Recent Advances of Electrocatalyst and Cell Design for Hydrogen Peroxide Production
Corresponding Author: Deli Wang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 86
Abstract
Electrochemical synthesis of H2O2 via a selective two-electron oxygen reduction reaction has emerged as an attractive alternative to the current energy-consuming anthraquinone process. Herein, the progress on electrocatalysts for H2O2 generation, including noble metal, transition metal-based, and carbon-based materials, is summarized. At first, the design strategies employed to obtain electrocatalysts with high electroactivity and high selectivity are highlighted. Then, the critical roles of the geometry of the electrodes and the type of reactor in striking a balance to boost the H2O2 selectivity and reaction rate are systematically discussed. After that, a potential strategy to combine the complementary properties of the catalysts and the reactor for optimal selectivity and overall yield is illustrated. Finally, the remaining challenges and promising opportunities for high-efficient H2O2 electrochemical production are highlighted for future studies.
Highlights:
1 Fundamental principles for designing highly efficient two-electron oxygen reduction reaction catalysts are briefly reviewed.
2 Strategies to integrate the components into an efficient device for hydrogen peroxide production are discussed.
3 The challenges and perspectives for catalyst and cell design are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.C. Perry, D. Pangotra, L. Vieira, L.I. Csepei, V. Sieber et al., Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 3, 442–458 (2019). https://doi.org/10.1038/s41570-019-0110-6
- S. Anantharaj, S. Pitchaimuthu, S. Noda, A review on recent developments in electrochemical hydrogen peroxide synthesis with a critical assessment of perspectives and strategies. Adv. Colloid Interface Sci. 287, 102331 (2021). https://doi.org/10.1016/j.cis.2020.102331
- Y. Jiang, P. Ni, C. Chen, Y. Lu, P. Yang et al., Selective electrochemical H2O2 production through two-electron oxygen electrochemistry. Adv. Energy Mater. 8, 1801909–1801933 (2018). https://doi.org/10.1002/aenm.201801909
- X. Wang, J. Jing, M. Zhou, R. Dewil, Recent advances in H2O2-based advanced oxidation processes for removal of antibiotics from wastewater. Chin. Chem. Lett. (2022). https://doi.org/10.1016/j.cclet.2022.06.044
- J. Campos-Martin, G. Blanco-Brieva, J. Fierro, Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew. Chem. Int. Ed. 45, 6962–6984 (2006). https://doi.org/10.1002/anie.200503779
- T. Nishimi, T. Kamachi, K. Kato, T. Kato, K. Yoshizawa, Mechanistic study on the production of hydrogen peroxide in the anthraquinone process. Eur. J. Org. Chem. 2011, 4113–4120 (2011). https://doi.org/10.1002/ejoc.201100300
- S. Yang, A. Verdaguer-Casadevall, L. Arnarson, J. Rossmeisl, I. Chorkendorff, I. Stephens et al., Toward the decentralized electrochemical production of H2O2: a focus on the catalysis. ACS Catal. 8, 4064–4081 (2018). https://doi.org/10.1021/acscatal.8b00217
- C. Martinez-Huitle, S. Ferro, Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem. Soc. Rev. 35, 1324–1340 (2006). https://doi.org/10.1039/b517632h
- F. He, J. Zhang, Y. Chen, J. Zhang, D. Wang, Recent progress on carbon-based catalysts for electrochemical synthesis of H2O2 via oxygen reduction reaction. Energy Storage Sci. Tech. 10, 192–202 (2021). https://doi.org/10.19799/j.cnki.2095-4239.2021.0122
- Q. Zeng, S. Chang, Z. Xiong, B. Zhou, Y. Liu et al., Highly-active, metal-free, carbon-based ORR cathode for efficient organics removal and electricity generation in a PFC system. Chin. Chem. Lett. 32, 2212–2216 (2021). https://doi.org/10.1016/j.cclet.2020.12.062
