Advances of Synergistic Electrocatalysis Between Single Atoms and Nanoparticles/Clusters
Corresponding Author: Deli Wang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 241
Abstract
Combining single atoms with clusters or nanoparticles is an emerging tactic to design efficient electrocatalysts. Both synergy effect and high atomic utilization of active sites in the composite catalysts result in enhanced electrocatalytic performance, simultaneously provide a radical analysis of the interrelationship between structure and activity. In this review, the recent advances of single-atomic site catalysts coupled with clusters or nanoparticles are emphasized. Firstly, the synthetic strategies, characterization, dynamics and types of single atoms coupled with clusters/nanoparticles are introduced, and then the key factors controlling the structure of the composite catalysts are discussed. Next, several clean energy catalytic reactions performed over the synergistic composite catalysts are illustrated. Eventually, the encountering challenges and recommendations for the future advancement of synergistic structure in energy-transformation electrocatalysis are outlined.
Highlights:
1 Fundamental principles for designing synergistic composite catalysts are reviewed.
2 The synergistic effect between various active sites, promoting electrocatalytic performance in different reactions are highlighted.
3 The challenges and perspectives for multiple active sites catalysts are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z.W. Seh, J. Kibsgaard, C.F. Dickens, J.K. Norskov, T.F. Jaramillo et al., Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017). https://doi.org/10.1126/science.aad4998
- L. Han, S.J. Dong, E.K. Wang, Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv. Mater. 28, 9266–9291 (2016). https://doi.org/10.1002/adma.201602270
- X.L. Tian, X. Zhao, Y.Q. Su, X.W. Lou, B.Y. Xia et al., Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 366, 850–856 (2019). https://doi.org/10.1126/science.aaw7493
- D. Wang, H.L. Xin, R. Hovden, F.J. DiSalvo, H.D. Abruna et al., Structurally ordered intermetallic platinum-cobalt core-shell nanops with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 12, 81–87 (2013). https://doi.org/10.1038/nmat3458
- Y. Xiong, Y. Yang, F.J. DiSalvo, H.D. Abruna, Synergistic bimetallic metallic organic framework-derived Pt–Co oxygen reduction electrocatalysts. ACS Nano 14, 13069–13080 (2020). https://doi.org/10.1021/acsnano.0c04559
- Z. Xiao, Y. Wang, J. Ma, Y. Li, S. Wang et al., Filling the oxygen vacancies in Co3O4 with phosphorus: an ultra-efficient electrocatalyst for overall water splitting. Energy Environ. Sci. 10, 2563–2569 (2017). https://doi.org/10.1039/c7ee01917c
- X.X. Wang, M.T. Swihart, G. Wu, Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat. Catal. 2, 578–589 (2019). https://doi.org/10.1038/s41929-019-0304-9
- X. Liang, N. Fu, S. Yao, Z. Li, Y. Li, The progress and outlook of metal single-atom-site catalysis. J. Am. Chem. Soc. 144, 18155–18174 (2022). https://doi.org/10.1021/jacs.1c12642
- P.N. Duchesne, Z.Y. Li, C.P. Deming, N. Zheng, P. Zhang et al., Golden single-atomic-site platinum electrocatalysts. Nat. Mater. 17, 1033–1039 (2018). https://doi.org/10.1038/s41563-018-0167-5
- Y. Chen, S. Ji, W. Sun, D. Wang, Y. Li et al., Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew. Chem. Int. Ed. 59, 1295–1301 (2019). https://doi.org/10.1002/anie.201912439
- Z. Zhang, J. Zhu, S. Chen, W. Sun, D. Wang, Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem. Int. Ed. 62, e202215136 (2022). https://doi.org/10.1002/anie.202215136
- R. Qin, K. Liu, Q. Wu, N. Zheng, Surface coordination chemistry of atomically dispersed metal catalysts. Chem. Rev. 120, 11810–11899 (2020). https://doi.org/10.1021/acs.chemrev.0c00094
- Y. Wang, D. Wang, Y. Li, Rational design of single-atom site electrocatalysts: from theoretical understandings to practical applications. Adv. Mater. 33, 2008151 (2021). https://doi.org/10.1002/adma.202008151
- J.Q. Shan, C. Ye, Y.L. Jiang, Y. Zheng, S.Z. Qiao et al., Metal–metal interactions in correlated single-atom catalysts. Sci. Adv. 8, eabo0762 (2022). https://doi.org/10.1126/sciadv.abo0762
- P. Zhu, X. Xiong, D. Wang, Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 15, 5792–5815 (2022). https://doi.org/10.1007/s12274-022-4265-y
- E. Zhang, L. Tao, J. An, D. Wang, Y. Li et al., Engineering the local atomic environments of indium single-atom catalysts for efficient electrochemical production of hydrogen peroxide. Angew. Chem. Int. Ed. 61, e202117347 (2022). https://doi.org/10.1002/anie.202117347
- Y. Han, H. Duan, B. Wang, W. Yan, R. Zhang et al., Stabilizing cobalt single atoms via flexible carbon membranes as bifunctional electrocatalysts for binder-free zinc-air batteries. Nano Lett. 22, 2497–2505 (2022). https://doi.org/10.1021/acs.nanolett.2c00278
- J. Yang, H. Qi, A. Li, A. Wang, T. Zhang et al., Potential-driven restructuring of Cu single atoms to nanops for boosting the electrochemical reduction of nitrate to ammonia. J. Am. Chem. Soc. 144, 12062–12071 (2022). https://doi.org/10.1021/jacs.2c02262
- S. Zhou, L. Shang, Y. Zhao, L. Zheng, T. Zhang et al., Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Adv. Mater. 31, 1900509 (2019). https://doi.org/10.1002/adma.201900509
- Y. Peng, B. Lu, S. Chen, Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv. Mater. 30, 1801995 (2018). https://doi.org/10.1002/adma.201801995
- S. An, G. Zhang, T. Wang, J. Wang, X. Guo et al., High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride (g–C3N4) for highly efficient catalytic advanced oxidation processes. ACS Nano 12, 9441–9450 (2018). https://doi.org/10.1021/acsnano.8b04693
- J. Wang, K. Li, H. Zhong, Z. Wu, X. Zhang et al., Synergistic effect between metal-nitrogen-carbon sheets and NiO nanops for enhanced electrochemical water-oxidation performance. Angew. Chem. Int. Ed. 54, 10530–10534 (2015). https://doi.org/10.1002/anie.201504358
- W.J. Jiang, L. Gu, L. Li, Z. Wei, L.J. Wan et al., Understanding the high activity of Fe–N–C electrocatalysts in oxygen reduction: Fe/Fe3C nanops boost the activity of Fe–Nx. J. Am. Chem. Soc. 138, 3570–3578 (2016). https://doi.org/10.1021/jacs.6b00757
- Q. Cheng, S. Han, K. Mao, Z. Hu, H. Yang et al., Co nanop embedded in atomically-dispersed Co–N–C nanofibers for oxygen reduction with high activity and remarkable durability. Nano Energy 52, 485–493 (2018). https://doi.org/10.1016/j.nanoen.2018.08.005
- L. Chong, J. Wen, J. Kubal, W. Ding, D.J. Liu et al., Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 362, 1276–1281 (2018). https://doi.org/10.1126/science.aau0630
- S.N. Zhao, J.K. Li, R. Wang, J. Cai, S.Q. Zang, Electronically and geometrically modified single-atom Fe sites by adjacent Fe nanops for enhanced oxygen reduction. Adv. Mater. 34, 2107291 (2022). https://doi.org/10.1002/adma.202107291
- X. Ao, W. Zhang, C. Wang, M. Liu, X.C. Zeng et al., Markedly enhanced oxygen reduction activity of single-atom Fe catalysts via integration with Fe nanoclusters. ACS Nano 13, 11853–11862 (2019). https://doi.org/10.1021/acsnano.9b05913
- X. Ao, W. Zhang, B. Zhao, C. Wang, M. Liu et al., Atomically dispersed Fe–N–C decorated with Pt-alloy core–shell nanops for improved activity and durability towards oxygen reduction. Energy Environ. Sci. 13, 3032–3040 (2020). https://doi.org/10.1039/d0ee00832j
- L. Chong, H. Zhou, J. Kubal, J. Zou, W. Ding et al., Highly durable fuel cell electrocatalyst with low-loading Pt–Co nanops dispersed over single atom Pt–Co–N-graphene nanofiber. Chem. Catal. 3, 100541 (2022). https://doi.org/10.1016/j.checat.2023.100541
- X. Xu, X. Li, W. Lu, W. Zheng, X. Zhao et al., Collective effect in a multicomponent ensemble combining single atoms and nanops for efficient and durable oxygen reduction. Angew. Chem. Int. Ed. 63, e202400765 (2024). https://doi.org/10.1002/anie.202400765
- Y. Zhao, P.V. Kumar, X. Tan, Z. Han, X. Lu et al., Modulating Pt–O–Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis. Nat. Commun. 13, 2430 (2022). https://doi.org/10.1038/s41467-022-30155-4
- L. Zeng, Z. Zhao, Q. Huang, M. Luo, S. Guo et al., Single-atom Cr-N4 sites with high oxophilicity interfaced with Pt atomic clusters for practical alkaline hydrogen evolution catalysis. J. Am. Chem. Soc. 145, 21432–21441 (2023). https://doi.org/10.1021/jacs.3c06863
- S. Yuan, Z. Pu, H. Zhou, G. Van Tendeloo, S. Mu et al., A universal synthesis strategy for single atom dispersed cobalt/metal clusters heterostructure boosting hydrogen evolution catalysis at all PH values. Nano Energy 59, 472–480 (2019). https://doi.org/10.1016/j.nanoen.2019.02.062
- X. Li, Y. He, S. Cheng, G. Wu, D. Su et al., Atomic structure evolution of Pt–Co binary catalysts: single metal sites versus intermetallic nanocrystals. Adv. Mater. 33, 2106371 (2021). https://doi.org/10.1002/adma.202106371
- P. Su, W. Pei, X. Wang, J. Liu, G.Q.M. Lu et al., Exceptional electrochemical HER performance with enhanced electron transfer between Ru nanops and single atoms dispersed on a carbon substrate. Angew. Chem. Int. Ed. 60, 16044–16050 (2021). https://doi.org/10.1002/anie.202103557
- W. Guo, Z. Wang, X. Wang, Y. Wu, General design concept for single-atom catalysts toward heterogeneous catalysis. Adv. Mater. 33, 2004287 (2021). https://doi.org/10.1002/adma.202004287
- S. Wang, T. Ding, T. Liu, M. Zhu, T. Yao et al., Ligand assisted thermal atomization of palladium clusters: An inspiring approach for the rational design of atomically dispersed metal catalysts. Angew. Chem. Int. Ed. 62, e202218630 (2023). https://doi.org/10.1002/anie.202218630
- X.X. Wang, S. Hwang, Y.T. Pan, D. Su, G. Wu et al., Ordered Pt3Co intermetallic nanops derived from metal-organic frameworks for oxygen reduction. Nano Lett. 18, 4163–4171 (2018). https://doi.org/10.1021/acs.nanolett.8b00978
- X. Wei, S. Song, W. Cai, S. Guo, C. Zhu et al., Tuning the spin-state of Fe single atoms by Pd nanoclusters enables robust oxygen reduction with dissociative pathway. Chem 18, 181–197 (2023). https://doi.org/10.1016/j.chempr.2022.10.001
