Peptide Functionalized Nanoplasmonic Sensor for Explosive Detection
Corresponding Author: Qingjun Liu
Nano-Micro Letters,
Vol. 8 No. 1 (2016), Article Number: 36-43
Abstract
In this study, a nanobiosensor for detecting explosives was developed, in which the peptide was synthesized with trinitrotoluene (TNT)-specific sequence and immobilized on nanodevice by Au–S covalent linkage, and the nanocup arrays were fabricated by nanoimprint and deposited with Au nanoparticles to generate localized surface plasmon resonance (LSPR). The device was used to monitor slight change from specific binding of 2,4,6-TNT to the peptide. With high refractive index sensing of ~104 nm/RIU, the nanocup device can detect the binding of TNT at concentration as low as 3.12 × 10−7 mg mL−1 by optical transmission spectrum modulated by LSPR. The nanosensor is also able to distinguish TNT from analogs of 2,4-dinitrotoluene and 3-nitrotoluene in the mixture with great selectivity. The peptide-based nanosensor provides novel approaches to design versatile biosensor assays by LSPR for chemical molecules.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.I. Steinfeld, J. Wormhoudt, Explosives detection: a challenge for physical chemistry. Annu. Rev. Phys. Chem. 49(1), 203–232 (1998). doi:10.1146/annurev.physchem.49.1.203
- J.S. Caygill, F. Davis, S.P. Higson, Current trends in explosive detection techniques. Talanta 88, 14–29 (2012). doi:10.1016/j.talanta.2011.11.043
- M.K. Habib, Controlled biological and biomimetic systems for landmine detection. Biosens. Bioelectron. 23(1), 1–18 (2007). doi:10.1016/j.bios.2007.05.005
- A.M. O’Mahony, J. Wang, Nanomaterial-based electrochemical detection of explosives: a review of recent developments. Anal. Methods 5(17), 4296–4309 (2013). doi:10.1039/c3ay40636a
- J.L. Novotney, W.R. Dichtel, Conjugated porous polymers for TNT vapor detection. ACS Macro Lett. 2(5), 423–426 (2013). doi:10.1021/mz4000249
- R.G. Smith, N. D’Souza, S. Nicklin, A review of biosensors and biologically-inspired systems for explosives detection. Analyst 133(5), 571–584 (2008). doi:10.1039/b717933m
- A. Gingras, J. Sarette, E. Shawler, T. Lee, S. Freund, E. Holwitt, B.W. Hicks, Fluorescent proteins as biosensors by quenching resonance energy transfer from endogenous tryptophan: detection of nitroaromatic explosives. Biosens. Bioelectron. 48, 251–257 (2013). doi:10.1016/j.bios.2013.03.076
- M. Liu, W. Chen, Graphene nanosheets-supported Ag nanoparticles for ultrasensitive detection of TNT by surface-enhanced Raman spectroscopy. Biosens. Bioelectron. 46, 68–73 (2013). doi:10.1016/j.bios.2013.01.073
- S. Yagur-Kroll, C. Lalush, R. Rosen, N. Bachar, Y. Moskovitz, S. Belkin, Escherichia coli bioreporters for the detection of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene. Appl. Microbiol. Biotechnol. 98(2), 885–895 (2014). doi:10.1007/s00253-013-4888-8
- E. Schneider, D.S. Clark, Cytochrome P450 (CYP) enzymes and the development of CYP biosensors. Biosens. Bioelectron. 39(1), 1–13 (2013). doi:10.1016/j.bios.2012.05.043