- S. Siahrostami, M. Karamad, D. Deiana, P. Malacrida, B. Wickman, J. Rossmeisl et al., Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 12, 1137–1143 (2013). https://doi.org/10.1038/nmat3795
- T. Ricciardulli, S. Gorthy, C. Thompson, M. Neurock, D. Flaherty et al., Effect of Pd coordination and isolation on the catalytic reduction of O2 to H2O2 over PdAu bimetallic nanops. J. Am. Chem. Soc. 143, 5445–5464 (2021). https://doi.org/10.1021/jacs.1c00539
- L. Chen, J. Medlin, H. Grönbeck, On the reaction mechanism of direct H2O2 formation over Pd catalysts. ACS Catal. 11, 2735–2745 (2021). https://doi.org/10.1021/acscatal.0c05548
- J. Edwards, E. Ntainjua, A. Carley, C. Kiely, G. Hutchings et al., Direct synthesis of H(2)O(2) from H(2) and O(2) over gold, palladium, and gold-palladium catalysts supported on acid-pretreated TiO(2). Angew. Chem. Int. Ed. 48, 8512–8515 (2009). https://doi.org/10.1002/anie.200904115
- Q. Simon, J. Freakley, H. Harrhy, L. Lu, J. Hutchings et al., Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity. Science 351, 965–968 (2016). https://doi.org/10.1126/science.aad5705
- Y. Cheng, H. Song, J. Yu, J.W. Chang, S.Y. Lu et al., Carbon dots-derived carbon nanoflowers decorated with cobalt single atoms and nanops as efficient electrocatalysts for oxygen reduction. Chin. J. Catal. 43, 2443–2452 (2022). https://doi.org/10.1016/S1872-2067(22)64146-9
- T. Zhang, Y. Wang, Q. Ding, Y. Dang, L. Duan, J. Liu et al., Charge state modulation on boron site by carbon and nitrogen localized bonding microenvironment for two-electron electrocatalytic H2O2 production. Chin. Chem. Lett. (2022). https://doi.org/10.1016/j.cclet.2022.06.019
- Y. Ding, W. Zhou, J. Gao, F. Sun, G. Zhao, H2O2 electrogeneration from O2 electroreduction by N-doped carbon materials: a mini-review on preparation methods, selectivity of N sites, and prospects. Adv. Mater. Interfaces 8, 2002091 (2021). https://doi.org/10.1002/admi.202002091
- R. Goyal, O. Singh, A. Agrawal, C. Samanta, B. Sarkar, Advantages and limitations of catalytic oxidation with hydrogen peroxide: from bulk chemicals to lab scale process. Catal. Rev. 64, 229–285 (2020). https://doi.org/10.1080/01614940.2020.1796190
- Y. Wen, T. Zhang, J. Wang, H. Yamashita, X. Qian, Y. Zhao et al., Electrochemical reactors for continuous decentralized H2O2 production. Angew. Chem. Int. Ed. 61, 202205972 (2022). https://doi.org/10.1002/anie.202205972
- K. Jiang, S. Back, C. Xia, D. Schaak, E. Stavitski, H. Wang et al., Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat. Commun. 10, 3997 (2019). https://doi.org/10.1038/s41467-019-11992-2
- W. Shang, W. Yu, Y. Ma, M. Ni, P. Tan et al., Constructing the triple-phase boundaries of integrated air electrodes for high-performance Zn–air batteries. Adv. Mater. Interfaces 8, 2101256 (2021). https://doi.org/10.1002/admi.202101256
- E. Berl, A new cathode process for the production of H2O2. Trans. Electrochem. Soc. 76, 359–370 (1939). https://doi.org/10.1149/1.3500291
- H. Olvera-Vargas, N. Gore-Datar, O. Garcia-Rodriguez, S. Mutnuri, O. Lefebvre, Electro-Fenton treatment of real pharmaceutical wastewater paired with a BDD anode: reaction mechanisms and respective contribution of homogeneous and heterogeneous OH. Chem. Eng. J. 404, 126524 (2021). https://doi.org/10.1016/j.cej.2020.126524
- C. Trellu, H. OlveraVargas, E. Mousset, N. Oturan, M. Oturan, Electrochemical technologies for the treatment of pesticides. Curr. Opin. Electrochem. 26, 100677 (2021). https://doi.org/10.1016/j.coelec.2020.100677