- A. Han, W. Sun, X. Wan, J. Shui, D. Wang et al., Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem. Int. Ed. 62, e202303185 (2023). https://doi.org/10.1002/anie.202303185
- Y. Li, Z. Li, K. Shi, Z. Sun, G. Sun et al., Single-atom Mn catalysts via integration with mn sub nano-clusters synergistically enhance oxygen reduction reaction. Small (2023). https://doi.org/10.1002/smll.202309727
- W. Zhai, S. Huang, C. Lu, X. Zhuang, Y. Chen et al., Simultaneously integrate iron single atom and nanocluster triggered tandem effect for boosting oxygen electroreduction. Small 18, 2107225 (2022). https://doi.org/10.1002/smll.202107225
- X. Cheng, J. Yang, G. Li, Y. Jiang, S. Sun et al., Nano-geometric deformation and synergistic Co nanops-Co-N4 composite sites for proton exchange membrane fuel cells. Energy Environ. Sci. 14, 5958–5967 (2021). https://doi.org/10.1039/d1ee01715b
- H. Huang, D. Yu, F. Hu, L.L. Li, S. Peng et al., Clusters induced electron redistribution to tune oxygen reduction activity of transition metal single-atom for metal-air batteries. Angew. Chem. Int. Ed. 61, e202116068 (2022). https://doi.org/10.1002/anie.202116068
- Y. Luo, K. Li, Y. Chen, G. Yu, J. Feng et al., Single atom and hierarchical-pore aerogel confinement strategy for low-platinum fuel cell. Adv. Mater. 35, 2300624 (2023). https://doi.org/10.1002/adma.202300624
- F. Xiao, Q. Wang, G.L. Xu, K. Amine, M. Shao et al., Atomically dispersed Pt and Fe sites and Pt-Fe nanops for durable proton exchange membrane fuel cells. Nat. Catal. 5, 503–512 (2022). https://doi.org/10.1038/s41929-022-00796-1
- B. Liu, R. Feng, M. Busch, F. Song, Q. Liu et al., Synergistic hybrid electrocatalysts of platinum alloy and single-atom platinum for an efficient and durable oxygen reduction reaction. ACS Nano 16, 14121–14133 (2022). https://doi.org/10.1021/acsnano.2c04077
- L. Huang, M. Wei, R. Qi, B. You, B.Y. Xia et al., An integrated platinum-nanocarbon electrocatalyst for efficient oxygen reduction. Nat. Commun. 13, 6703 (2022). https://doi.org/10.1038/s41467-022-34444-w
- B. Lu, L. Guo, F. Wu, Y. Ping, S. Chen et al., Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. Nat. Commun. 10, 631 (2019). https://doi.org/10.1038/s41467-019-08419-3
- J. Bai, Y. Fu, P. Zhou, Q. Zhou, Y. Deng et al., Synergies of atomically dispersed Mn/Fe single atoms and Fe nanops on N-doped carbon toward high-activity eletrocatalysis for oxygen reduction. ACS Appl. Mater. Interfaces 14, 29986–29992 (2022). https://doi.org/10.1021/acsami.2c08572
- W. Wu, Z. Zhang, Z. Lei, N. Cheng, X. Sun et al., Encapsulating Pt nanops inside a derived two-dimensional metal-organic frameworks for the enhancement of catalytic activity. ACS Appl. Mater. Interfaces 12, 10359–10368 (2020). https://doi.org/10.1021/acsami.9b20781
- Y. Tian, Z. Wu, M. Li, J. Lu, S. Zhang et al., Atomic modulation and structure design of Fe–N4 modified hollow carbon fibers with encapsulated Ni nanops for rechargeable Zn-air batteries. Adv. Funct. Mater. 32, 2209273 (2022). https://doi.org/10.1002/adfm.202209273
- J. Yu, J. Li, C.Y. Xu, R. Li, J. Wang et al., Atomically dispersed Ni–N4 species and Ni nanops constructing N-doped porous carbon fibers for accelerating hydrogen evolution. Carbon 185, 96–104 (2021). https://doi.org/10.1016/j.carbon.2021.09.030
- C. Hu, E. Song, M. Wang, J. Liu, J. Wang et al., Partial-single-atom, partial-nanop composites enhance water dissociation for hydrogen evolution. Adv. Sci. 8, 2001881 (2021). https://doi.org/10.1002/advs.202001881
- J. Zhang, M. Wang, T. Wan, W. Xiao, S. Jiao et al., Novel (Pt–Ox )-(Co–Oy ) nonbonding active structures on defective carbon from oxygen-rich coal tar pitch for efficient HER and ORR. Adv. Mater. 34, 2206960 (2022). https://doi.org/10.1002/adma.202206960
- Z. Dong, Y. Nan, T. Tang, B. Xu, J.S. Hu et al., Synergistically mitigating electron back-donation by single-atomic Fe–N–C and alloying to boost CO-tolerance of Pt in hydrogen oxidation. ACS Catal. 13, 7822–7830 (2023). https://doi.org/10.1021/acscatal.3c01466
- R. Jiang, Q. Li, X. Zheng, Z. Xu, J. Wu et al., Metal-organic framework-derived Co nanops and single atoms as efficient electrocatalyst for PH universal hydrogen evolution reaction. Nano Res. 15, 7917–7924 (2022). https://doi.org/10.1007/s12274-022-4448-6
- M. Gao, F. Tian, Z. Guo, Y. Yu, W. Yang et al., Mutual-modification effect in adjacent Pt nanops and single atoms with sub-nanometer inter-site distances to boost photocatalytic hydrogen evolution. Chem. Eng. J. 446, 137123 (2022). https://doi.org/10.1016/j.cej.2022.137127
- F. Xiao, Y. Wang, G.L. Xu, K. Amine, M. Shao et al., Fe-N-C boosts the stability of supported platinum nanops for fuel cells. J. Am. Chem. Soc. 144, 20372–20384 (2022). https://doi.org/10.1021/jacs.2c08305
- L. Zhang, G. Meng, W. Zhang, D. Wang, Y. Li et al., Oriented conversion of a LA/HMF mixture to GVL and FDCA in a biphasic solvent over a Ru single-atom/nanop dual-site catalyst. ACS Catal. 13, 2268–2276 (2023). https://doi.org/10.1021/acscatal.2c04726
- H. Cao, J. Wang, J.H. Kim, Y. Shi, Y. Xie et al., Different roles of Fe atoms and nanops on g-C3N4 in regulating the reductive activation of ozone under visible light. Appl. Catal. B-environ. 296, 120362 (2021). https://doi.org/10.1016/j.apcatb.2021.120362
- W. Jiang, Y. Li, Y. Xu, R. Wu, Y. Wang et al., Carbon nanotube-bridged N-doped mesoporous carbon nanosphere with atomic and nanoscaled M (M=Fe, Co) species for synergistically enhanced oxygen reduction reaction. Chem. Eng. J. 421, 129689 (2021). https://doi.org/10.1016/j.cej.2021.129689
- Y. Zeng, J. Liang, C. Li, D.J. Myers, G. Wu et al., Regulating catalytic properties and thermal stability of Pt and PtCo intermetallic fuel-cell catalysts via strong coupling effects between single-metal site-rich carbon and Pt. J. Am. Chem. Soc. 145, 17643–17655 (2023). https://doi.org/10.1021/jacs.3c03345
- X. Li, Y. Jiao, Y. Cui, C. Song, X. Ma et al., Synergistic catalysis of the synthesis of ammonia with Co-based catalysts and plasma: From nanops to a single atom. ACS Appl. Mater. Interfaces 13, 52498–52507 (2021). https://doi.org/10.1021/acsami.1c12695
- G. Lan, Q. Ye, Y. Zhu, W. Han, Y. Li et al., Single-site Au/carbon catalysts with single-atom and Au nanops for acetylene hydrochlorination. ACS Appl. Nano Mater. 3, 3004–3010 (2020). https://doi.org/10.1021/acsanm.0c00295
- Z. He, G. Yang, H. Wang, F. Peng, H. Yu et al., Co–N-C-supported platinum catalyst: synergistic effect on the aerobic oxidation of glycerol. ACS Sustain. Chem. Eng. 8, 19062–19071 (2020). https://doi.org/10.1021/acssuschemeng.0c07332
- D. Wang, P. Yang, H. Xu, J. Zhang, M. An et al., The dual-nitrogen-source strategy to modulate a bifunctional hybrid Co/Co–N–C catalyst in the reversible air cathode for Zn-air batteries. J. Power. Sources 485, 229339 (2021). https://doi.org/10.1016/j.jpowsour.2020.229339
- Z. Qiao, C. Wang, C. Li, J.S. Spendelow, G. Wu et al., Atomically dispersed single iron sites for promoting Pt and Pt3Co fuel cell catalysts: performance and durability improvements. Energy Environ. Sci. 14, 4948–4960 (2021). https://doi.org/10.1039/d1ee01675j
- Z. Lin, A. Yang, B. Zhang, Y. Tang, X. Qiu et al., Coupling the atomically dispersed Fe–N3 sites with sub-5 nm Pd nanocrystals confined in N-doped carbon nanobelts to boost the oxygen reduction for microbial fuel cells. Adv. Funct. Mater. 32, 2107683 (2021). https://doi.org/10.1002/adfm.202107683
- Y. Xue, Y. Guo, Q. Zhang, J. Wei, Z. Zhou et al., MOF-derived Co and Fe species loaded on N-doped carbon networks as efficient oxygen electrocatalysts for Zn-air batteries. Nano-Micro Lett. 14, 162 (2022). https://doi.org/10.1007/s40820-022-00890-w
- M. Gong, J. Zhu, M. Liu, H.L. Xin, D. Wang et al., Optimizing PtFe intermetallics for oxygen reduction reaction: from DFT screening to in situ XAFS characterization. Nanoscale 11, 20301–20306 (2019). https://doi.org/10.1039/c9nr04975d
- B. Liu, S. Wang, R. Feng, F. Song, Q. Liu et al., Anchoring bimetal single atoms and alloys on N-doping-carbon nanofiber networks for an efficient oxygen reduction reaction and Zinc-air batteries. ACS Appl. Mater. Interfaces 14, 38739–38749 (2022). https://doi.org/10.1021/acsami.2c09271
- Z.Y. Chen, C. Hao, B.W. Yan, P. Tsiakaras, P.K. Shen et al., ZIF–Mg(OH)2 dual template assisted self-confinement of small PtCo NPs as promising oxygen reduction reaction in PEM fuel cell. Adv. Energy Mater. 12, 2201600 (2022). https://doi.org/10.1002/aenm.202201600
- Q. Zhang, P. Kumar, X. Zhu, R. Amal, X. Lu et al., Electronically modified atomic sites within a multicomponent Co/Cu composite for efficient oxygen electroreduction. Adv. Energy Mater. 11, 2100303 (2021). https://doi.org/10.1002/aenm.202100303
- Y.Y. Lou, S.H. Yin, J. Yang, Y.X. Jiang, S.G. Sun et al., MOF-derived single site catalysts with electron-rich Fe–N4 sites for efficient elimination of trichloroacetamide DBP. Chem. Eng. J. 446, 137060 (2022). https://doi.org/10.1016/j.cej.2022.137060
- C. Wang, L. Kuai, W. Cao, H. Sun, B. Geng et al., Highly dispersed Cu atoms in MOF-derived N-doped porous carbon inducing Pt loads for superior oxygen reduction and hydrogen evolution. Chem. Eng. J. 426, 130749 (2021). https://doi.org/10.1016/j.cej.2021.130749
- X. Wang, Y. Li, C. Yang, L. Cao, H.P. Liang et al., Surfactant-assisted implantation strategy for facile construction of Pt-based hybrid electrocatalyst to accelerate oxygen reduction reaction. Mater. Today Energy 24, 100919 (2022). https://doi.org/10.1016/j.mtener.2021.100919
- W. Guo, X. Gao, M. Zhu, H. Zhou, Y. Wu et al., A closely packed Pt1.5Ni1−x/Ni–N–C hybrid for relay catalysis towards oxygen reduction. Energy Environ. Sci. 16, 148–156 (2023). https://doi.org/10.1039/d2ee02381d
- X. Cheng, Y. Li, J. Zheng, Y. Jiang, S. Sun et al., Revealing the optimal configuration for synergy effect of metal nanops and Mn4 sites for oxygen reduction reaction. Nano Energy 100, 107440 (2022). https://doi.org/10.1016/j.nanoen.2022.107440
- Z. Li, H. He, H. Cao, J. Jiang, G. Zhang et al., Atomic Co/Ni dual sites and Co/Ni alloy nanops in N-doped porous janus-like carbon frameworks for bifunctional oxygen electrocatalysis. Appl. Catal. B-environ. 240, 112–121 (2019). https://doi.org/10.1016/j.apcatb.2018.08.074