- J. Zhang, Y. Sun, B. Xu, H. Zhang, Y. Gao, D. Song, A novel surface plasmon resonance biosensor based on graphene oxide decorated with gold nanorod-antibody conjugates for determination of transferrin. Biosens. Bioelectron. 45, 230–236 (2013). doi:10.1016/j.bios.2013.02.008
- S. Sankaran, S. Panigrahi, S. Mallik, Olfactory receptor based piezoelectric biosensors for detection of alcohols related to food safety applications. Sens. Actuators B 155(1), 8–18 (2011). doi:10.1016/j.snb.2010.08.003
- S. Pavan, F. Berti, Short peptides as biosensor transducers. Anal. Bioanal. Chem. 402(10), 3055–3070 (2012). doi:10.1007/s00216-011-5589-8
- Y. Zhang, C.Y. Wu, S.W. Guo, J.Y. Zhang, Interactions of graphene and graphene oxide with proteins and peptides. Nanotechnol. Rev. 2(1), 27–45 (2013). doi:10.1515/ntrev-2012-0078
- Y. Cui, S.N. Kim, R.R. Naik, M.C. McAlpine, Biomimetic peptide nanosensors. Acc. Chem. Res. 45(5), 696–704 (2012). doi:10.1021/ar2002057
- K.M. Mayer, J.H. Hafner, Localized surface plasmon resonance sensors. Chem. Rev. 111(6), 3828–3857 (2011). doi:10.1021/cr100313v
- G. Aragay, F. Pino, A. Merkoçi, Nanomaterials for sensing and destroying pesticides. Chem. Rev. 112(10), 5317–5338 (2012). doi:10.1021/cr300020c
- P.Y. Ren, X.L. Zhu, J.Y. Han, J.Y. Xu, L. Ma et al., Synthesis and diameter-dependent thermal conductivity of InAs nanowires. Nano-Micro Lett. 6(4), 301–306 (2014). doi:10.1007/s40820-014-0002-8
- P.P. Jia, J. Yang, A plasmonic optical fiber patterned by template transfer as a high-performance flexible nanoprobe for real-time biosensing. Nanoscale 6(15), 8836–8843 (2014). doi:10.1039/C4NR01411A
- M. Li, S.K. Cushing, J. Zhang, S. Suri, R. Evans, W.P. Petros, L.F. Gibson, D. Ma, Y. Liu, N. Wu, Three-dimensional hierarchical plasmonic nano-architecture enhanced surface-enhanced Raman scattering immunosensor for cancer biomarker detection in blood plasma. ACS Nano 7(6), 4967–4976 (2013). doi:10.1021/nn4018284
- J.A. Ruemmele, W.P. Hall, L.K. Ruvuna, R.P. Van Duyne, A localized surface plasmon resonance imaging instrument for multiplexed biosensing. Anal. Chem. 85(9), 4560–4566 (2013). doi:10.1021/ac400192f
- J. Wu, X.X. Lu, Q.N. Zhu, J.W. Zhao, Q.S. Shen, L. Zhan, W.H. Ni, Angle-resolved plasmonic properties of single gold nanorod dimers. Nano-Micro Lett. 6(4), 372–380 (2014). doi:10.1007/s40820-014-0011-7
- M.R. Gartia, A. Hsiao, A. Pokhriyal, S. Seo, G. Kulsharova, B.T. Cunningham, T.C. Bond, G.L. Liu, Colorimetric plasmon resonance imaging using nano lycurgus cup arrays. Adv. Opt. Mater. 1(1), 68–76 (2013). doi:10.1002/adom.201200040
- J.W. Jaworski, D. Raorane, J.H. Huh, A. Majumdar, S.W. Lee, Evolutionary screening of biomimetic coatings for selective detection of explosives. Langmuir 24(9), 4938–4943 (2008). doi:10.1021/la7035289
- J.S. Kee, S.Y. Lim, A.P. Perera, Y. Zhang, M.K. Park, Plasmonic nanohole arrays for monitoring growth of bacteria and antibiotic susceptibility test. Sens. Actuators B 182, 576–583 (2013). doi:10.1016/j.snb.2013.03.053
- P. Jia, H. Jiang, J. Sabarinathan, J. Yang, Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance. Nanotechnology 24(19), 195501 (2013). doi:10.1088/0957-4484/24/19/195501