- Z. Wei, H. Xu, Z. Lei, X. Yi, C. Feng et al., A binder-free electrode for efficient H2O2 formation and Fe2+ regeneration and its application to an electro-Fenton process for removing organics in iron-laden acid wastewater. Chin. Chem. Lett. (2021). https://doi.org/10.1016/j.cclet.2021.07.006
- E. Jung, H. Shin, W. HoochAntink, Y. Sung, T. Hyeon, Recent advances in electrochemical oxygen reduction to H2O2: catalyst and cell design. ACS Energy Lett. 5, 1881–1892 (2020). https://doi.org/10.1021/acsenergylett.0c00812
- X. Guo, S. Lin, J. Gu, S. Zhang, Z. Chen, S. Huang, Simultaneously achieving high activity and selectivity toward two-electron O2 electroreduction: the power of single-atom catalysts. ACS Catal. 9, 11042–11054 (2019). https://doi.org/10.1021/acscatal.9b02778
- N. Ramaswamy, S. Mukerjee, Influence of inner- and outer-sphere electron transfer mechanisms during electrocatalysis of oxygen reduction in alkaline media. J. Phy. Chem. C 115, 18015–18026 (2011). https://doi.org/10.1021/jp204680p
- A. Gómez-Marín, J. Feliu, T. Edson, Reaction mechanism for oxygen reduction on platinum: existence of a fast initial chemical step and a soluble species different from H2O2. ACS Catal. 8, 7931–7943 (2018). https://doi.org/10.1021/acscatal.8b01291
- J. Zhang, C. Xia, H. Wang, C. Tang, Recent advances in electrocatalytic oxygen reduction for on-site hydrogen peroxide synthesis in acidic media. J. Energy Chem. 67, 432–450 (2022). https://doi.org/10.1016/j.jechem.2021.10.013
- D. Nocera, Proton-coupled electron transfer: the engine of energy conversion and storage. J. Am. Chem. Soc. 144, 1069–1081 (2022). https://doi.org/10.1021/jacs.1c10444
- J. Warren, T. Tronic, J. Mayer, Thermochemistry of proton-coupled electron transfer reagents and its implications. Chem. Rev. 122, 1482–1515 (2022). https://doi.org/10.1021/acs.chemrev.1c00791
- S. Cobb, Z. Ayres, M. Newton, J. Macpherson, Deconvoluting surface-bound quinone proton coupled electron transfer in unbuffered solutions: toward a universal voltammetric pH electrode. J. Am. Chem. Soc. 141, 1035–1044 (2019). https://doi.org/10.1021/jacs.8b11518
- J. Zhang, H. Zhang, M. Cheng, Q. Lu, Tailoring the electrochemical production of H2O2: strategies for the rational design of high-performance electrocatalysts. Small 16, 1902845 (2020). https://doi.org/10.1002/smll.201902845
- X. Zhang, Y. Xia, C. Xia, H. Wang, Insights into practical-scale electrochemical H2O2 synthesis. Trends Chem. 2, 942–953 (2020). https://doi.org/10.1016/j.trechm.2020.07.007
- G. Zhang, Q. Wei, X. Yang, A. Tavares, S. Sun, RRDE experiments on noble-metal and noble-metal-free catalysts: impact of loading on the activity and selectivity of oxygen reduction reaction in alkaline solution. Appl. Catal. B 206, 115–126 (2017). https://doi.org/10.1016/j.apcatb.2017.01.001
- D. Wang, H. Xin, R. Hovden, Y. Yu, H.D. Abruna et al., Structurally ordered intermetallic platinum-cobalt core-shell nanops with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 12, 81–87 (2013). https://doi.org/10.1038/nmat3458
- L. Huang, H. Xu, B. Jing, Q. Li, W. Yi et al., Progress of Pt-based catalysts in proton-exchange membrane fuel cells: a review. J. Electrochem. 28, 2108061–2108077 (2022). https://doi.org/10.13208/j.electrochem.210806
- Y. Hu, S. Wang, T. Shen, Y. Zhu, D. Wang, Recent progress in confined noble-metal electrocatalysts for oxygen reduction reaction. Energy Storage Sci. Tech. 11, 1264–1277 (2022). https://doi.org/10.19799/j.cnki.2095-4239.2022.0108
- J. Lee, S.W. Choi, S. Back, H. Jang, Y.J. Sa, Pd17Se15-Pd3B nanocoral electrocatalyst for selective oxygen reduction to hydrogen peroxide in near-neutral electrolyte. Appl. Catal. B Environ. 309, 121265–121272 (2022). https://doi.org/10.1016/j.apcatb.2022.121265