- Y. Ma, T. Yang, H. Zou, X. Li, J. Wang et al., Synergizing Mo single atoms and Mo2C nanops on CNTs synchronizes selectivity and activity of electrocatalytic N2 reduction to ammonia. Adv. Mater. 32, 2002177 (2020). https://doi.org/10.1002/adma.202002177
- H. Wang, F.X. Yin, N. Liu, D.J. Liu, H.Q. Yin, Engineering Fe–Fe3C@Fe–N–C active sites and hybrid structures from dual metal-organic frameworks for oxygen reduction reaction in H2–O2 fuel cell and Li–O2 battery. Adv. Funct. Mater. 29, 1901531 (2019). https://doi.org/10.1002/adfm.201901531
- X. Wei, S. Song, W. Song, L. Zheng, C. Zhu et al., Fe3C-assisted single atomic Fe sites for sensitive electrochemical biosensing. Anal. Chem. 93, 5334–5342 (2021). https://doi.org/10.1021/acs.analchem.1c00635
- Y. Xing, Z. Yao, W. Li, H. Hu, M. Wu et al., Fe/Fe3C boosts H2O2 utilization for methane conversion overwhelming O2 generation. Angew. Chem. Int. Ed. 60, 8889–8895 (2021). https://doi.org/10.1002/anie.202016888
- W. Wang, X. Zuo, Q. Yang, H. Zhang, G. Li et al., Constructing Fe/Fe3C nanocrystals with Fe–Nx sites in Fe–N–C electrocatalyst to achieve high performance for solar cells. Appl. Catal. B-Environ. 300, 120726 (2022). https://doi.org/10.1016/j.apcatb.2021.120726
- C.L. Zhang, J.T. Liu, H. Li, F.H. Cao, W. Zhang et al., The controlled synthesis of Fe3C/Co/N-doped hierarchically structured carbon nanotubes for enhanced electrocatalysis. Appl. Catal. B-Environ. 261, 118224 (2020). https://doi.org/10.1016/j.apcatb.2019.118224
- H. Xie, X. Xie, G. Hu, Y. Shao, L. Hu et al., Ta–TiOx nanops as radical scavengers to improve the durability of Fe–N–C oxygen reduction catalysts. Nat. Energy 7, 281–289 (2022). https://doi.org/10.1038/s41560-022-00988-w
- Y. Pan, X. Ma, M. Wang, C. Chen, Y. Li et al., Construction of N, P co-doped carbon frames anchored with Fe single atoms and Fe2P nanops as a robust coupling catalyst for electrocatalytic oxygen reduction. Adv. Mater. 34, 2203621 (2022). https://doi.org/10.1002/adma.202203621
- H. Li, K. Gan, R. Li, J. Qiu, X. He et al., Highly dispersed NiO clusters induced electron delocalization of Ni–N–C catalysts for enhanced CO2 electroreduction. Adv. Funct. Mater. 33, 2208622 (2022). https://doi.org/10.1002/adfm.202208622
- F.S. Yu, J.Y. Zhan, D.T. Chen, S.B. Zhang, L.H. Zhang et al., Electronic states regulation induced by the synergistic effect of Cu clusters and Cu–S1N3 sites boosting electrocatalytic performance. Adv. Funct. Mater. 33, 2214425 (2023). https://doi.org/10.1002/adfm.202214425
- J.J. Gao, P. Du, Q.H. Zhang, X.J. Liu, H.J. Qiu et al., Platinum single atoms/clusters stabilized in transition metal oxides for enhanced electrocatalysis. Electrochim. Acta 297, 155–162 (2019). https://doi.org/10.1016/j.electacta.2018.11.200
- Y. Yin, W. Li, C. Xu, S. Liu, H. Sun et al., Ultrafine copper nanoclusters and single sites for fenton-like reactions with high atom utilities. Environ. Sci. Nano 7, 2595–2606 (2020). https://doi.org/10.1039/d0en00505c
- M. Liu, J. Li, B. Chi, L. Zheng, S. Liao et al., Integration of single Co atoms and Ru nanoclusters boosts the cathodic performance of nitrogen-doped 3D graphene in lithium-oxygen batteries. J. Mater. Chem. A 9, 10747–10757 (2021). https://doi.org/10.1039/d1ta00538c
- B. Zhang, B. Zhang, G. Zhao, W. Sun, H. Pan, Atomically dispersed chromium coordinated with hydroxyl clusters enabling efficient hydrogen oxidation on ruthenium. Nat. Commun. 13, 5894 (2022). https://doi.org/10.1038/s41467-022-33625-x
- L. Li, S. Huang, T. Hu, X. Zhuang, Y. Chen et al., Optimizing microenvironment of asymmetric N, S-coordinated single-atom Fe via axial fifth coordination toward efficient oxygen electroreduction. Small 18, 2105387 (2021). https://doi.org/10.1002/smll.202105387
- Y. Xie, X. Chen, W.H. Lai, H. Liu, G. Wang et al., Direct oxygen-oxygen cleavage through optimizing interatomic distances in dual single-atom electrocatalysts for efficient oxygen reduction reaction. Angew. Chem. Int. Ed. 62, e202301833 (2023). https://doi.org/10.1002/anie.202301833
- H. Li, X. Wang, X. Gong, C. Liu, J. Ge et al., “One stone three birds” of a synergetic effect between Pt single atoms and clusters makes an ideal anode catalyst for fuel cells. J. Mater. Chem. A 11, 14826–14832 (2023). https://doi.org/10.1039/d3ta01313h
- M. Wu, X. Yang, X. Cui, S. Sun, G. Zhang et al., Engineering Fe–N4 electronic structure with adjacent Co–N2C2 and Co nanoclusters on carbon nanotubes for efficient oxygen electrocatalysis. Nano-Micro Lett. 15, 232 (2023). https://doi.org/10.1007/s40820-023-01195-2
- X. Wan, Q. Liu, J. Liu, R. Yu, J. Shui et al., Iron atom-cluster interactions increase activity and improve durability in Fe–N–C fuel cells. Nat. Commun. 13, 2963 (2022). https://doi.org/10.1038/s41467-022-30702-z
- S. Gao, H. Yang, D. Rao, Y. Zhou, J. Yang et al., Supercritical CO2 assisted synthesis of highly accessible iron single atoms and clusters on nitrogen-doped carbon as efficient oxygen reduction electrocatalysts. Chem. Eng. J. 433, 134460 (2022). https://doi.org/10.1016/j.cej.2021.134460
- L. Wang, X. Qin, T. Sun, H. Liu, D. Ma et al., Fully-exposed Pt clusters stabilized on Sn-decorated nanodiamond/graphene hybrid support for efficient ethylbenzene direct dehydrogenation. Nano Res. 15, 10029–100236 (2022). https://doi.org/10.1007/s12274-022-4650-6
- T. Rui, G.P. Lu, X. Zhao, X. Cao, Z. Chen et al., The synergistic catalysis on Co nanops and CoNx sites of aniline-modified ZIF derived Co@NCs for oxidative esterification of HMF. Chin. Chem. Lett. 32, 685–690 (2021). https://doi.org/10.1016/j.cclet.2020.06.027
- L. Zhuang, Z. Jia, Y. Wang, L. Tian, T. Qi et al., Nitrogen-doped carbon black supported synergistic palladium single atoms and nanops for electrocatalytic oxidation of methanol. Chem. Eng. J. 438, 135585 (2022). https://doi.org/10.1016/j.cej.2022.135585
- X. Yang, Y. Wang, X. Wang, J. Ge, W. Xing et al., Co-tolerant PEMFC anodes enabled by synergistic catalysis between iridium single-atom sites and nanops. Angew. Chem. Int. Ed. 60, 26177–26183 (2021). https://doi.org/10.1002/anie.202110900
- Y. Zhu, K. Fan, C.S. Hsu, H.M. Chen, H. Huang et al., Supported ruthenium single-atom and clustered catalysts outperform benchmark Pt for alkaline hydrogen evolution. Adv. Mater. 35, 2301133 (2023). https://doi.org/10.1002/adma.202301133
- T. Luo, J. Huang, Y. Hu, Z. Li, Y. Feng et al., Fullerene lattice-confined Ru nanops and single atoms synergistically boost electrocatalytic hydrogen evolution reaction. Adv. Funct. Mater. 33, 2213058 (2023). https://doi.org/10.1002/adfm.202213058
- J. Peng, Y. Chen, K. Wang, Z. Tang, S. Chen, High-performance Ru-based electrocatalyst composed of Ru nanops and Ru single atoms for hydrogen evolution reaction in alkaline solution. Int. J. Hydrog. Energy 45, 18840–18849 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.064
- Q. Hu, G. Li, X. Huang, J. Liu, C. He et al., Electronic structure engineering of single atomic Ru by Ru nanops to enable enhanced activity for alkaline water reduction. J. Mater. Chem. A 7, 19531–19538 (2019). https://doi.org/10.1039/c9ta06244k
- D. Cao, J. Wang, H. Xu, D. Cheng, Construction of dual-site atomically dispersed electrocatalysts with Ru–C5 single atoms and Ru–O4 nanoclusters for accelerated alkali hydrogen evolution. Small 17, 2101163 (2021). https://doi.org/10.1002/smll.202101163
- J. Ji, Y. Zhang, L. Tang, C. Liang, Z. Lin et al., Platinum single-atom and cluster anchored on functionalized MWCNTs with ultrahigh mass efficiency for electrocatalytic hydrogen evolution. Nano Energy 63, 103849 (2019). https://doi.org/10.1016/j.nanoen.2019.06.045
- W. Yang, P. Cheng, Z. Li, Z. Lian, H. Li et al., Tuning the cobalt-platinum alloy regulating single-atom platinum for highly efficient hydrogen evolution reaction. Adv. Funct. Mater. 32, 2205920 (2022). https://doi.org/10.1002/adfm.202205920
- W. Yang, M. Li, B. Zhang, H. Li, Z. Lian et al., Interfacial microenvironment modulation boosts efficient hydrogen evolution reaction in neutral and alkaline. Adv. Funct. Mater. 33, 2304852 (2023). https://doi.org/10.1002/adfm.202304852
- M. Cao, Z. Wei, R. Cao, Research progress in cucurbit[n]uril-based metal nanomaterials for electrocatalytic applications. J. Electrochem. 29, 2215008 (2023). https://doi.org/10.13208/j.electrochem.2215008
- L. Yan, H. Wang, J. Shen, Y. Zhong, Y. Hu et al., Formation of mesoporous Co/CoS/metal-N-C@S, N-codoped hairy carbon polyhedrons as an efficient trifunctional electrocatalyst for Zn-air batteries and water splitting. Chem. Eng. J. 403, 126385 (2021). https://doi.org/10.1016/j.cej.2020.126385
- Q. Wang, K. Cui, D. Liu, Y. Wu, S. Ren, Co–N active sites between Co nanops and N-doped carbon toward remarkably enhanced electrocatalytic oxygen evolution and hydrogen evolution reactions. Energy Fuel 36, 1688–1696 (2022). https://doi.org/10.1021/acs.energyfuels.1c04141
- S. Chandrasekaran, R. Hu, L. Yao, X. Ren, L. Deng et al., Mutual self-regulation of d-electrons of single atoms and adjacent nanops for bifunctional oxygen electrocatalysis and rechargeable Zinc-air batteries. Nano-Micro Lett. 15, 48 (2023). https://doi.org/10.1007/s40820-023-01022-8
- H.J. Son, M.J. Kim, S.H. Ahn, Monolithic Co–N–C membrane integrating Co atoms and clusters as a self-supporting multi-functional electrode for solid-state Zinc–air batteries and self-powered water splitting. Chem. Eng. J. 414, 128739 (2021). https://doi.org/10.1016/j.cej.2021.128739
- X. Ding, C. Jia, P. Ma, J. Zeng, J. Bao et al., Remote synergy between heterogeneous single atoms and clusters for enhanced oxygen evolution. Nano Lett. 23, 3309–3316 (2023). https://doi.org/10.1021/acs.nanolett.3c00228
- P. Yu, L. Wang, F. Sun, J. Li, H. Fu et al., Co nanoislands rooted on Co–N–C nanosheets as efficient oxygen electrocatalyst for Zn-air batteries. Adv. Mater. 31, 1901666 (2019). https://doi.org/10.1002/adma.201901666
- H. Zhang, M. Zhao, H. Liu, Y. Han, W. Huang et al., Ultrastable FeCo bifunctional electrocatalyst on Se-doped CNTs for liquid and flexible all-solid-state rechargeable Zn-air batteries. Nano Lett. 21, 2255–2264 (2021). https://doi.org/10.1021/acs.nanolett.1c00077
