatalysts toward efficient hydrogen evolution. Adv. Mater. 31(2), 1802880 (2019). https://doi.org/10.1002/adma.201802880
C. Yang, R. Zhao, H. Xiang, J. Wu, W. Zhong et al., Ni-activated transition metal carbides for efficient hydrogen evolution in acidic and alkaline solutions. Adv. Energy Mater. 10(37), 2002260 (2020). https://doi.org/10.1002/aenm.202002260
H. Xu, J. Wan, H. Zhang, L. Fang, L. Liu et al., A new platinum-like efficient electrocatalyst for hydrogen evolution reaction at all pH: single-crystal metallic interweaved V8C7 networks. Adv. Energy Mater. 8(23), 1800575 (2018). https://doi.org/10.1002/aenm.201800575
J. Theerthagiri, S.J. Lee, A.P. Murthy, J. Madhavan, M.Y. Choi, Fundamental aspects and recent advances in transition metal nitrides as electrocatalysts for hydrogen evolution reaction: a review. Curr. Opin. Solid State Mater. Sci. 24(1), 100805–1008026 (2020). https://doi.org/10.1016/j.cossms.2020.100805
N. Han, P. Liu, J. Jiang, L. Ai, Z. Shao et al., Recent advances in nanostructured metal nitrides for water splitting. J. Mater. Chem. A 6(41), 19912–19933 (2018). https://doi.org/10.1039/c8ta06529b
M.S. Balogun, Y. Huang, W. Qiu, H. Yang, H. Ji et al., Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting. Mater. Today 20(8), 425–451 (2017). https://doi.org/10.1016/j.mattod.2017.03.019
M. Xiang, M. Song, Q. Zhu, Y. Yang, C. Hu et al., Inducing two-dimensional single crystal TiN arrays with exposed 1 1 1 facets by a novel chemical vapor deposition with excellent electrocatalytic activity for hydrogen evolution reaction. Chem. Eng. J. 404, 126451–126458 (2021). https://doi.org/10.1016/j.cej.2020.126451
K.A. Adegoke, N.W. Maxakato, Porous metal oxide electrocatalytic nanomaterials for energy conversion: oxygen defects and selection techniques. Coord. Chem. Rev. 457, 214389 (2022). https://doi.org/10.1016/j.ccr.2021.214389
Y. Zhu, Q. Lin, Y. Zhong, H.A. Tahini, Z. Shao et al., Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts. Energy Environ. Sci. 13(10), 3361–3392 (2020). https://doi.org/10.1039/d0ee02485f
Q. Liu, Z. Chen, Z. Yan, Y. Wang, E. Wang et al., Crystal-plane-dependent activity of spinel Co3O4 towards water splitting and the oxygen reduction reaction. ChemElectroChem 5(7), 1080–1086 (2018). https://doi.org/10.1002/celc.201701302
J. Yu, Q. He, G. Yang, W. Zhou, Z. Shao et al., Recent advances and prospective in ruthenium-based materials for electrochemical water splitting. ACS Catal. 9(11), 9973–10011 (2019). https://doi.org/10.1021/acscatal.9b02457
L. She, G. Zhao, T. Ma, J. Chen, W. Sun et al., On the durability of iridium-based electrocatalysts toward the oxygen evolution reaction under acid environment. Adv. Funct. Mater. 32(5), 2108465 (2021). https://doi.org/10.1002/adfm.202108465
K.A. Stoerzinger, O. Diaz-Morales, M. Kolb, R.R. Rao, R. Frydendal et al., Orientation-dependent oxygen evolution on RuO2 without lattice exchange. ACS Energy Lett. 2(4), 876–881 (2017). https://doi.org/10.1021/acsenergylett.7b00135
R.R. Rao, M.J. Kolb, L. Giordano, A.F. Pedersen, Y. Katayama et al., Operando identification of site-dependent water oxidation activity on ruthenium dioxide single-crystal surfaces. Nat. Catal. 3(6), 516–525 (2020). https://doi.org/10.1038/s41929-020-0457-6