- M. Gong, T. Zhao, X. Liu, T. Shen, H. Xin et al., Structure evolution of PtCu nanoframes from disordered to ordered for the oxygen reduction reaction. Appl. Catal. B Environ. 282, 119617–119624 (2021). https://doi.org/10.1016/j.apcatb.2020.119617
- C.M. He, Z.L. Ma, Q. Wu, Y.Z. Cai, H.Q. Wang et al., Promoting the ORR catalysis of Pt-Fe intermetallic catalysts by increasing atomic utilization and electronic regulation. Electrochim. Acta 330, 135119–135129 (2020). https://doi.org/10.1016/j.electacta.2019.135119
- J. Zhang, C. Zhang, Y. Zhao, H. Zhou, Y. Tang et al., Three dimensional few-layer porous carbon nanosheets towards oxygen reduction. Appl. Catal. B 211, 148–156 (2017). https://doi.org/10.1016/j.apcatb.2017.04.038
- X. Huang, W. Zhang, W. Liu, M. Song, C. Zhang et al., Nb2CT MXenes functionalized Co−NC enhancing electrochemical H2O2 production for organics degradation. Appl. Catal. B 317, 121737–121745 (2022). https://doi.org/10.1016/j.apcatb.2022.121737
- A. Carlos, M. Snchez-Sa´, Hydrogen peroxide production in the oxygen reduction reaction at different electrocatalystsas quantified by scanning electrochemical microscopy. Anal. Chem. 81, 8094–8100 (2009). https://doi.org/10.1021/ac901291v
- J. Park, W. Dong, S. Jung, Y. Kim, J. Lee, Oxygen reduction reaction of vertically-aligned nanoporous Ag nanowires. Appl. Catal. B 298, 120586–120593 (2021). https://doi.org/10.1016/j.apcatb.2021.120586
- J. Linge, H. Erikson, A. Kasikov, M. Rähn, V. Sammelselg et al., Oxygen reduction reaction on thin-film Ag electrodes in alkaline solution. Electrochim. Acta 325, 134922–134929 (2019). https://doi.org/10.1016/j.electacta.2019.134922
- C. Bard, Hydrogen peroxide production in the oxygen reduction reaction at different electrocatalystsas quantified by scanning electrochemical microscopy. Anal. Chem. 81, 8094–8100 (2009). https://doi.org/10.1021/ac901291v
- Y. Lu, W. Chen, Size effect of silver nanoclusters on their catalytic activity for oxygen electro-reduction. J. Power Sources 197, 107–110 (2012). https://doi.org/10.1016/j.jpowsour.2011.09.033
- D. Mei, Z. He, Y. Zheng, D. Jiang, Y. Chen, Mechanistic and kinetic implications on the ORR on a Au(100) electrode: pH, temperature and H-D kinetic isotope effects. Phys. Chem. Chem. Phys. 16, 13762–13773 (2014). https://doi.org/10.1039/c4cp00257a
- Y. Lu, Y. Jiang, X. Gao, W. Chen, Charge state-dependent catalytic activity of [Au(25)(SC(12)H(25))18] nanoclusters for the two-electron reduction of dioxygen to hydrogen peroxide. Chem. Commun. 50, 8464–8467 (2014). https://doi.org/10.1039/c4cc01841a
- D. Kauffman, D. Alfonso, C. Matranga, H. Qian, R. Jin, Experimental and computational investigation of Au25 clusters and CO2: a unique interaction and enhanced electrocatalytic activity. J. Am. Chem. Soc. 134, 10237–10243 (2012). https://doi.org/10.1021/ja303259q
- I. Jakub, S. Jirkovsky, E. Ahlberg, M. Halasa, S. Romani et al., Effect of electronic structures of Au clusters stabilized by poly(N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. J. Am. Chem. Soc. 131, 7086–7093 (2009). https://doi.org/10.1021/ja810045y
- X. Ding, Z. Li, J. Yang, J. Hou, Q. Zhu et al., Adsorption energies of molecular oxygen on Au clusters. J. Chem. Phys. 120, 9594–9600 (2004). https://doi.org/10.1063/1.1665323
- J. Jirkovsky, I. Panas, E. Ahlberg, M. Halasa, S. Romani et al., Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production. J. Am. Chem. Soc. 133, 19432–19441 (2011). https://doi.org/10.1021/ja206477z