- S. Ding, L. He, L. Fang, Y. Lin, J.C. Li et al., Carbon-nanotube-bridging strategy for integrating single Fe atoms and NiCo nanops in a bifunctional oxygen electrocatalyst toward high-efficiency and long-life rechargeable Zinc-air batteries. Adv. Energy Mater. 12, 2202984 (2022). https://doi.org/10.1002/aenm.202202984
- Y. Gao, L. Liu, Y. Jiang, D. Yu, Y.P. Deng, Z. Chen et al., Design principles and mechanistic understandings of non-noble-metal bifunctional electrocatalysts for zinc–air batteries. Nano-Micro Lett. 16, 162 (2024). https://doi.org/10.1007/s40820-024-01366-9
- Y. Yang, X. Xu, P. Sun, S. Wang, D. Cao et al., AgNPs@Fe–N–C oxygen reduction catalysts for anion exchange membrane fuel cells. Nano Energy 100, 107466 (2022). https://doi.org/10.1016/j.nanoen.2022.107466
- Q. Yue, T. Gao, S. Wu, H. Yuan, D. Xiao, Ultrafast fabrication of robust electrocatalyst having Fe/Fe3C and CuNC for enhanced oxygen reduction reaction activity. J. Colloid Interface Sci. 605, 906–915 (2022). https://doi.org/10.1016/j.jcis.2021.07.125
- X. Sun, P. Wei, S. Gu, J. Han, Y. Huang et al., Atomic-level Fe–N–C coupled with Fe3C–Fe nanocomposites in carbon matrixes as high-efficiency bifunctional oxygen catalysts. Small 16, 1906057 (2020). https://doi.org/10.1002/smll.201906057
- M. Zhang, H. Li, J. Chen, Z. Wen, C.Y. Xu et al., High-loading Co single atoms and clusters active sites toward enhanced electrocatalysis of oxygen reduction reaction for high-performance Zn-air battery. Adv. Funct. Mater. 33, 2209726 (2022). https://doi.org/10.1002/adfm.202209726
- S.H. Yin, J. Yang, Y. Han, Y.X. Jiang, S.G. Sun et al., Construction of highly active metal-containing nanops and FeCo–N4 composite sites for the acidic oxygen reduction reaction. Angew. Chem. Int. Ed. 59, 21976–21979 (2020). https://doi.org/10.1002/anie.202010013
- M. Liu, J. Lee, T.C. Yang, C.M. Yang, L.Y.S. Lee et al., Synergies of Fe single atoms and clusters on N-doped carbon electrocatalyst for PH-universal oxygen reduction. Small Methods 5, 2001165 (2021). https://doi.org/10.1002/smtd.202001165
- Z. Liu, S. Zhou, S. Ma, H. Cheng, W. Cai et al., Co nanocluster strain-engineered by atomic Ru for efficient and stable oxygen reduction catalysis. Mater. Today Phys. 17, 100338 (2021). https://doi.org/10.1016/j.mtphys.2020.100338
- L. Huang, Y.Q. Su, R. Qi, S. Ding, B.Y. Xia et al., Boosting oxygen reduction via integrated construction and synergistic catalysis of porous platinum alloy and defective graphitic carbon. Angew. Chem. Int. Ed. 60, 25530–25537 (2021). https://doi.org/10.1002/anie.202111426
- H. Liu, L. Jiang, J. Khan, S. Wang, L. Han et al., Decorating single-atomic Mn sites with FeMn clusters to boost oxygen reduction reaction. Angew. Chem. Int. Ed. 62, e202214988 (2022). https://doi.org/10.1002/anie.202214988
- Y. Yuan, Q. Zhang, L. Yang, Z. Chen, Z. Bai et al., Facet strain strategy of atomically dispersed Fe–N–C catalyst for efficient oxygen electrocatalysis. Adv. Funct. Mater. 32, 2206081 (2022). https://doi.org/10.1002/adfm.202206081
- P. Guo, B. Liu, Y.K. Dai, X.L. Sui, Z.B. Wang et al., Coupling fine Pt nanops and Co–Nx moiety as a synergistic bi-active site catalyst for oxygen reduction reaction in acid media. J. Colloid Interface Sci. 613, 276–284 (2022). https://doi.org/10.1016/j.jcis.2022.01.042
- N. Wang, J. Liang, J. Liu, T. Huang, Z. Shi et al., CoFe nanops dispersed in Co/Fe–N–C support with meso- and macroporous structures as the high-performance catalyst boosting the oxygen reduction reaction for Al/Mg-air batteries. J. Power. Sources 517, 230707 (2022). https://doi.org/10.1016/j.jpowsour.2021.230707
- W. Zhu, J. Fu, J. Liu, J.J. Zhu, Y. Lin et al., Tuning single atom-nanop ratios of Ni-based catalysts for synthesis gas production from CO2. Appl. Catal. B-environ. 264, 118502 (2020). https://doi.org/10.1016/j.apcatb.2019.118502
- J. Li, S.U. Abbas, H. Wang, Z. Zhang, W. Hu, Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 13, 216 (2021). https://doi.org/10.1007/s40820-021-00738-9
- Z. Yin, J. Yu, Z. Xie, L. Qi, S. Zhang et al., Hybrid catalyst coupling single-atom Ni and nanoscale Cu for efficient CO2 electroreduction to ethylene. J. Am. Chem. Soc. 144, 20931–20938 (2022). https://doi.org/10.1021/jacs.2c09773
- D. Chen, L.H. Zhang, J. Du, F. Li, F. Yu et al., A tandem strategy for enhancing electrochemical CO2 reduction activity of single-atom Cu–S1N3 catalysts via integration with Cu nanoclusters. Angew. Chem. Int. Ed. 60, 24022–24027 (2021). https://doi.org/10.1002/anie.202109579
- J. Lin, J. Ding, H. Wang, X. Han, W. Hu et al., Boosting energy efficiency and stability of Li–CO2 batteries via synergy between Ru atom clusters and single-atom Ru–N4 sites in the electrocatalyst cathode. Adv. Mater. 34, 2200559 (2022). https://doi.org/10.1002/adma.202200559
- Y. Zhang, P. Li, C. Zhao, C. Su, Y. Wu et al., Multicarbons generation factory: CuO/Ni single atoms tandem catalyst for boosting the productivity of CO2 electrocatalysis. Sci. Bull. 67, 1679–1687 (2022). https://doi.org/10.1016/j.scib.2022.07.029
- Z. Ma, S. Liu, N. Tang, Z. Shen, Y. Yang et al., Coexistence of Fe nanoclusters boosting Fe single atoms to generate singlet oxygen for efficient aerobic oxidation of primary amines to imines. ACS Catal. 12, 5595–5604 (2022). https://doi.org/10.1021/acscatal.1c04467
- Q. Feng, X. Wang, M. Klingenhof, M. Heggen, P. Strasser, Low-Pt NiNC-supported PtNi nanoalloy oxygen reduction reaction electrocatalysts-in situ tracking of the atomic alloying process. Angew. Chem. Int. Ed. 61, e202203728 (2022). https://doi.org/10.1002/anie.202203728
- P. Li, R. Chen, Y. Huang, S. Zhao, S. Tian et al., Activating transition metal via synergistic anomalous phase and doping engineering towards enhanced dehydrogenation of ammonia borane. Appl. Catal. B-environ. 300, 120725 (2022). https://doi.org/10.1016/j.apcatb.2021.120725
- H. Xu, S. Zhang, X. Zhang, H. Zhang, H. Zhao et al., Atomically dispersed iron regulating electronic structure of iron atom clusters for electrocatalytic H2O2 production and biomass upgrading. Angew. Chem. Int. Ed. 62, e202314414 (2023). https://doi.org/10.1002/anie.202314414
- Z. He, G. Yang, H. Wang, F. Dai, F. Peng et al., Co–N–C-supported platinum catalyst: synergistic effect on the aerobic oxidation of glycerol. ACS Sustain. Chem. Eng. 8, 19062–19071 (2020). https://doi.org/10.1021/acssuschemeng.0c07332
- J.C. Li, Y. Meng, L. Zhang, H.M. Cheng, M. Shao et al., Dual-phasic carbon with Co single atoms and nanops as a bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Adv. Funct. Mater. 31, 2103360 (2021). https://doi.org/10.1002/adfm.202103360
- Z. Wang, C. Zhu, H. Tan, Z. Liu, X. Lu et al., Understanding the synergistic effects of cobalt single atoms and small nanops: Enhancing oxygen reduction reaction catalytic activity and stability for Zinc-air batteries. Adv. Funct. Mater. 31, 2104735 (2021). https://doi.org/10.1002/adfm.202104735
- Y. Liu, Z. Chen, Z. Li, L. Cai, Y. Yang et al., CoNi nanoalloy-Co-N4 composite active sites embedded in hierarchical porous carbon as bi-functional catalysts for flexible Zn-air battery. Nano Energy 99, 107325 (2022). https://doi.org/10.1016/j.nanoen.2022.107325
- C. Shi, Y. Liu, R. Qi, L. Zhou, L. Mai et al., Hierarchical N-doped carbon spheres anchored with cobalt nanocrystals and single atoms for oxygen reduction reaction. Nano Energy 87, 106153 (2021). https://doi.org/10.1016/j.nanoen.2021.106153
- C. Xu, C. Guo, J. Liu, H. Li, C. Chen et al., Accelerating the oxygen adsorption kinetics to regulate the oxygen reduction catalysis via Fe3C nanops coupled with single Fe-N4 sites. Energy Storage Mater. 51, 149–158 (2022). https://doi.org/10.1016/j.ensm.2022.06.038
- D. Qi, Y. Liu, M. Hu, J. Luo, X. Liu et al., Engineering atomic sites via adjacent dual-metal sub-nanoclusters for efficient oxygen reduction reaction and Zn-air battery. Small 16, 2004855 (2020). https://doi.org/10.1002/smll.202004855
- J. Zhang, X. Dong, W. Xing, G. Wang, R. Wang et al., Engineering iron single atomic sites with adjacent ZrO2 nanoclusters via ligand–assisted strategy for effective oxygen reduction reaction and high-performance Zn-air batteries. Chem. Eng. J. 420, 129938 (2021). https://doi.org/10.1016/j.cej.2021.129938
- J. Zhu, W. Tu, Z. Bai, Z. Deng, H. Zhang et al., Zeolitic-imidazolate-framework-derived Co@Co3O4 embedded into iron, nitrogen, sulfur co-doped reduced graphene oxide as efficient electrocatalysts for overall water splitting and Zinc-air batteries. Electrochim. Acta 323, 134821 (2019). https://doi.org/10.1016/j.electacta.2019.134821
- F. Zhou, P. Yu, F. Sun, X. Liu, L. Wang et al., The cooperation of Fe3C nanops with isolated single iron atoms to boost the oxygen reduction reaction for Zn–air batteries. J. Mater. Chem. A 9, 6831–6840 (2021). https://doi.org/10.1039/d1ta00039j
- Q. Lu, H. Wu, X. Zheng, Y. Deng, W. Hu et al., Encapsulating cobalt nanops in interconnected N-doped hollow carbon nanofibers with enriched Co–N–C moiety for enhanced oxygen electrocatalysis in Zn-air batteries. Adv. Sci. 8, 2101438 (2021). https://doi.org/10.1002/advs.202101438
- J. Chen, B. Huang, R. Cao, K. Yuan, Y. Chen et al., Steering local electronic configuration of Fe–N–C-based coupling catalysts via ligand engineering for efficient oxygen electroreduction. Adv. Funct. Mater. 33, 2209315 (2022). https://doi.org/10.1002/adfm.202209315
- P. Guo, Y. Xia, B. Liu, L. Zhao, Z. Wang et al., Low-loading sub-3 nm PtCo nanops supported on Co–N–C with dual effect for oxygen reduction reaction in proton exchange membrane fuel cells. ACS Appl. Mater. Interfaces 14, 53819–53827 (2022). https://doi.org/10.1021/acsami.2c15996
- S. Zaman, Y.Q. Su, C.L. Dong, S. Ding, B. Yu Xia et al., Scalable molten salt synthesis of platinum alloys planted in metal-nitrogen-graphene for efficient oxygen reduction. Angew. Chem. Int. Ed. 61, e202115835 (2022). https://doi.org/10.1002/anie.202115835
- Q. Shu, J. Zhang, B. Hu, W. Zhou, Z. Shao et al., Rational design of a high-durability Pt-based ORR catalyst supported on Mn/N codoped carbon sheets for PEMFCs. Energy Fuel 36, 1707–1715 (2022). https://doi.org/10.1021/acs.energyfuels.1c04306