- D. Zhang, Y. Lu, J. Jiang, Q. Zhang, Y. Yao, P. Wang, B. Chen, Q. Cheng, G.L. Liu, Q. Liu, Nanoplasmonic biosensor: coupling electrochemistry to localized surface plasmon resonance spectroscopy on nanocup arrays. Biosens. Bioelectron. 67, 237–242 (2015). doi:10.1016/j.bios.2014.08.022
- M.C. Rodriguez, A.N. Kawde, J. Wang, Aptamer biosensor for label-free impedance spectroscopy detection of proteins based on recognition-induced switching of the surface charge. Chem. Commun. 34, 4267–4269 (2005). doi:10.1039/b506571b
- F. Lisdat, D. Schafer, The use of electrochemical impedance spectroscopy for biosensing. Anal. Bioanal. Chem. 391(5), 1555–1567 (2008). doi:10.1007/s00216-008-1970-7
- F. Vollmer, L. Yang, Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices. Nanophotonics 1(3–4), 267–291 (2012). doi:10.1515/nanoph-2012-0021
- J.C. Vidal, L. Bonel, A. Ezquerra, S. Hernandez, J.R. Bertolin, C. Cubel, J.R. Castillo, Electrochemical affinity biosensors for detection of mycotoxins: a review. Biosens. Bioelectron. 49, 146–158 (2013). doi:10.1016/j.bios.2013.05.008
- S.M. Borisov, O.S. Wolfbeis, Optical biosensors. Chem. Rev. 108(2), 423–461 (2008). doi:10.1021/cr068105t
- X. Sun, L. Qiao, X.Y. Wang, A novel immunosensor based on Au nanoparticles and polyaniline/multiwall carbon nanotubes/chitosan nanocomposite film functionalized interface. Nano-Micro Lett. 5(3), 191–201 (2013). doi:10.5101/nml.v5i3.p191-201
- C.I. Cheng, Y.P. Chang, Y.H. Chu, Biomolecular interactions and tools for their recognition: focus on the quartz crystal microbalance and its diverse surface chemistries and applications. Chem. Soc. Rev. 41(5), 1947–1971 (2012). doi:10.1039/C1CS15168A
- D. Compagnone, G.C. Fusella, M. Del Carlo, P. Pittia, E. Martinelli, L. Tortora, R. Paolesse, C. Di Natale, Gold nanoparticles-peptide based gas sensor arrays for the detection of foodaromas. Biosens. Bioelectron. 42, 618–625 (2013). doi:10.1016/j.bios.2012.10.096
- Y. Ma, S. Wang, L. Wang, Nanomaterials for luminescence detection of nitroaromatic explosives. TrAC Trends Anal. Chem. 65, 13–21 (2015). doi:10.1016/j.trac.2014.09.007
- S. Huang, Q. He, S. Xu, L. Wang, Polyaniline-based photothermal paper sensor for sensitive and selective detection of 2, 4, 6-trinitrotoluene. Anal. Chem. 87(10), 5451–5456 (2015). doi:10.1021/acs.analchem.5b01078
- M. Bai, S. Huang, S. Xu, G. Hu, L. Wang, Fluorescent nanosensors via photoinduced polymerization of hydrophobic inorganic quantum dots for the sensitive and selective detection of nitroaromatics. Anal. Chem. 87(4), 2383–2388 (2015). doi:10.1021/ac504322s
- X. Guan, L.Q. Gu, S. Cheley, O. Braha, H. Bayley, Stochastic sensing of TNT with a genetically engineered pore. ChemBioChem 6(10), 1875–1881 (2005). doi:10.1002/cbic.200500064
- Z. Kuang, S.N. Kim, W.J. Crookes-Goodson, B.L. Farmer, R.R. Naik, Biomimetic chemosensor: designing peptide recognition elements for surface functionalization of carbon nanotube field effect transistors. ACS Nano 4(1), 452–458 (2010). doi:10.1021/nn901365g
- Y. Li, R. Afrasiabi, F. Fathi, N. Wang, C. Xiang, R. Love, Z. She, H.-B. Kraatz, Impedance based detection of pathogenic E. coli O157:H7 using a ferrocene-antimicrobial peptide modified biosensor. Biosens. Bioelectron. 58, 193–199 (2014). doi:10.1016/j.bios.2014.02.045