- X. Zhao, H. Yang, J. Xu, T. Cheng, Y. Li et al., Bimetallic PdAu nanoframes for electrochemical H2O2 production in acids. ACS Mater. Lett. 3, 996–1002 (2021). https://doi.org/10.1021/acsmaterialslett.1c00263
- S. Mondal, D. Bagchi, M. Riyaz, S. Sarkar, A. Singh et al., In situ mechanistic insights for the oxygen reduction reaction in chemically modulated ordered intermetallic catalyst promoting complete electron transfer. J. Am. Chem. Soc. 144, 11859–11869 (2022). https://doi.org/10.1021/jacs.2c04541
- Z. Li, T. Shen, Y. Hu, K. Chen, Y. Lu et al., Progress on ordered intermetallic electrocatalysts for fuel cells application. Acta Phys. Chim. Sin. 37, 2010029 (2021). https://doi.org/10.3866/PKU.WHXB202010029
- Z. Zheng, Y. Ng, D. Wang, R. Amal, Epitaxial growth of Au-Pt-Ni nanorods for direct high selectivity H2O2 production. Adv. Mater. 28, 9949–9955 (2016). https://doi.org/10.1002/adma.201603662
- A. Verdaguer-Casadevall, D. Deiana, M. Karamad, I. Chorkendorff, I. Stephens et al., Trends in the electrochemical synthesis of H2O2: enhancing activity and selectivity by electrocatalytic site engineering. Nano Lett. 14, 1603–1608 (2014). https://doi.org/10.1021/nl500037x
- C. Choi, H. Kwon, S. Yook, H. Shin, H. Kim et al., Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated Pt surface. J. Phys. Chem. C 118, 30063–30070 (2014). https://doi.org/10.1021/jp5113894
- J. Zhang, J. Ma, D. Zhou, T. Zhang, B. Liu et al., Strong metal-support interaction boosts activity, selectivity, and stability in electrosynthesis of H2O2. J. Am. Chem. Soc. 144, 2255–2263 (2022). https://doi.org/10.1021/jacs.1c12157
- H. Li, P. Wen, D. Itanze, C. Lu, Y. Qiu et al., Scalable neutral H2O2 electrosynthesis by platinum diphosphide nanocrystals by regulating oxygen reduction reaction pathways. Nat. Commun. 11, 3928 (2020). https://doi.org/10.1038/s41467-020-17584-9
- H. Markovic, B. Grgur, P. Ross, Oxygen reduction reaction on Pt(111): effects of bromide. J. Electroanal. Chem. 467, 157−163 (1999). https://elsevier.com/retrieve/pii/S0022072899000200
- N. Stamenkovic, P. Ross, Structure-relationships in electrocatalysis: oxygen reduction and hydrogen oxidation reactions on Pt(111) and Pt(100) in solutions containing chloride ions. J. Electroanal. Chem. 500, 44–51 (2001). https://doi.org/10.1016/S0022-0728(00)00352-1
- E. Ciapina, P. Lopes, R. Subbaraman, E. Ticianelli, N. Markovic et al., Surface spectators and their role in relationships between activity and selectivity of the oxygen reduction reaction in acid environments. Electrochem. Commun. 60, 30–33 (2015). https://doi.org/10.1016/j.elecom.2015.07.020
- D. He, L. Zhong, S. Gan, J. Xie, X. Yang et al., Hydrogen peroxide electrosynthesis via regulating the oxygen reduction reaction pathway on Pt noble metal with ion poisoning. Electrochim. Acta 371, 137721–173327 (2021). https://doi.org/10.1016/j.electacta.2021.137721
- P. Rao, D. Wu, T. Wang, Y. Shen, Y. Chen et al., Single atomic cobalt electrocatalyst for efficient oxygen reduction reaction. eScience 2, 399–404 (2022). https://doi.org/10.1016/j.esci.2022.05.004
- H. Su, M. Soldatov, V. Roldugin, Q. Liu, Platinum single-atom catalyst with self-adjustable valence state for large-current-density acidic water oxidation. eScience 2, 102–109 (2022). https://doi.org/10.1016/j.esci.2021.12.007
- Q. Chang, P. Zhang, Y. Zhang, H. Xin, J. Chen et al., Promoting H2O2 production via 2-electron oxygen reduction by coordinating partially oxidized Pd with defect carbon. Nat. Commun. 11, 2178 (2020). https://doi.org/10.1038/s41467-020-15843-3
- J. Liu, Z. Gong, M. Yan, G. He, H. Gong et al., Electronic structure regulation of singleatom catalysts for electrochemical oxygen reduction to H2O2. Small 18, 2103824 (2022). https://doi.org/10.1002/smll.202103824