- L. Liang, H. jin, H. Zhou, D. He, S. Mu et al., Ultra-small platinum nanops segregated by nickle sites for efficient ORR and HER processes. J. Energy Chem. 65, 48–54 (2022). https://doi.org/10.1016/j.jechem.2021.05.033
- L. Liang, H. Jin, H. Zhou, D. He, S. Mu et al., Cobalt single atom site isolated Pt nanops for efficient ORR and HER in acid media. Nano Energy 88, 106221 (2021). https://doi.org/10.1016/j.nanoen.2021.106221
- J. Chen, J. Dong, J. Huo, Z. Cui, S. Liao et al., Ultrathin Co-N-C layer modified Pt-Co intermetallic nanops leading to a high-performance electrocatalyst toward oxygen reduction and methanol oxidation. Small 19, 2301337 (2023). https://doi.org/10.1002/smll.202301337
- J. Gao, X. Zhou, Y. Wang, X. Lin, H.J. Qiu et al., Exploiting the synergistic electronic interaction between Pt-skin wrapped intermetallic PtCo nanops and Co–N–C support for efficient ORR/EOR electrocatalysis in a direct ethanol fuel cell. Small 18, 2202071 (2022). https://doi.org/10.1002/smll.202202071
References
Z.W. Seh, J. Kibsgaard, C.F. Dickens, J.K. Norskov, T.F. Jaramillo et al., Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017). https://doi.org/10.1126/science.aad4998
L. Han, S.J. Dong, E.K. Wang, Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv. Mater. 28, 9266–9291 (2016). https://doi.org/10.1002/adma.201602270
X.L. Tian, X. Zhao, Y.Q. Su, X.W. Lou, B.Y. Xia et al., Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 366, 850–856 (2019). https://doi.org/10.1126/science.aaw7493
D. Wang, H.L. Xin, R. Hovden, F.J. DiSalvo, H.D. Abruna et al., Structurally ordered intermetallic platinum-cobalt core-shell nanops with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 12, 81–87 (2013). https://doi.org/10.1038/nmat3458
Y. Xiong, Y. Yang, F.J. DiSalvo, H.D. Abruna, Synergistic bimetallic metallic organic framework-derived Pt–Co oxygen reduction electrocatalysts. ACS Nano 14, 13069–13080 (2020). https://doi.org/10.1021/acsnano.0c04559
Z. Xiao, Y. Wang, J. Ma, Y. Li, S. Wang et al., Filling the oxygen vacancies in Co3O4 with phosphorus: an ultra-efficient electrocatalyst for overall water splitting. Energy Environ. Sci. 10, 2563–2569 (2017). https://doi.org/10.1039/c7ee01917c
X.X. Wang, M.T. Swihart, G. Wu, Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat. Catal. 2, 578–589 (2019). https://doi.org/10.1038/s41929-019-0304-9
X. Liang, N. Fu, S. Yao, Z. Li, Y. Li, The progress and outlook of metal single-atom-site catalysis. J. Am. Chem. Soc. 144, 18155–18174 (2022). https://doi.org/10.1021/jacs.1c12642
P.N. Duchesne, Z.Y. Li, C.P. Deming, N. Zheng, P. Zhang et al., Golden single-atomic-site platinum electrocatalysts. Nat. Mater. 17, 1033–1039 (2018). https://doi.org/10.1038/s41563-018-0167-5
Y. Chen, S. Ji, W. Sun, D. Wang, Y. Li et al., Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew. Chem. Int. Ed. 59, 1295–1301 (2019). https://doi.org/10.1002/anie.201912439
Z. Zhang, J. Zhu, S. Chen, W. Sun, D. Wang, Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem. Int. Ed. 62, e202215136 (2022). https://doi.org/10.1002/anie.202215136
R. Qin, K. Liu, Q. Wu, N. Zheng, Surface coordination chemistry of atomically dispersed metal catalysts. Chem. Rev. 120, 11810–11899 (2020). https://doi.org/10.1021/acs.chemrev.0c00094
Y. Wang, D. Wang, Y. Li, Rational design of single-atom site electrocatalysts: from theoretical understandings to practical applications. Adv. Mater. 33, 2008151 (2021). https://doi.org/10.1002/adma.202008151
J.Q. Shan, C. Ye, Y.L. Jiang, Y. Zheng, S.Z. Qiao et al., Metal–metal interactions in correlated single-atom catalysts. Sci. Adv. 8, eabo0762 (2022). https://doi.org/10.1126/sciadv.abo0762
P. Zhu, X. Xiong, D. Wang, Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 15, 5792–5815 (2022). https://doi.org/10.1007/s12274-022-4265-y
E. Zhang, L. Tao, J. An, D. Wang, Y. Li et al., Engineering the local atomic environments of indium single-atom catalysts for efficient electrochemical production of hydrogen peroxide. Angew. Chem. Int. Ed. 61, e202117347 (2022). https://doi.org/10.1002/anie.202117347
Y. Han, H. Duan, B. Wang, W. Yan, R. Zhang et al., Stabilizing cobalt single atoms via flexible carbon membranes as bifunctional electrocatalysts for binder-free zinc-air batteries. Nano Lett. 22, 2497–2505 (2022). https://doi.org/10.1021/acs.nanolett.2c00278
J. Yang, H. Qi, A. Li, A. Wang, T. Zhang et al., Potential-driven restructuring of Cu single atoms to nanops for boosting the electrochemical reduction of nitrate to ammonia. J. Am. Chem. Soc. 144, 12062–12071 (2022). https://doi.org/10.1021/jacs.2c02262
S. Zhou, L. Shang, Y. Zhao, L. Zheng, T. Zhang et al., Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Adv. Mater. 31, 1900509 (2019). https://doi.org/10.1002/adma.201900509
Y. Peng, B. Lu, S. Chen, Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv. Mater. 30, 1801995 (2018). https://doi.org/10.1002/adma.201801995
S. An, G. Zhang, T. Wang, J. Wang, X. Guo et al., High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride (g–C3N4) for highly efficient catalytic advanced oxidation processes. ACS Nano 12, 9441–9450 (2018). https://doi.org/10.1021/acsnano.8b04693
J. Wang, K. Li, H. Zhong, Z. Wu, X. Zhang et al., Synergistic effect between metal-nitrogen-carbon sheets and NiO nanops for enhanced electrochemical water-oxidation performance. Angew. Chem. Int. Ed. 54, 10530–10534 (2015). https://doi.org/10.1002/anie.201504358
W.J. Jiang, L. Gu, L. Li, Z. Wei, L.J. Wan et al., Understanding the high activity of Fe–N–C electrocatalysts in oxygen reduction: Fe/Fe3C nanops boost the activity of Fe–Nx. J. Am. Chem. Soc. 138, 3570–3578 (2016). https://doi.org/10.1021/jacs.6b00757
Q. Cheng, S. Han, K. Mao, Z. Hu, H. Yang et al., Co nanop embedded in atomically-dispersed Co–N–C nanofibers for oxygen reduction with high activity and remarkable durability. Nano Energy 52, 485–493 (2018). https://doi.org/10.1016/j.nanoen.2018.08.005
L. Chong, J. Wen, J. Kubal, W. Ding, D.J. Liu et al., Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 362, 1276–1281 (2018). https://doi.org/10.1126/science.aau0630
S.N. Zhao, J.K. Li, R. Wang, J. Cai, S.Q. Zang, Electronically and geometrically modified single-atom Fe sites by adjacent Fe nanops for enhanced oxygen reduction. Adv. Mater. 34, 2107291 (2022). https://doi.org/10.1002/adma.202107291
X. Ao, W. Zhang, C. Wang, M. Liu, X.C. Zeng et al., Markedly enhanced oxygen reduction activity of single-atom Fe catalysts via integration with Fe nanoclusters. ACS Nano 13, 11853–11862 (2019). https://doi.org/10.1021/acsnano.9b05913
X. Ao, W. Zhang, B. Zhao, C. Wang, M. Liu et al., Atomically dispersed Fe–N–C decorated with Pt-alloy core–shell nanops for improved activity and durability towards oxygen reduction. Energy Environ. Sci. 13, 3032–3040 (2020). https://doi.org/10.1039/d0ee00832j
L. Chong, H. Zhou, J. Kubal, J. Zou, W. Ding et al., Highly durable fuel cell electrocatalyst with low-loading Pt–Co nanops dispersed over single atom Pt–Co–N-graphene nanofiber. Chem. Catal. 3, 100541 (2022). https://doi.org/10.1016/j.checat.2023.100541
X. Xu, X. Li, W. Lu, W. Zheng, X. Zhao et al., Collective effect in a multicomponent ensemble combining single atoms and nanops for efficient and durable oxygen reduction. Angew. Chem. Int. Ed. 63, e202400765 (2024). https://doi.org/10.1002/anie.202400765
Y. Zhao, P.V. Kumar, X. Tan, Z. Han, X. Lu et al., Modulating Pt–O–Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis. Nat. Commun. 13, 2430 (2022). https://doi.org/10.1038/s41467-022-30155-4
L. Zeng, Z. Zhao, Q. Huang, M. Luo, S. Guo et al., Single-atom Cr-N4 sites with high oxophilicity interfaced with Pt atomic clusters for practical alkaline hydrogen evolution catalysis. J. Am. Chem. Soc. 145, 21432–21441 (2023). https://doi.org/10.1021/jacs.3c06863
S. Yuan, Z. Pu, H. Zhou, G. Van Tendeloo, S. Mu et al., A universal synthesis strategy for single atom dispersed cobalt/metal clusters heterostructure boosting hydrogen evolution catalysis at all PH values. Nano Energy 59, 472–480 (2019). https://doi.org/10.1016/j.nanoen.2019.02.062
X. Li, Y. He, S. Cheng, G. Wu, D. Su et al., Atomic structure evolution of Pt–Co binary catalysts: single metal sites versus intermetallic nanocrystals. Adv. Mater. 33, 2106371 (2021). https://doi.org/10.1002/adma.202106371
P. Su, W. Pei, X. Wang, J. Liu, G.Q.M. Lu et al., Exceptional electrochemical HER performance with enhanced electron transfer between Ru nanops and single atoms dispersed on a carbon substrate. Angew. Chem. Int. Ed. 60, 16044–16050 (2021). https://doi.org/10.1002/anie.202103557
W. Guo, Z. Wang, X. Wang, Y. Wu, General design concept for single-atom catalysts toward heterogeneous catalysis. Adv. Mater. 33, 2004287 (2021). https://doi.org/10.1002/adma.202004287
S. Wang, T. Ding, T. Liu, M. Zhu, T. Yao et al., Ligand assisted thermal atomization of palladium clusters: An inspiring approach for the rational design of atomically dispersed metal catalysts. Angew. Chem. Int. Ed. 62, e202218630 (2023). https://doi.org/10.1002/anie.202218630
X.X. Wang, S. Hwang, Y.T. Pan, D. Su, G. Wu et al., Ordered Pt3Co intermetallic nanops derived from metal-organic frameworks for oxygen reduction. Nano Lett. 18, 4163–4171 (2018). https://doi.org/10.1021/acs.nanolett.8b00978
X. Wei, S. Song, W. Cai, S. Guo, C. Zhu et al., Tuning the spin-state of Fe single atoms by Pd nanoclusters enables robust oxygen reduction with dissociative pathway. Chem 18, 181–197 (2023). https://doi.org/10.1016/j.chempr.2022.10.001
A. Han, W. Sun, X. Wan, J. Shui, D. Wang et al., Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem. Int. Ed. 62, e202303185 (2023). https://doi.org/10.1002/anie.202303185
Y. Li, Z. Li, K. Shi, Z. Sun, G. Sun et al., Single-atom Mn catalysts via integration with mn sub nano-clusters synergistically enhance oxygen reduction reaction. Small (2023). https://doi.org/10.1002/smll.202309727
W. Zhai, S. Huang, C. Lu, X. Zhuang, Y. Chen et al., Simultaneously integrate iron single atom and nanocluster triggered tandem effect for boosting oxygen electroreduction. Small 18, 2107225 (2022). https://doi.org/10.1002/smll.202107225
X. Cheng, J. Yang, G. Li, Y. Jiang, S. Sun et al., Nano-geometric deformation and synergistic Co nanops-Co-N4 composite sites for proton exchange membrane fuel cells. Energy Environ. Sci. 14, 5958–5967 (2021). https://doi.org/10.1039/d1ee01715b