- W. Su, M. Cho, J.-D. Nam, W.-S. Choe, Y. Lee, Highly sensitive electrochemical lead ion sensor harnessing peptide probe molecules on porous gold electrodes. Biosens. Bioelectron. 48, 263–269 (2013). doi:10.1016/j.bios.2013.04.031
- J.V. Rushworth, A. Ahmed, H.H. Griffiths, N.M. Pollock, N.M. Hooper, P.A. Millner, A label-free electrical impedimetric biosensor for the specific detection of Alzheimer’s amyloid-beta oligomers. Biosens. Bioelectron. 56, 83–90 (2014). doi:10.1016/j.bios.2013.12.036
References
J.I. Steinfeld, J. Wormhoudt, Explosives detection: a challenge for physical chemistry. Annu. Rev. Phys. Chem. 49(1), 203–232 (1998). doi:10.1146/annurev.physchem.49.1.203
J.S. Caygill, F. Davis, S.P. Higson, Current trends in explosive detection techniques. Talanta 88, 14–29 (2012). doi:10.1016/j.talanta.2011.11.043
M.K. Habib, Controlled biological and biomimetic systems for landmine detection. Biosens. Bioelectron. 23(1), 1–18 (2007). doi:10.1016/j.bios.2007.05.005
A.M. O’Mahony, J. Wang, Nanomaterial-based electrochemical detection of explosives: a review of recent developments. Anal. Methods 5(17), 4296–4309 (2013). doi:10.1039/c3ay40636a
J.L. Novotney, W.R. Dichtel, Conjugated porous polymers for TNT vapor detection. ACS Macro Lett. 2(5), 423–426 (2013). doi:10.1021/mz4000249
R.G. Smith, N. D’Souza, S. Nicklin, A review of biosensors and biologically-inspired systems for explosives detection. Analyst 133(5), 571–584 (2008). doi:10.1039/b717933m
A. Gingras, J. Sarette, E. Shawler, T. Lee, S. Freund, E. Holwitt, B.W. Hicks, Fluorescent proteins as biosensors by quenching resonance energy transfer from endogenous tryptophan: detection of nitroaromatic explosives. Biosens. Bioelectron. 48, 251–257 (2013). doi:10.1016/j.bios.2013.03.076
M. Liu, W. Chen, Graphene nanosheets-supported Ag nanoparticles for ultrasensitive detection of TNT by surface-enhanced Raman spectroscopy. Biosens. Bioelectron. 46, 68–73 (2013). doi:10.1016/j.bios.2013.01.073
S. Yagur-Kroll, C. Lalush, R. Rosen, N. Bachar, Y. Moskovitz, S. Belkin, Escherichia coli bioreporters for the detection of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene. Appl. Microbiol. Biotechnol. 98(2), 885–895 (2014). doi:10.1007/s00253-013-4888-8
E. Schneider, D.S. Clark, Cytochrome P450 (CYP) enzymes and the development of CYP biosensors. Biosens. Bioelectron. 39(1), 1–13 (2013). doi:10.1016/j.bios.2012.05.043
J. Zhang, Y. Sun, B. Xu, H. Zhang, Y. Gao, D. Song, A novel surface plasmon resonance biosensor based on graphene oxide decorated with gold nanorod-antibody conjugates for determination of transferrin. Biosens. Bioelectron. 45, 230–236 (2013). doi:10.1016/j.bios.2013.02.008
S. Sankaran, S. Panigrahi, S. Mallik, Olfactory receptor based piezoelectric biosensors for detection of alcohols related to food safety applications. Sens. Actuators B 155(1), 8–18 (2011). doi:10.1016/j.snb.2010.08.003
S. Pavan, F. Berti, Short peptides as biosensor transducers. Anal. Bioanal. Chem. 402(10), 3055–3070 (2012). doi:10.1007/s00216-011-5589-8