Y. Yang, Y. Yu, J. Li, Q. Chen, Y. Du et al., Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction. Nano-Micro Lett. 13(1), 160 (2021). https://doi.org/10.1007/s40820-021-00679-3
F. Xue, X. Guo, B. Min, Y. Si, H. Huang et al., Unconventional high-index facet of iridium boosts oxygen evolution reaction: how the facet matters. ACS Catal. 11(13), 8239–8246 (2021). https://doi.org/10.1021/acscatal.1c01867
X.F. Zhang, J.S. Li, W.S. You, Z.M. Zhu, Ag2–O with highly exposed 111 crystal facets for efficient electrochemical oxygen evolution: activity and mechanism. Chin. J. Catal. 41(11), 1706–1714 (2020). https://doi.org/10.1016/s1872-2067(20)63574-4
J. Wang, J. Xu, Q. Wang, Z. Liu, X. Zhang et al., NiO nanobelts with exposed 110 crystal planes as an efficient electrocatalyst for the oxygen evolution reaction. Phys. Chem. Chem. Phys. 24(10), 6087–6092 (2022). https://doi.org/10.1039/d1cp05236e
Y. Niu, Y. Yuan, Q. Zhang, F. Chang, L. Yang et al., Morphology-controlled synthesis of metal-organic frameworks derived lattice plane-altered iron oxide for efficient trifunctional electrocatalysts. Nano Energy 82, 105699–105707 (2021). https://doi.org/10.1016/j.nanoen.2020.105699
W. Wang, Y. Zhang, X. Huang, Y. Bi, Engineering the surface atomic structure of FeVO4 nanocrystals for use as highly active and stable electrocatalysts for oxygen evolution. J. Mater. Chem. A 7(18), 10949–10953 (2019). https://doi.org/10.1039/c9ta02922b
X. Peng, Y. Yan, X. Jin, C. Huang, W. Jin et al., Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting. Nano Energy 78, 105234–105256 (2020). https://doi.org/10.1016/j.nanoen.2020.105234
F. Ye, L. Zhang, C. Lu, Z. Bao, Z. Wu et al., Realizing interfacial electron/hole redistribution and superhydrophilic surface through building heterostructural 2 nm Co0.85Se–NiSe nanograins for efficient overall water splittings. Small Methods 6(7), 2200459 (2022). https://doi.org/10.1002/smtd.202200459
K. Dang, S. Zhang, X. Wang, W. Sun, L. Wang et al., Cobalt diselenide (001) surface with short-range Co–Co interaction triggering high-performance electrocatalytic oxygen evolution. Nano Res. 14(12), 4848–4856 (2021). https://doi.org/10.1007/s12274-021-3444-6
C. Cai, Y. Mi, S. Han, Q. Wang, W. Liu et al., Engineering ordered dendrite-like nickel selenide as electrocatalyst. Electrochim. Acta 295, 92–98 (2019). https://doi.org/10.1016/j.electacta.2018.10.083
L. Lv, Z. Yang, K. Chen, C. Wang, Y. Xiong, 2D layered double hydroxides for oxygen evolution reaction: from fundamental design to application. Adv. Energy Mater. 9(17), 1803358 (2019). https://doi.org/10.1002/aenm.201803358
G. Fan, F. Li, D.G. Evans, X. Duan, Catalytic applications of layered double hydroxides: recent advances and perspectives. Chem. Soc. Rev. 43(20), 7040–7066 (2014). https://doi.org/10.1039/c4cs00160e
D. Zhou, P. Li, X. Lin, A. McKinley, Y. Kuang et al., Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly. Chem. Soc. Rev. 50, 8790–8817 (2021). https://doi.org/10.1039/d1cs00186h