H. Huang, D. Yu, F. Hu, L.L. Li, S. Peng et al., Clusters induced electron redistribution to tune oxygen reduction activity of transition metal single-atom for metal-air batteries. Angew. Chem. Int. Ed. 61, e202116068 (2022). https://doi.org/10.1002/anie.202116068
Y. Luo, K. Li, Y. Chen, G. Yu, J. Feng et al., Single atom and hierarchical-pore aerogel confinement strategy for low-platinum fuel cell. Adv. Mater. 35, 2300624 (2023). https://doi.org/10.1002/adma.202300624
F. Xiao, Q. Wang, G.L. Xu, K. Amine, M. Shao et al., Atomically dispersed Pt and Fe sites and Pt-Fe nanops for durable proton exchange membrane fuel cells. Nat. Catal. 5, 503–512 (2022). https://doi.org/10.1038/s41929-022-00796-1
B. Liu, R. Feng, M. Busch, F. Song, Q. Liu et al., Synergistic hybrid electrocatalysts of platinum alloy and single-atom platinum for an efficient and durable oxygen reduction reaction. ACS Nano 16, 14121–14133 (2022). https://doi.org/10.1021/acsnano.2c04077
L. Huang, M. Wei, R. Qi, B. You, B.Y. Xia et al., An integrated platinum-nanocarbon electrocatalyst for efficient oxygen reduction. Nat. Commun. 13, 6703 (2022). https://doi.org/10.1038/s41467-022-34444-w
B. Lu, L. Guo, F. Wu, Y. Ping, S. Chen et al., Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. Nat. Commun. 10, 631 (2019). https://doi.org/10.1038/s41467-019-08419-3
J. Bai, Y. Fu, P. Zhou, Q. Zhou, Y. Deng et al., Synergies of atomically dispersed Mn/Fe single atoms and Fe nanops on N-doped carbon toward high-activity eletrocatalysis for oxygen reduction. ACS Appl. Mater. Interfaces 14, 29986–29992 (2022). https://doi.org/10.1021/acsami.2c08572
W. Wu, Z. Zhang, Z. Lei, N. Cheng, X. Sun et al., Encapsulating Pt nanops inside a derived two-dimensional metal-organic frameworks for the enhancement of catalytic activity. ACS Appl. Mater. Interfaces 12, 10359–10368 (2020). https://doi.org/10.1021/acsami.9b20781
Y. Tian, Z. Wu, M. Li, J. Lu, S. Zhang et al., Atomic modulation and structure design of Fe–N4 modified hollow carbon fibers with encapsulated Ni nanops for rechargeable Zn-air batteries. Adv. Funct. Mater. 32, 2209273 (2022). https://doi.org/10.1002/adfm.202209273
J. Yu, J. Li, C.Y. Xu, R. Li, J. Wang et al., Atomically dispersed Ni–N4 species and Ni nanops constructing N-doped porous carbon fibers for accelerating hydrogen evolution. Carbon 185, 96–104 (2021). https://doi.org/10.1016/j.carbon.2021.09.030
C. Hu, E. Song, M. Wang, J. Liu, J. Wang et al., Partial-single-atom, partial-nanop composites enhance water dissociation for hydrogen evolution. Adv. Sci. 8, 2001881 (2021). https://doi.org/10.1002/advs.202001881
J. Zhang, M. Wang, T. Wan, W. Xiao, S. Jiao et al., Novel (Pt–Ox )-(Co–Oy ) nonbonding active structures on defective carbon from oxygen-rich coal tar pitch for efficient HER and ORR. Adv. Mater. 34, 2206960 (2022). https://doi.org/10.1002/adma.202206960
Z. Dong, Y. Nan, T. Tang, B. Xu, J.S. Hu et al., Synergistically mitigating electron back-donation by single-atomic Fe–N–C and alloying to boost CO-tolerance of Pt in hydrogen oxidation. ACS Catal. 13, 7822–7830 (2023). https://doi.org/10.1021/acscatal.3c01466
R. Jiang, Q. Li, X. Zheng, Z. Xu, J. Wu et al., Metal-organic framework-derived Co nanops and single atoms as efficient electrocatalyst for PH universal hydrogen evolution reaction. Nano Res. 15, 7917–7924 (2022). https://doi.org/10.1007/s12274-022-4448-6
M. Gao, F. Tian, Z. Guo, Y. Yu, W. Yang et al., Mutual-modification effect in adjacent Pt nanops and single atoms with sub-nanometer inter-site distances to boost photocatalytic hydrogen evolution. Chem. Eng. J. 446, 137123 (2022). https://doi.org/10.1016/j.cej.2022.137127
F. Xiao, Y. Wang, G.L. Xu, K. Amine, M. Shao et al., Fe-N-C boosts the stability of supported platinum nanops for fuel cells. J. Am. Chem. Soc. 144, 20372–20384 (2022). https://doi.org/10.1021/jacs.2c08305
L. Zhang, G. Meng, W. Zhang, D. Wang, Y. Li et al., Oriented conversion of a LA/HMF mixture to GVL and FDCA in a biphasic solvent over a Ru single-atom/nanop dual-site catalyst. ACS Catal. 13, 2268–2276 (2023). https://doi.org/10.1021/acscatal.2c04726
H. Cao, J. Wang, J.H. Kim, Y. Shi, Y. Xie et al., Different roles of Fe atoms and nanops on g-C3N4 in regulating the reductive activation of ozone under visible light. Appl. Catal. B-environ. 296, 120362 (2021). https://doi.org/10.1016/j.apcatb.2021.120362
W. Jiang, Y. Li, Y. Xu, R. Wu, Y. Wang et al., Carbon nanotube-bridged N-doped mesoporous carbon nanosphere with atomic and nanoscaled M (M=Fe, Co) species for synergistically enhanced oxygen reduction reaction. Chem. Eng. J. 421, 129689 (2021). https://doi.org/10.1016/j.cej.2021.129689
Y. Zeng, J. Liang, C. Li, D.J. Myers, G. Wu et al., Regulating catalytic properties and thermal stability of Pt and PtCo intermetallic fuel-cell catalysts via strong coupling effects between single-metal site-rich carbon and Pt. J. Am. Chem. Soc. 145, 17643–17655 (2023). https://doi.org/10.1021/jacs.3c03345
X. Li, Y. Jiao, Y. Cui, C. Song, X. Ma et al., Synergistic catalysis of the synthesis of ammonia with Co-based catalysts and plasma: From nanops to a single atom. ACS Appl. Mater. Interfaces 13, 52498–52507 (2021). https://doi.org/10.1021/acsami.1c12695
G. Lan, Q. Ye, Y. Zhu, W. Han, Y. Li et al., Single-site Au/carbon catalysts with single-atom and Au nanops for acetylene hydrochlorination. ACS Appl. Nano Mater. 3, 3004–3010 (2020). https://doi.org/10.1021/acsanm.0c00295
Z. He, G. Yang, H. Wang, F. Peng, H. Yu et al., Co–N-C-supported platinum catalyst: synergistic effect on the aerobic oxidation of glycerol. ACS Sustain. Chem. Eng. 8, 19062–19071 (2020). https://doi.org/10.1021/acssuschemeng.0c07332
D. Wang, P. Yang, H. Xu, J. Zhang, M. An et al., The dual-nitrogen-source strategy to modulate a bifunctional hybrid Co/Co–N–C catalyst in the reversible air cathode for Zn-air batteries. J. Power. Sources 485, 229339 (2021). https://doi.org/10.1016/j.jpowsour.2020.229339
Z. Qiao, C. Wang, C. Li, J.S. Spendelow, G. Wu et al., Atomically dispersed single iron sites for promoting Pt and Pt3Co fuel cell catalysts: performance and durability improvements. Energy Environ. Sci. 14, 4948–4960 (2021). https://doi.org/10.1039/d1ee01675j
Z. Lin, A. Yang, B. Zhang, Y. Tang, X. Qiu et al., Coupling the atomically dispersed Fe–N3 sites with sub-5 nm Pd nanocrystals confined in N-doped carbon nanobelts to boost the oxygen reduction for microbial fuel cells. Adv. Funct. Mater. 32, 2107683 (2021). https://doi.org/10.1002/adfm.202107683
Y. Xue, Y. Guo, Q. Zhang, J. Wei, Z. Zhou et al., MOF-derived Co and Fe species loaded on N-doped carbon networks as efficient oxygen electrocatalysts for Zn-air batteries. Nano-Micro Lett. 14, 162 (2022). https://doi.org/10.1007/s40820-022-00890-w
M. Gong, J. Zhu, M. Liu, H.L. Xin, D. Wang et al., Optimizing PtFe intermetallics for oxygen reduction reaction: from DFT screening to in situ XAFS characterization. Nanoscale 11, 20301–20306 (2019). https://doi.org/10.1039/c9nr04975d
B. Liu, S. Wang, R. Feng, F. Song, Q. Liu et al., Anchoring bimetal single atoms and alloys on N-doping-carbon nanofiber networks for an efficient oxygen reduction reaction and Zinc-air batteries. ACS Appl. Mater. Interfaces 14, 38739–38749 (2022). https://doi.org/10.1021/acsami.2c09271
Z.Y. Chen, C. Hao, B.W. Yan, P. Tsiakaras, P.K. Shen et al., ZIF–Mg(OH)2 dual template assisted self-confinement of small PtCo NPs as promising oxygen reduction reaction in PEM fuel cell. Adv. Energy Mater. 12, 2201600 (2022). https://doi.org/10.1002/aenm.202201600
Q. Zhang, P. Kumar, X. Zhu, R. Amal, X. Lu et al., Electronically modified atomic sites within a multicomponent Co/Cu composite for efficient oxygen electroreduction. Adv. Energy Mater. 11, 2100303 (2021). https://doi.org/10.1002/aenm.202100303
Y.Y. Lou, S.H. Yin, J. Yang, Y.X. Jiang, S.G. Sun et al., MOF-derived single site catalysts with electron-rich Fe–N4 sites for efficient elimination of trichloroacetamide DBP. Chem. Eng. J. 446, 137060 (2022). https://doi.org/10.1016/j.cej.2022.137060
C. Wang, L. Kuai, W. Cao, H. Sun, B. Geng et al., Highly dispersed Cu atoms in MOF-derived N-doped porous carbon inducing Pt loads for superior oxygen reduction and hydrogen evolution. Chem. Eng. J. 426, 130749 (2021). https://doi.org/10.1016/j.cej.2021.130749
X. Wang, Y. Li, C. Yang, L. Cao, H.P. Liang et al., Surfactant-assisted implantation strategy for facile construction of Pt-based hybrid electrocatalyst to accelerate oxygen reduction reaction. Mater. Today Energy 24, 100919 (2022). https://doi.org/10.1016/j.mtener.2021.100919
W. Guo, X. Gao, M. Zhu, H. Zhou, Y. Wu et al., A closely packed Pt1.5Ni1−x/Ni–N–C hybrid for relay catalysis towards oxygen reduction. Energy Environ. Sci. 16, 148–156 (2023). https://doi.org/10.1039/d2ee02381d
X. Cheng, Y. Li, J. Zheng, Y. Jiang, S. Sun et al., Revealing the optimal configuration for synergy effect of metal nanops and Mn4 sites for oxygen reduction reaction. Nano Energy 100, 107440 (2022). https://doi.org/10.1016/j.nanoen.2022.107440
Z. Li, H. He, H. Cao, J. Jiang, G. Zhang et al., Atomic Co/Ni dual sites and Co/Ni alloy nanops in N-doped porous janus-like carbon frameworks for bifunctional oxygen electrocatalysis. Appl. Catal. B-environ. 240, 112–121 (2019). https://doi.org/10.1016/j.apcatb.2018.08.074
Y. Ma, T. Yang, H. Zou, X. Li, J. Wang et al., Synergizing Mo single atoms and Mo2C nanops on CNTs synchronizes selectivity and activity of electrocatalytic N2 reduction to ammonia. Adv. Mater. 32, 2002177 (2020). https://doi.org/10.1002/adma.202002177
H. Wang, F.X. Yin, N. Liu, D.J. Liu, H.Q. Yin, Engineering Fe–Fe3C@Fe–N–C active sites and hybrid structures from dual metal-organic frameworks for oxygen reduction reaction in H2–O2 fuel cell and Li–O2 battery. Adv. Funct. Mater. 29, 1901531 (2019). https://doi.org/10.1002/adfm.201901531
X. Wei, S. Song, W. Song, L. Zheng, C. Zhu et al., Fe3C-assisted single atomic Fe sites for sensitive electrochemical biosensing. Anal. Chem. 93, 5334–5342 (2021). https://doi.org/10.1021/acs.analchem.1c00635