- Y. Shang, X. Xu, B. Gao, S. Wang, X. Duan, Single-atom catalysis in advanced oxidation processes for environmental remediation. Chem. Soc. Rev. 50, 5281–5322 (2021). https://doi.org/10.1039/d0cs01032d
- J. Shen, Y. Wen, Y. Fan, B. Liu, C. Li et al., Identifying activity trends for the electrochemical production of H2O2 on M-N–C single-atom catalysts using theoretical kinetic computations. J. Phy. Chem. C 126, 10388–10398 (2022). https://doi.org/10.1021/acs.jpcc.2c02803
- S. Yang, J. Kim, Y. Tak, A. Soon, H. Lee, Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew. Chem. Int. Ed. 55, 2058–2062 (2016). https://doi.org/10.1002/anie.201509241
- S. Yang, Y. Tak, J. Kim, A. Soon, H. Lee, Support effects in single-atom platinum catalysts for electrochemical oxygen reduction. ACS Catal. 7, 1301–1307 (2017). https://doi.org/10.1021/acscatal.6b02899
- R. Shen, W. Chen, Q. Peng, J. Zhang, C. Chen et al., High-concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solution. Chem 5, 2099–2110 (2019). https://doi.org/10.1016/j.chempr.2019.04.024
- J. Xi, S. Yang, J. Rossmeisl, S. Bals, S. Wang et al., Highly active, selective, and stable Pd single-atom catalyst anchored on N-doped hollow carbon sphere for electrochemical H2O2 synthesis under acidic conditions. J. Catal. 393, 313–323 (2021). https://doi.org/10.1016/j.jcat.2020.11.020
- C. Choi, M. Kim, S. Yun, H. Kim, M. Choi et al., Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 7, 10922 (2016). https://doi.org/10.1038/ncomms10922
- J. Kim, D. Shin, J. Lee, H. Kim, S. Joo et al., A general strategy to atomically dispersed precious metal catalysts for unravelling their catalytic trends for oxygen reduction reaction. ACS Nano 14, 1990–2001 (2020). https://doi.org/10.1021/acsnano.9b08494
- F.Z. Li, J.S. Li, Y.G. Tang, H.Y. Wang, Y. Tang et al., Significantly enhanced oxygen reduction activity of Cu/CuNxCy co-decorated ketjenblack catalyst for Al–air batteries. J. Energy Chem. 27, 419–425 (2018). https://doi.org/10.1016/j.jechem.2017.12.002
- C. Liu, Y. Wu, H. Xiao, C. Chen, Y. Li et al., Constructing FeN4/graphitic nitrogen atomic interface for high-efficiency electrochemical CO2 reduction over a broad potential window. Chem 7, 1297–1307 (2021). https://doi.org/10.1016/j.chempr.2021.02.001
- T. Patniboon, H. Hansen, Acid-stable and active M–N–C catalysts for the oxygen reduction reaction: the role of local structure. ACS Catal. 11, 13102–13118 (2021). https://doi.org/10.1021/acscatal.1c02941
- C. Zhao, B. Li, J. Liu, Q. Zhang, Intrinsic electrocatalytic activity regulation of M-N-C single-atom catalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 60, 4448–4463 (2021). https://doi.org/10.1002/anie.202003917
- Z.K. Wu, J.J. Zou, C.J. Zhang, Y. Li, C. Zhang, Amorphous nickel oxides supported on carbon nanosheets as high-performance catalysts for electrochemical synthesis of hydrogen peroxide. ACS Catal. 12, 5911–5920 (2022). https://doi.org/10.1021/acscatal.2c01829
- R.D. Ross, H.Y. Sheng, A. Parihar, S. Jin et al., Compositionally tuned trimetallic thiospinel catalysts for enhanced electrosynthesis of hydrogen peroxide and built-In hydroxyl radical generation. ACS Catal. 11, 12643–12650 (2021). https://doi.org/10.1021/acscatal.1c03349
- J. Wu, M. Hou, Z. Chen, W. Hao, X. Pan et al., Composition engineering of amorphous nickel boride nanoarchitectures enabling highly efficient electrosynthesis of hydrogen peroxide. Adv. Mater. 34, 2202995 (2022). https://doi.org/10.1002/adma.202202995
- M. Elsby, R. Baker, Strategies and mechanisms of metal-ligand cooperativity in first-row transition metal complex catalysts. Chem. Soc. Rev. 49, 8933–8987 (2020). https://doi.org/10.1039/d0cs00509f