Y. Zhang, C.Y. Wu, S.W. Guo, J.Y. Zhang, Interactions of graphene and graphene oxide with proteins and peptides. Nanotechnol. Rev. 2(1), 27–45 (2013). doi:10.1515/ntrev-2012-0078
Y. Cui, S.N. Kim, R.R. Naik, M.C. McAlpine, Biomimetic peptide nanosensors. Acc. Chem. Res. 45(5), 696–704 (2012). doi:10.1021/ar2002057
K.M. Mayer, J.H. Hafner, Localized surface plasmon resonance sensors. Chem. Rev. 111(6), 3828–3857 (2011). doi:10.1021/cr100313v
G. Aragay, F. Pino, A. Merkoçi, Nanomaterials for sensing and destroying pesticides. Chem. Rev. 112(10), 5317–5338 (2012). doi:10.1021/cr300020c
P.Y. Ren, X.L. Zhu, J.Y. Han, J.Y. Xu, L. Ma et al., Synthesis and diameter-dependent thermal conductivity of InAs nanowires. Nano-Micro Lett. 6(4), 301–306 (2014). doi:10.1007/s40820-014-0002-8
P.P. Jia, J. Yang, A plasmonic optical fiber patterned by template transfer as a high-performance flexible nanoprobe for real-time biosensing. Nanoscale 6(15), 8836–8843 (2014). doi:10.1039/C4NR01411A
M. Li, S.K. Cushing, J. Zhang, S. Suri, R. Evans, W.P. Petros, L.F. Gibson, D. Ma, Y. Liu, N. Wu, Three-dimensional hierarchical plasmonic nano-architecture enhanced surface-enhanced Raman scattering immunosensor for cancer biomarker detection in blood plasma. ACS Nano 7(6), 4967–4976 (2013). doi:10.1021/nn4018284
J.A. Ruemmele, W.P. Hall, L.K. Ruvuna, R.P. Van Duyne, A localized surface plasmon resonance imaging instrument for multiplexed biosensing. Anal. Chem. 85(9), 4560–4566 (2013). doi:10.1021/ac400192f
J. Wu, X.X. Lu, Q.N. Zhu, J.W. Zhao, Q.S. Shen, L. Zhan, W.H. Ni, Angle-resolved plasmonic properties of single gold nanorod dimers. Nano-Micro Lett. 6(4), 372–380 (2014). doi:10.1007/s40820-014-0011-7
M.R. Gartia, A. Hsiao, A. Pokhriyal, S. Seo, G. Kulsharova, B.T. Cunningham, T.C. Bond, G.L. Liu, Colorimetric plasmon resonance imaging using nano lycurgus cup arrays. Adv. Opt. Mater. 1(1), 68–76 (2013). doi:10.1002/adom.201200040
J.W. Jaworski, D. Raorane, J.H. Huh, A. Majumdar, S.W. Lee, Evolutionary screening of biomimetic coatings for selective detection of explosives. Langmuir 24(9), 4938–4943 (2008). doi:10.1021/la7035289
J.S. Kee, S.Y. Lim, A.P. Perera, Y. Zhang, M.K. Park, Plasmonic nanohole arrays for monitoring growth of bacteria and antibiotic susceptibility test. Sens. Actuators B 182, 576–583 (2013). doi:10.1016/j.snb.2013.03.053
P. Jia, H. Jiang, J. Sabarinathan, J. Yang, Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance. Nanotechnology 24(19), 195501 (2013). doi:10.1088/0957-4484/24/19/195501
D. Zhang, Y. Lu, J. Jiang, Q. Zhang, Y. Yao, P. Wang, B. Chen, Q. Cheng, G.L. Liu, Q. Liu, Nanoplasmonic biosensor: coupling electrochemistry to localized surface plasmon resonance spectroscopy on nanocup arrays. Biosens. Bioelectron. 67, 237–242 (2015). doi:10.1016/j.bios.2014.08.022
M.C. Rodriguez, A.N. Kawde, J. Wang, Aptamer biosensor for label-free impedance spectroscopy detection of proteins based on recognition-induced switching of the surface charge. Chem. Commun. 34, 4267–4269 (2005). doi:10.1039/b506571b
F. Lisdat, D. Schafer, The use of electrochemical impedance spectroscopy for biosensing. Anal. Bioanal. Chem. 391(5), 1555–1567 (2008). doi:10.1007/s00216-008-1970-7