Y. Xing, Z. Yao, W. Li, H. Hu, M. Wu et al., Fe/Fe3C boosts H2O2 utilization for methane conversion overwhelming O2 generation. Angew. Chem. Int. Ed. 60, 8889–8895 (2021). https://doi.org/10.1002/anie.202016888
W. Wang, X. Zuo, Q. Yang, H. Zhang, G. Li et al., Constructing Fe/Fe3C nanocrystals with Fe–Nx sites in Fe–N–C electrocatalyst to achieve high performance for solar cells. Appl. Catal. B-Environ. 300, 120726 (2022). https://doi.org/10.1016/j.apcatb.2021.120726
C.L. Zhang, J.T. Liu, H. Li, F.H. Cao, W. Zhang et al., The controlled synthesis of Fe3C/Co/N-doped hierarchically structured carbon nanotubes for enhanced electrocatalysis. Appl. Catal. B-Environ. 261, 118224 (2020). https://doi.org/10.1016/j.apcatb.2019.118224
H. Xie, X. Xie, G. Hu, Y. Shao, L. Hu et al., Ta–TiOx nanops as radical scavengers to improve the durability of Fe–N–C oxygen reduction catalysts. Nat. Energy 7, 281–289 (2022). https://doi.org/10.1038/s41560-022-00988-w
Y. Pan, X. Ma, M. Wang, C. Chen, Y. Li et al., Construction of N, P co-doped carbon frames anchored with Fe single atoms and Fe2P nanops as a robust coupling catalyst for electrocatalytic oxygen reduction. Adv. Mater. 34, 2203621 (2022). https://doi.org/10.1002/adma.202203621
H. Li, K. Gan, R. Li, J. Qiu, X. He et al., Highly dispersed NiO clusters induced electron delocalization of Ni–N–C catalysts for enhanced CO2 electroreduction. Adv. Funct. Mater. 33, 2208622 (2022). https://doi.org/10.1002/adfm.202208622
F.S. Yu, J.Y. Zhan, D.T. Chen, S.B. Zhang, L.H. Zhang et al., Electronic states regulation induced by the synergistic effect of Cu clusters and Cu–S1N3 sites boosting electrocatalytic performance. Adv. Funct. Mater. 33, 2214425 (2023). https://doi.org/10.1002/adfm.202214425
J.J. Gao, P. Du, Q.H. Zhang, X.J. Liu, H.J. Qiu et al., Platinum single atoms/clusters stabilized in transition metal oxides for enhanced electrocatalysis. Electrochim. Acta 297, 155–162 (2019). https://doi.org/10.1016/j.electacta.2018.11.200
Y. Yin, W. Li, C. Xu, S. Liu, H. Sun et al., Ultrafine copper nanoclusters and single sites for fenton-like reactions with high atom utilities. Environ. Sci. Nano 7, 2595–2606 (2020). https://doi.org/10.1039/d0en00505c
M. Liu, J. Li, B. Chi, L. Zheng, S. Liao et al., Integration of single Co atoms and Ru nanoclusters boosts the cathodic performance of nitrogen-doped 3D graphene in lithium-oxygen batteries. J. Mater. Chem. A 9, 10747–10757 (2021). https://doi.org/10.1039/d1ta00538c
B. Zhang, B. Zhang, G. Zhao, W. Sun, H. Pan, Atomically dispersed chromium coordinated with hydroxyl clusters enabling efficient hydrogen oxidation on ruthenium. Nat. Commun. 13, 5894 (2022). https://doi.org/10.1038/s41467-022-33625-x
L. Li, S. Huang, T. Hu, X. Zhuang, Y. Chen et al., Optimizing microenvironment of asymmetric N, S-coordinated single-atom Fe via axial fifth coordination toward efficient oxygen electroreduction. Small 18, 2105387 (2021). https://doi.org/10.1002/smll.202105387
Y. Xie, X. Chen, W.H. Lai, H. Liu, G. Wang et al., Direct oxygen-oxygen cleavage through optimizing interatomic distances in dual single-atom electrocatalysts for efficient oxygen reduction reaction. Angew. Chem. Int. Ed. 62, e202301833 (2023). https://doi.org/10.1002/anie.202301833
H. Li, X. Wang, X. Gong, C. Liu, J. Ge et al., “One stone three birds” of a synergetic effect between Pt single atoms and clusters makes an ideal anode catalyst for fuel cells. J. Mater. Chem. A 11, 14826–14832 (2023). https://doi.org/10.1039/d3ta01313h
M. Wu, X. Yang, X. Cui, S. Sun, G. Zhang et al., Engineering Fe–N4 electronic structure with adjacent Co–N2C2 and Co nanoclusters on carbon nanotubes for efficient oxygen electrocatalysis. Nano-Micro Lett. 15, 232 (2023). https://doi.org/10.1007/s40820-023-01195-2
X. Wan, Q. Liu, J. Liu, R. Yu, J. Shui et al., Iron atom-cluster interactions increase activity and improve durability in Fe–N–C fuel cells. Nat. Commun. 13, 2963 (2022). https://doi.org/10.1038/s41467-022-30702-z
S. Gao, H. Yang, D. Rao, Y. Zhou, J. Yang et al., Supercritical CO2 assisted synthesis of highly accessible iron single atoms and clusters on nitrogen-doped carbon as efficient oxygen reduction electrocatalysts. Chem. Eng. J. 433, 134460 (2022). https://doi.org/10.1016/j.cej.2021.134460
L. Wang, X. Qin, T. Sun, H. Liu, D. Ma et al., Fully-exposed Pt clusters stabilized on Sn-decorated nanodiamond/graphene hybrid support for efficient ethylbenzene direct dehydrogenation. Nano Res. 15, 10029–100236 (2022). https://doi.org/10.1007/s12274-022-4650-6
T. Rui, G.P. Lu, X. Zhao, X. Cao, Z. Chen et al., The synergistic catalysis on Co nanops and CoNx sites of aniline-modified ZIF derived Co@NCs for oxidative esterification of HMF. Chin. Chem. Lett. 32, 685–690 (2021). https://doi.org/10.1016/j.cclet.2020.06.027
L. Zhuang, Z. Jia, Y. Wang, L. Tian, T. Qi et al., Nitrogen-doped carbon black supported synergistic palladium single atoms and nanops for electrocatalytic oxidation of methanol. Chem. Eng. J. 438, 135585 (2022). https://doi.org/10.1016/j.cej.2022.135585
X. Yang, Y. Wang, X. Wang, J. Ge, W. Xing et al., Co-tolerant PEMFC anodes enabled by synergistic catalysis between iridium single-atom sites and nanops. Angew. Chem. Int. Ed. 60, 26177–26183 (2021). https://doi.org/10.1002/anie.202110900
Y. Zhu, K. Fan, C.S. Hsu, H.M. Chen, H. Huang et al., Supported ruthenium single-atom and clustered catalysts outperform benchmark Pt for alkaline hydrogen evolution. Adv. Mater. 35, 2301133 (2023). https://doi.org/10.1002/adma.202301133
T. Luo, J. Huang, Y. Hu, Z. Li, Y. Feng et al., Fullerene lattice-confined Ru nanops and single atoms synergistically boost electrocatalytic hydrogen evolution reaction. Adv. Funct. Mater. 33, 2213058 (2023). https://doi.org/10.1002/adfm.202213058
J. Peng, Y. Chen, K. Wang, Z. Tang, S. Chen, High-performance Ru-based electrocatalyst composed of Ru nanops and Ru single atoms for hydrogen evolution reaction in alkaline solution. Int. J. Hydrog. Energy 45, 18840–18849 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.064
Q. Hu, G. Li, X. Huang, J. Liu, C. He et al., Electronic structure engineering of single atomic Ru by Ru nanops to enable enhanced activity for alkaline water reduction. J. Mater. Chem. A 7, 19531–19538 (2019). https://doi.org/10.1039/c9ta06244k
D. Cao, J. Wang, H. Xu, D. Cheng, Construction of dual-site atomically dispersed electrocatalysts with Ru–C5 single atoms and Ru–O4 nanoclusters for accelerated alkali hydrogen evolution. Small 17, 2101163 (2021). https://doi.org/10.1002/smll.202101163
J. Ji, Y. Zhang, L. Tang, C. Liang, Z. Lin et al., Platinum single-atom and cluster anchored on functionalized MWCNTs with ultrahigh mass efficiency for electrocatalytic hydrogen evolution. Nano Energy 63, 103849 (2019). https://doi.org/10.1016/j.nanoen.2019.06.045
W. Yang, P. Cheng, Z. Li, Z. Lian, H. Li et al., Tuning the cobalt-platinum alloy regulating single-atom platinum for highly efficient hydrogen evolution reaction. Adv. Funct. Mater. 32, 2205920 (2022). https://doi.org/10.1002/adfm.202205920
W. Yang, M. Li, B. Zhang, H. Li, Z. Lian et al., Interfacial microenvironment modulation boosts efficient hydrogen evolution reaction in neutral and alkaline. Adv. Funct. Mater. 33, 2304852 (2023). https://doi.org/10.1002/adfm.202304852
M. Cao, Z. Wei, R. Cao, Research progress in cucurbit[n]uril-based metal nanomaterials for electrocatalytic applications. J. Electrochem. 29, 2215008 (2023). https://doi.org/10.13208/j.electrochem.2215008
L. Yan, H. Wang, J. Shen, Y. Zhong, Y. Hu et al., Formation of mesoporous Co/CoS/metal-N-C@S, N-codoped hairy carbon polyhedrons as an efficient trifunctional electrocatalyst for Zn-air batteries and water splitting. Chem. Eng. J. 403, 126385 (2021). https://doi.org/10.1016/j.cej.2020.126385
Q. Wang, K. Cui, D. Liu, Y. Wu, S. Ren, Co–N active sites between Co nanops and N-doped carbon toward remarkably enhanced electrocatalytic oxygen evolution and hydrogen evolution reactions. Energy Fuel 36, 1688–1696 (2022). https://doi.org/10.1021/acs.energyfuels.1c04141
S. Chandrasekaran, R. Hu, L. Yao, X. Ren, L. Deng et al., Mutual self-regulation of d-electrons of single atoms and adjacent nanops for bifunctional oxygen electrocatalysis and rechargeable Zinc-air batteries. Nano-Micro Lett. 15, 48 (2023). https://doi.org/10.1007/s40820-023-01022-8
H.J. Son, M.J. Kim, S.H. Ahn, Monolithic Co–N–C membrane integrating Co atoms and clusters as a self-supporting multi-functional electrode for solid-state Zinc–air batteries and self-powered water splitting. Chem. Eng. J. 414, 128739 (2021). https://doi.org/10.1016/j.cej.2021.128739
X. Ding, C. Jia, P. Ma, J. Zeng, J. Bao et al., Remote synergy between heterogeneous single atoms and clusters for enhanced oxygen evolution. Nano Lett. 23, 3309–3316 (2023). https://doi.org/10.1021/acs.nanolett.3c00228
P. Yu, L. Wang, F. Sun, J. Li, H. Fu et al., Co nanoislands rooted on Co–N–C nanosheets as efficient oxygen electrocatalyst for Zn-air batteries. Adv. Mater. 31, 1901666 (2019). https://doi.org/10.1002/adma.201901666
H. Zhang, M. Zhao, H. Liu, Y. Han, W. Huang et al., Ultrastable FeCo bifunctional electrocatalyst on Se-doped CNTs for liquid and flexible all-solid-state rechargeable Zn-air batteries. Nano Lett. 21, 2255–2264 (2021). https://doi.org/10.1021/acs.nanolett.1c00077
S. Ding, L. He, L. Fang, Y. Lin, J.C. Li et al., Carbon-nanotube-bridging strategy for integrating single Fe atoms and NiCo nanops in a bifunctional oxygen electrocatalyst toward high-efficiency and long-life rechargeable Zinc-air batteries. Adv. Energy Mater. 12, 2202984 (2022). https://doi.org/10.1002/aenm.202202984
Y. Gao, L. Liu, Y. Jiang, D. Yu, Y.P. Deng, Z. Chen et al., Design principles and mechanistic understandings of non-noble-metal bifunctional electrocatalysts for zinc–air batteries. Nano-Micro Lett. 16, 162 (2024). https://doi.org/10.1007/s40820-024-01366-9
Y. Yang, X. Xu, P. Sun, S. Wang, D. Cao et al., AgNPs@Fe–N–C oxygen reduction catalysts for anion exchange membrane fuel cells. Nano Energy 100, 107466 (2022). https://doi.org/10.1016/j.nanoen.2022.107466