- D. Kuznetsov, B. Han, Y. Román-Leshkov, Y. Shao-Horn, Tuning redox transitions via inductive effect in metal oxides and complexes, and implications in oxygen electrocatalysis. Joule 2, 225–244 (2018). https://doi.org/10.1016/j.joule.2017.11.014
- M. Gil-Sepulcre, A. Llobet, Molecular water oxidation catalysts based on first-row transition metal complexes. Nat. Catal. 5, 79–82 (2022). https://doi.org/10.1038/s41929-022-00750-1
- Z. Li, Z. Zhuang, F. Lv, W. Chen, L. Mai et al., The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe 3d electron delocalization matters. Adv. Mater. 30, 1803220 (2018). https://doi.org/10.1002/adma.201803220
- X. Zhao, Q. Yin, X. Mao, C. Cheng, Y. Li et al., Theory-guided design of hydrogen-bonded cobaltoporphyrin frameworks for highly selective electrochemical H2O2 production in acid. Nat. Commun. 13, 2721 (2022). https://doi.org/10.1038/s41467-022-30523-0
- I. Monte-Perez, S. Kundu, A. Chandra, N. Lehnert, K. Ray et al., Temperature dependence of the catalytic two-versus four-electron reduction of dioxygen by a hexanuclear cobalt complex. J. Am. Chem. Soc. 139, 15033–15042 (2017). https://doi.org/10.1021/jacs.7b07127
- Y. Wang, M. Pegis, J. Mayer, S. Stahl, Molecular cobalt catalysts for O2 reduction: low-overpotential production of H2O2 and comparison with iron-based catalysts. J. Am. Chem. Soc. 139, 16458–16461 (2017). https://doi.org/10.1021/jacs.7b09089
- X. Wan, Q. Liu, J. Shang, R. Yu, J. Shui et al., Iron atom-cluster interactions increase activity and improve durability in Fe-N-C fuel cells. Nat. Commun. 13, 2963 (2022). https://doi.org/10.1038/s41467-022-30702-z
- S. Yin, S. Yang, G. Li, Y. Jiang, S. Sun et al., Seizing gaseous Fe2+ to densify O2-accessible Fe–N4 sites for high-performance proton exchange membrane fuel cells. Energy Environ. Sci. 15, 3033–3040 (2022). https://doi.org/10.1039/d2ee00061j
- S. Fukuzumi, Y. Lee, W. Nam, Mechanisms of two-electron versus four-electron reduction of dioxygen catalyzed by earth-abundant metal complexes. ChemCatChem 10, 9–28 (2018). https://doi.org/10.1002/cctc.201701064
- H. Sheng, E. Hermes, X. Yang, J. Schmidt, S. Jin et al., Electrocatalytic production of H2O2 by selective oxygen reduction using earthabundant cobalt pyrite (CoS2). ACS Catal. 9, 8433–8442 (2019). https://doi.org/10.1021/acscatal.9b02546
- H. Sheng, A. Janes, R. Ross, J. Schmidt, S. Jin et al., Stable and selective electrosynthesis of hydrogen peroxide and the electro-Fenton process on CoSe2 polymorph catalysts. Energy Environ. Sci. 13, 4189–4203 (2020). https://doi.org/10.1039/d0ee01925a
- Z. Zhou, Y. Kong, H. Tan, W. Yan, S. Zhao et al., Cation-vacancy-enriched nickel phosphide for efficient electrosynthesis of hydrogen peroxides. Adv. Mater. 34, 2106541 (2022). https://doi.org/10.1002/adma.202106541
- R. Gao, L. Pan, Z. Li, C. Shi, Y. Yao et al., Engineering facets and oxygen vacancies over hematite single crystal for intensified electrocatalytic H2O2 production. Adv. Funct. Mater. 30, 1910539–1910546 (2020). https://doi.org/10.1002/adfm.201910539
- M. Assumpção, R. De Souza, R. Reis, M. Lanza, M. Santos, Low tungsten content of nanostructured material supported on carbon for the degradation of phenol. Appl. Catal. B 142–143, 479–486 (2013). https://doi.org/10.1016/j.apcatb.2013.05.024
- R. Li, S. Yang, Y. Zhang, D. Rao, X. Hong et al., Short-range order in amorphous nickel oxide nanosheets enables selective and efficient electrochemical hydrogen peroxide production. Cell Rep. Phys. Sci. 3, 100788–100798 (2022). https://doi.org/10.1016/j.xcrp.2022.100788