F. Vollmer, L. Yang, Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices. Nanophotonics 1(3–4), 267–291 (2012). doi:10.1515/nanoph-2012-0021
J.C. Vidal, L. Bonel, A. Ezquerra, S. Hernandez, J.R. Bertolin, C. Cubel, J.R. Castillo, Electrochemical affinity biosensors for detection of mycotoxins: a review. Biosens. Bioelectron. 49, 146–158 (2013). doi:10.1016/j.bios.2013.05.008
S.M. Borisov, O.S. Wolfbeis, Optical biosensors. Chem. Rev. 108(2), 423–461 (2008). doi:10.1021/cr068105t
X. Sun, L. Qiao, X.Y. Wang, A novel immunosensor based on Au nanoparticles and polyaniline/multiwall carbon nanotubes/chitosan nanocomposite film functionalized interface. Nano-Micro Lett. 5(3), 191–201 (2013). doi:10.5101/nml.v5i3.p191-201
C.I. Cheng, Y.P. Chang, Y.H. Chu, Biomolecular interactions and tools for their recognition: focus on the quartz crystal microbalance and its diverse surface chemistries and applications. Chem. Soc. Rev. 41(5), 1947–1971 (2012). doi:10.1039/C1CS15168A
D. Compagnone, G.C. Fusella, M. Del Carlo, P. Pittia, E. Martinelli, L. Tortora, R. Paolesse, C. Di Natale, Gold nanoparticles-peptide based gas sensor arrays for the detection of foodaromas. Biosens. Bioelectron. 42, 618–625 (2013). doi:10.1016/j.bios.2012.10.096
Y. Ma, S. Wang, L. Wang, Nanomaterials for luminescence detection of nitroaromatic explosives. TrAC Trends Anal. Chem. 65, 13–21 (2015). doi:10.1016/j.trac.2014.09.007
S. Huang, Q. He, S. Xu, L. Wang, Polyaniline-based photothermal paper sensor for sensitive and selective detection of 2, 4, 6-trinitrotoluene. Anal. Chem. 87(10), 5451–5456 (2015). doi:10.1021/acs.analchem.5b01078
M. Bai, S. Huang, S. Xu, G. Hu, L. Wang, Fluorescent nanosensors via photoinduced polymerization of hydrophobic inorganic quantum dots for the sensitive and selective detection of nitroaromatics. Anal. Chem. 87(4), 2383–2388 (2015). doi:10.1021/ac504322s
X. Guan, L.Q. Gu, S. Cheley, O. Braha, H. Bayley, Stochastic sensing of TNT with a genetically engineered pore. ChemBioChem 6(10), 1875–1881 (2005). doi:10.1002/cbic.200500064
Z. Kuang, S.N. Kim, W.J. Crookes-Goodson, B.L. Farmer, R.R. Naik, Biomimetic chemosensor: designing peptide recognition elements for surface functionalization of carbon nanotube field effect transistors. ACS Nano 4(1), 452–458 (2010). doi:10.1021/nn901365g
Y. Li, R. Afrasiabi, F. Fathi, N. Wang, C. Xiang, R. Love, Z. She, H.-B. Kraatz, Impedance based detection of pathogenic E. coli O157:H7 using a ferrocene-antimicrobial peptide modified biosensor. Biosens. Bioelectron. 58, 193–199 (2014). doi:10.1016/j.bios.2014.02.045
W. Su, M. Cho, J.-D. Nam, W.-S. Choe, Y. Lee, Highly sensitive electrochemical lead ion sensor harnessing peptide probe molecules on porous gold electrodes. Biosens. Bioelectron. 48, 263–269 (2013). doi:10.1016/j.bios.2013.04.031
J.V. Rushworth, A. Ahmed, H.H. Griffiths, N.M. Pollock, N.M. Hooper, P.A. Millner, A label-free electrical impedimetric biosensor for the specific detection of Alzheimer’s amyloid-beta oligomers. Biosens. Bioelectron. 56, 83–90 (2014). doi:10.1016/j.bios.2013.12.036