Q. Yue, T. Gao, S. Wu, H. Yuan, D. Xiao, Ultrafast fabrication of robust electrocatalyst having Fe/Fe3C and CuNC for enhanced oxygen reduction reaction activity. J. Colloid Interface Sci. 605, 906–915 (2022). https://doi.org/10.1016/j.jcis.2021.07.125
X. Sun, P. Wei, S. Gu, J. Han, Y. Huang et al., Atomic-level Fe–N–C coupled with Fe3C–Fe nanocomposites in carbon matrixes as high-efficiency bifunctional oxygen catalysts. Small 16, 1906057 (2020). https://doi.org/10.1002/smll.201906057
M. Zhang, H. Li, J. Chen, Z. Wen, C.Y. Xu et al., High-loading Co single atoms and clusters active sites toward enhanced electrocatalysis of oxygen reduction reaction for high-performance Zn-air battery. Adv. Funct. Mater. 33, 2209726 (2022). https://doi.org/10.1002/adfm.202209726
S.H. Yin, J. Yang, Y. Han, Y.X. Jiang, S.G. Sun et al., Construction of highly active metal-containing nanops and FeCo–N4 composite sites for the acidic oxygen reduction reaction. Angew. Chem. Int. Ed. 59, 21976–21979 (2020). https://doi.org/10.1002/anie.202010013
M. Liu, J. Lee, T.C. Yang, C.M. Yang, L.Y.S. Lee et al., Synergies of Fe single atoms and clusters on N-doped carbon electrocatalyst for PH-universal oxygen reduction. Small Methods 5, 2001165 (2021). https://doi.org/10.1002/smtd.202001165
Z. Liu, S. Zhou, S. Ma, H. Cheng, W. Cai et al., Co nanocluster strain-engineered by atomic Ru for efficient and stable oxygen reduction catalysis. Mater. Today Phys. 17, 100338 (2021). https://doi.org/10.1016/j.mtphys.2020.100338
L. Huang, Y.Q. Su, R. Qi, S. Ding, B.Y. Xia et al., Boosting oxygen reduction via integrated construction and synergistic catalysis of porous platinum alloy and defective graphitic carbon. Angew. Chem. Int. Ed. 60, 25530–25537 (2021). https://doi.org/10.1002/anie.202111426
H. Liu, L. Jiang, J. Khan, S. Wang, L. Han et al., Decorating single-atomic Mn sites with FeMn clusters to boost oxygen reduction reaction. Angew. Chem. Int. Ed. 62, e202214988 (2022). https://doi.org/10.1002/anie.202214988
Y. Yuan, Q. Zhang, L. Yang, Z. Chen, Z. Bai et al., Facet strain strategy of atomically dispersed Fe–N–C catalyst for efficient oxygen electrocatalysis. Adv. Funct. Mater. 32, 2206081 (2022). https://doi.org/10.1002/adfm.202206081
P. Guo, B. Liu, Y.K. Dai, X.L. Sui, Z.B. Wang et al., Coupling fine Pt nanops and Co–Nx moiety as a synergistic bi-active site catalyst for oxygen reduction reaction in acid media. J. Colloid Interface Sci. 613, 276–284 (2022). https://doi.org/10.1016/j.jcis.2022.01.042
N. Wang, J. Liang, J. Liu, T. Huang, Z. Shi et al., CoFe nanops dispersed in Co/Fe–N–C support with meso- and macroporous structures as the high-performance catalyst boosting the oxygen reduction reaction for Al/Mg-air batteries. J. Power. Sources 517, 230707 (2022). https://doi.org/10.1016/j.jpowsour.2021.230707
W. Zhu, J. Fu, J. Liu, J.J. Zhu, Y. Lin et al., Tuning single atom-nanop ratios of Ni-based catalysts for synthesis gas production from CO2. Appl. Catal. B-environ. 264, 118502 (2020). https://doi.org/10.1016/j.apcatb.2019.118502
J. Li, S.U. Abbas, H. Wang, Z. Zhang, W. Hu, Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 13, 216 (2021). https://doi.org/10.1007/s40820-021-00738-9
Z. Yin, J. Yu, Z. Xie, L. Qi, S. Zhang et al., Hybrid catalyst coupling single-atom Ni and nanoscale Cu for efficient CO2 electroreduction to ethylene. J. Am. Chem. Soc. 144, 20931–20938 (2022). https://doi.org/10.1021/jacs.2c09773
D. Chen, L.H. Zhang, J. Du, F. Li, F. Yu et al., A tandem strategy for enhancing electrochemical CO2 reduction activity of single-atom Cu–S1N3 catalysts via integration with Cu nanoclusters. Angew. Chem. Int. Ed. 60, 24022–24027 (2021). https://doi.org/10.1002/anie.202109579
J. Lin, J. Ding, H. Wang, X. Han, W. Hu et al., Boosting energy efficiency and stability of Li–CO2 batteries via synergy between Ru atom clusters and single-atom Ru–N4 sites in the electrocatalyst cathode. Adv. Mater. 34, 2200559 (2022). https://doi.org/10.1002/adma.202200559
Y. Zhang, P. Li, C. Zhao, C. Su, Y. Wu et al., Multicarbons generation factory: CuO/Ni single atoms tandem catalyst for boosting the productivity of CO2 electrocatalysis. Sci. Bull. 67, 1679–1687 (2022). https://doi.org/10.1016/j.scib.2022.07.029
Z. Ma, S. Liu, N. Tang, Z. Shen, Y. Yang et al., Coexistence of Fe nanoclusters boosting Fe single atoms to generate singlet oxygen for efficient aerobic oxidation of primary amines to imines. ACS Catal. 12, 5595–5604 (2022). https://doi.org/10.1021/acscatal.1c04467
Q. Feng, X. Wang, M. Klingenhof, M. Heggen, P. Strasser, Low-Pt NiNC-supported PtNi nanoalloy oxygen reduction reaction electrocatalysts-in situ tracking of the atomic alloying process. Angew. Chem. Int. Ed. 61, e202203728 (2022). https://doi.org/10.1002/anie.202203728
P. Li, R. Chen, Y. Huang, S. Zhao, S. Tian et al., Activating transition metal via synergistic anomalous phase and doping engineering towards enhanced dehydrogenation of ammonia borane. Appl. Catal. B-environ. 300, 120725 (2022). https://doi.org/10.1016/j.apcatb.2021.120725
H. Xu, S. Zhang, X. Zhang, H. Zhang, H. Zhao et al., Atomically dispersed iron regulating electronic structure of iron atom clusters for electrocatalytic H2O2 production and biomass upgrading. Angew. Chem. Int. Ed. 62, e202314414 (2023). https://doi.org/10.1002/anie.202314414
Z. He, G. Yang, H. Wang, F. Dai, F. Peng et al., Co–N–C-supported platinum catalyst: synergistic effect on the aerobic oxidation of glycerol. ACS Sustain. Chem. Eng. 8, 19062–19071 (2020). https://doi.org/10.1021/acssuschemeng.0c07332
J.C. Li, Y. Meng, L. Zhang, H.M. Cheng, M. Shao et al., Dual-phasic carbon with Co single atoms and nanops as a bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Adv. Funct. Mater. 31, 2103360 (2021). https://doi.org/10.1002/adfm.202103360
Z. Wang, C. Zhu, H. Tan, Z. Liu, X. Lu et al., Understanding the synergistic effects of cobalt single atoms and small nanops: Enhancing oxygen reduction reaction catalytic activity and stability for Zinc-air batteries. Adv. Funct. Mater. 31, 2104735 (2021). https://doi.org/10.1002/adfm.202104735
Y. Liu, Z. Chen, Z. Li, L. Cai, Y. Yang et al., CoNi nanoalloy-Co-N4 composite active sites embedded in hierarchical porous carbon as bi-functional catalysts for flexible Zn-air battery. Nano Energy 99, 107325 (2022). https://doi.org/10.1016/j.nanoen.2022.107325
C. Shi, Y. Liu, R. Qi, L. Zhou, L. Mai et al., Hierarchical N-doped carbon spheres anchored with cobalt nanocrystals and single atoms for oxygen reduction reaction. Nano Energy 87, 106153 (2021). https://doi.org/10.1016/j.nanoen.2021.106153
C. Xu, C. Guo, J. Liu, H. Li, C. Chen et al., Accelerating the oxygen adsorption kinetics to regulate the oxygen reduction catalysis via Fe3C nanops coupled with single Fe-N4 sites. Energy Storage Mater. 51, 149–158 (2022). https://doi.org/10.1016/j.ensm.2022.06.038
D. Qi, Y. Liu, M. Hu, J. Luo, X. Liu et al., Engineering atomic sites via adjacent dual-metal sub-nanoclusters for efficient oxygen reduction reaction and Zn-air battery. Small 16, 2004855 (2020). https://doi.org/10.1002/smll.202004855
J. Zhang, X. Dong, W. Xing, G. Wang, R. Wang et al., Engineering iron single atomic sites with adjacent ZrO2 nanoclusters via ligand–assisted strategy for effective oxygen reduction reaction and high-performance Zn-air batteries. Chem. Eng. J. 420, 129938 (2021). https://doi.org/10.1016/j.cej.2021.129938
J. Zhu, W. Tu, Z. Bai, Z. Deng, H. Zhang et al., Zeolitic-imidazolate-framework-derived Co@Co3O4 embedded into iron, nitrogen, sulfur co-doped reduced graphene oxide as efficient electrocatalysts for overall water splitting and Zinc-air batteries. Electrochim. Acta 323, 134821 (2019). https://doi.org/10.1016/j.electacta.2019.134821
F. Zhou, P. Yu, F. Sun, X. Liu, L. Wang et al., The cooperation of Fe3C nanops with isolated single iron atoms to boost the oxygen reduction reaction for Zn–air batteries. J. Mater. Chem. A 9, 6831–6840 (2021). https://doi.org/10.1039/d1ta00039j
Q. Lu, H. Wu, X. Zheng, Y. Deng, W. Hu et al., Encapsulating cobalt nanops in interconnected N-doped hollow carbon nanofibers with enriched Co–N–C moiety for enhanced oxygen electrocatalysis in Zn-air batteries. Adv. Sci. 8, 2101438 (2021). https://doi.org/10.1002/advs.202101438
J. Chen, B. Huang, R. Cao, K. Yuan, Y. Chen et al., Steering local electronic configuration of Fe–N–C-based coupling catalysts via ligand engineering for efficient oxygen electroreduction. Adv. Funct. Mater. 33, 2209315 (2022). https://doi.org/10.1002/adfm.202209315
P. Guo, Y. Xia, B. Liu, L. Zhao, Z. Wang et al., Low-loading sub-3 nm PtCo nanops supported on Co–N–C with dual effect for oxygen reduction reaction in proton exchange membrane fuel cells. ACS Appl. Mater. Interfaces 14, 53819–53827 (2022). https://doi.org/10.1021/acsami.2c15996
S. Zaman, Y.Q. Su, C.L. Dong, S. Ding, B. Yu Xia et al., Scalable molten salt synthesis of platinum alloys planted in metal-nitrogen-graphene for efficient oxygen reduction. Angew. Chem. Int. Ed. 61, e202115835 (2022). https://doi.org/10.1002/anie.202115835
Q. Shu, J. Zhang, B. Hu, W. Zhou, Z. Shao et al., Rational design of a high-durability Pt-based ORR catalyst supported on Mn/N codoped carbon sheets for PEMFCs. Energy Fuel 36, 1707–1715 (2022). https://doi.org/10.1021/acs.energyfuels.1c04306
L. Liang, H. jin, H. Zhou, D. He, S. Mu et al., Ultra-small platinum nanops segregated by nickle sites for efficient ORR and HER processes. J. Energy Chem. 65, 48–54 (2022). https://doi.org/10.1016/j.jechem.2021.05.033
L. Liang, H. Jin, H. Zhou, D. He, S. Mu et al., Cobalt single atom site isolated Pt nanops for efficient ORR and HER in acid media. Nano Energy 88, 106221 (2021). https://doi.org/10.1016/j.nanoen.2021.106221
J. Chen, J. Dong, J. Huo, Z. Cui, S. Liao et al., Ultrathin Co-N-C layer modified Pt-Co intermetallic nanops leading to a high-performance electrocatalyst toward oxygen reduction and methanol oxidation. Small 19, 2301337 (2023). https://doi.org/10.1002/smll.202301337
J. Gao, X. Zhou, Y. Wang, X. Lin, H.J. Qiu et al., Exploiting the synergistic electronic interaction between Pt-skin wrapped intermetallic PtCo nanops and Co–N–C support for efficient ORR/EOR electrocatalysis in a direct ethanol fuel cell. Small 18, 2202071 (2022). https://doi.org/10.1002/smll.202202071