D.P. Sahoo, K.K. Das, S. Mansingh, S. Sultana, K. Parida, Recent progress in first row transition metal Layered double hydroxide (LDH) based electrocatalysts towards water splitting: a review with insights on synthesis. Coord. Chem. Rev. 469, 214666 (2022). https://doi.org/10.1016/j.ccr.2022.214666
Z. Cai, X. Bu, P. Wang, J.C. Ho, J. Yang et al., Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 7(10), 5069–5089 (2019). https://doi.org/10.1039/c8ta11273h
L. Yang, Z. Liu, S. Zhu, L. Feng, W. Xing, Ni-based layered double hydroxide catalysts for oxygen evolution reaction. Mater. Today Phys. 16, 100292–100315 (2021). https://doi.org/10.1016/j.mtphys.2020.100292
N. Zhang, B. Yang, Y. He, Y. He, X. Liu et al., Serpentine Ni3Ge2O5(OH)4 nanosheets with tailored layers and size for efficient oxygen evolution reactions. Small 14(48), 1803015 (2018). https://doi.org/10.1002/smll.201803015
J.W. Zhao, Z.X. Shi, C.F. Li, L.F. Gu, G.R. Li, Boosting the electrocatalytic performance of NiFe layered double hydroxides for the oxygen evolution reaction by exposing the highly active edge plane (012). Chem. Sci. 12(2), 650–659 (2020). https://doi.org/10.1039/d0sc04196c
F. Li, Y. Tian, S. Su, C. Wang, D.S. Li et al., Theoretical and experimental exploration of tri-metallic organic frameworks (t-MOFs) for efficient electrocatalytic oxygen evolution reaction. Appl. Catal. B 299, 120665–120674 (2021). https://doi.org/10.1016/j.apcatb.2021.120665
S. Jin, How to effectively utilize MOFs for electrocatalysis. ACS Energy Lett. 4(6), 1443–1445 (2019). https://doi.org/10.1021/acsenergylett.9b01134
W. Yang, X. Li, Y. Li, R. Zhu, H. Pang, Applications of metal-organic-framework-derived carbon materials. Adv. Mater. 31(6), 1804740 (2019). https://doi.org/10.1002/adma.201804740
L. Jiao, Y. Wang, H.L. Jiang, Q. Xu, Metal-organic frameworks as platforms for catalytic applications. Adv. Mater. 30(37), 1703663 (2018). https://doi.org/10.1002/adma.201703663
L. Xiao, Z. Wang, J. Guan, 2D MOFs and their derivatives for electrocatalytic applications: recent advances and new challenges. Coord. Chem. Rev. 472, 214777 (2022). https://doi.org/10.1016/j.ccr.2022.214777
J.-E. Zhou, J. Chen, Y. Peng, Y. Zheng, A. Zeb et al., Metal-organic framework-derived transition metal sulfides and their composites for alkali-ion batteries: a review. Coord. Chem. Rev. 472, 214781 (2022). https://doi.org/10.1016/j.ccr.2022.214781
Y. Xue, Y. Guo, Q. Zhang, Z. Xie, J. Wei et al., MOF-derived Co and Fe species loaded on N-doped carbon networks as efficient oxygen electrocatalysts for Zn-air batteries. Nano-Micro Lett. 14(1), 162 (2022). https://doi.org/10.1007/s40820-022-00890-w
J. Li, J. Li, J. Ren, H. Hong, D. Liu et al., Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 14(1), 148 (2022). https://doi.org/10.1007/s40820-022-00889-3
N.C.S. Selvam, L. Du, B.Y. Xia, P.J. Yoo, B. You, Reconstructed water oxidation electrocatalysts: the impact of surface dynamics on intrinsic activities. Adv. Funct. Mater. 31(12), 2008190 (2021). https://doi.org/10.1002/adfm.202008190
J. Liu, W. Qiao, Z. Zhu, J. Hu, X. Xu, Chameleon-like reconstruction on redox catalysts adaptive to alkali water electrolysis. Small 18, 2202434 (2022). https://doi.org/10.1002/smll.202202434
Y. Zeng, M. Zhao, Z. Huang, W. Zhu, J. Zheng et al., Surface reconstruction of water splitting electrocatalysts. Adv. Energy Mater. 12, 2201713 (2022). https://doi.org/10.1002/aenm.202201713
Z. Chen, R. Zheng, M. Graś, W. Wei, G. Lota et al., Tuning electronic property and surface reconstruction of amorphous iron borides via W-P co-doping for highly efficient oxygen evolution. Appl. Catal. B. (2021). https://doi.org/10.1016/j.apcatb.2021.120037
B. Zhou, R. Gao, J.J. Zou, H. Yang, Surface design strategy of catalysts for water electrolysis. Small 18, 2202336 (2022). https://doi.org/10.1002/smll.202202336
L. Liu, Z. Jiang, L. Fang, H. Xu, H. Zhang et al., Probing the crystal plane effect of Co3O4 for enhanced electrocatalytic performance toward efficient overall water splitting. ACS Appl. Mater. Interfaces 9(33), 27736–27744 (2017). https://doi.org/10.1021/acsami.7b07793
K. Wu, D. Shen, Q. Meng, J. Wang, Octahedral Co3O4 ps with high electrochemical surface area as electrocatalyst for water splitting. Electrochim. Acta 288, 82–90 (2018). https://doi.org/10.1016/j.electacta.2018.08.067
L. Fang, Z. Jiang, H. Xu, L. Liu, Y. Guan et al., Crystal-plane engineering of NiCo2O4 electrocatalysts towards efficient overall water splitting. J. Catal. 357, 238–246 (2018). https://doi.org/10.1016/j.jcat.2017.11.017
S. Deng, K. Zhang, D. Xie, Y. Zhang, Y. Zhang et al., High-index-faceted Ni3S2 branch arrays as bifunctional electrocatalysts for efficient water splitting. Nano-Micro Lett. 11(1), 12–23 (2019). https://doi.org/10.1007/s40820-019-0242-8
J. Dong, F.Q. Zhang, Y. Yang, Y.B. Zhang, H. He et al., (003)-Facet-exposed Ni3S2 nanoporous thin films on nickel foil for efficient water splitting. Appl. Catal. B 243, 693–702 (2019). https://doi.org/10.1016/j.apcatb.2018.11.003
S. Chu, W. Chen, G. Chen, J. Huang, R. Zhang et al., Holey Ni-Cu phosphide nanosheets as a highly efficient and stable electrocatalyst for hydrogen evolution. Appl. Catal. B 243, 537–545 (2019). https://doi.org/10.1016/j.apcatb.2018.10.063
C. Zhang, Y. Huang, Y. Yu, J. Zhang, S. Zhuo et al., Sub-11 nm ultrathin porous CoP nanosheets with dominant reactive {200}. facets: a high mass activity and efficient electrocatalyst for the hydrogen evolution reaction. Chem. Sci. 8(4), 2769–2775 (2017). https://doi.org/10.1039/c6sc05687c
H. Xu, Z. Jiang, H. Zhang, L. Liu, L. Fang et al., New efficient electrocatalyst for the hydrogen evolution reaction: erecting a V2Se9@Poly(3,4-ethylenedioxythiophene) nanosheet array with a specific active facet exposed. ACS Energy Lett. 2(5), 1099–1104 (2017). https://doi.org/10.1021/acsenergylett.7b00209
C.H. Kuo, I.M. Mosa, S. Thanneeru, V. Sharma, L. Zhang et al., Facet-dependent catalytic activity of MnO electrocatalysts for oxygen reduction and oxygen evolution reactions. Chem. Commun. 51(27), 5951–5954 (2015). https://doi.org/10.1039/c5cc01152c
B. Chang, J. Yang, Y. Shao, L. Zhang, W. Fan et al., Bimetallic NiMoN nanowires with a preferential reactive facet: an ultraefficient bifunctional electrocatalyst for overall water splitting. Chemsuschem 11(18), 3198–3207 (2018). https://doi.org/10.1002/cssc.201801337