- F. Xia, B. Li, Y. Liu, T. Marks, Y. Cheng et al., Carbon free and noble metal free Ni2Mo6S8 electrocatalyst for selective electrosynthesis of H2O2. Adv. Funct. Mater. 31, 2104716–2104722 (2021). https://doi.org/10.1002/adfm.202104716
- B. Wang, X. Cui, J. Huang, R. Cao, Q. Zhang, Recent advances in energy chemistry of precious-metal-free catalysts for oxygen electrocatalysis. Chin. Chem. Lett. 29, 1757–1767 (2018). https://doi.org/10.1016/j.cclet.2018.11.021
- Y. He, S. Liu, C. Priest, Q. Shi, G. Wu, Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement. Chem. Soc. Rev. 49, 3484–3524 (2020). https://doi.org/10.1039/c9cs00903e
- R. Jasinski, A new fuel cell cathode catalyst. Nature 201, 1212–1213 (1964). https://nature.com/s/2011212a0
- Y. Yuan, H. Li, Z. Jiang, Z. Lin, Y. Tang et al., Deciphering the selectivity descriptors of heterogeneous metal phthalocyanine electrocatalysts for hydrogen peroxide production. Chem. Sci. 13, 11260–11265 (2022). https://doi.org/10.1039/d2sc03714a
- I. Amiinu, X. Liu, Z. Pu, H. Zhang, S. Mu et al., From 3D ZIF nanocrystals to Co-Nx/C nanorod array electrocatalysts for ORR, OER, and Zn-air batteries. Adv. Funct. Mater. 28, 1704638–1704646 (2018). https://doi.org/10.1002/adfm.201704638
- J. Li, W. Xia, J. Tang, Y. Gao, J. He et al., Metal-organic framework-derived graphene mesh: a robust scaffold for highly exposed Fe-N4 active sites toward an excellent oxygen reduction catalyst in acid media. J. Am. Chem. Soc. 144, 9280–9291 (2022). https://doi.org/10.1021/jacs.2c00719
- S. Liu, C. Li, H. Meyer, D. Cullen, S. Litster et al., Atomically dispersed iron sites with a nitrogen–carbon coating as highly active and durable oxygen reduction catalysts for fuel cells. Nat. Energy 7, 652–663 (2022). https://doi.org/10.1038/s41560-022-01062-1
- H. Yang, Y. Liu, P. Kruger, S. Telfer, S. Ma et al., Large-scale synthesis of N-doped carbon capsules supporting atomically dispersed iron for efficient oxygen reduction reaction electrocatalysis. eScience 2, 227–234 (2022). https://doi.org/10.1016/j.esci.2022.02.005
- Z. Lin, Q. Zhang, J. Pan, C. Tsounis, R. Amal et al., Atomic Co decorated free-standing graphene electrode assembly for efficient hydrogen peroxide production in acid. Energy Environ. Sci. 15, 1172–1182 (2022). https://doi.org/10.1039/d1ee02884g
- C. Tang, L. Chen, H. Li, K. Davey, S. Qiao, Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J. Am. Chem. Soc. 143, 7819–7827 (2021). https://doi.org/10.1021/jacs.1c03135
- F. Dong, M. Wu, Z. Chen, J. Qiao, S. Sun et al., Atomically dispersed transition metal-nitrogen-carbon bifunctional oxygen electrocatalysts for Zinc-air batteries: recent advances and future perspectives. Nano-Micro Lett. 14, 36–60 (2022). https://doi.org/10.1007/s40820-021-00768-3
- H. Gong, Z. Wei, Z. Gong, G. He, S. Zhao et al., Low-coordinated CoNC on oxygenated graphene for efficient electrocatalytic H2O2 production. Adv. Funct. Mater. 32, 2106886–2106895 (2021). https://doi.org/10.1002/adfm.202106886
- J. Xu, X. Zheng, Z. Feng, J. Chen, W. Mitch et al., High-efficiency oxygen reduction to hydrogen peroxide catalyzed by nickel singleatom catalysts with tetradentate N2O2 coordination in a three-phase flow cell. Angew. Chem. Int. Ed. 59, 13057–13062 (2020). https://doi.org/10.1002/anie.202004841
- Y. Sun, L. Silvioli, N. Sahraie, F. Jaouen, P. Strasser et al., Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts. J. Am. Chem. Soc. 141, 12372–12381 (2019). https://doi.org/10.1021/jacs.9b05576
- J. Gao, H. Chen, X. Yang, Y. Huang, T. Zhang et al., Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst. Chem 6, 658–674 (2020). https://doi.org/10.1016/j.chempr.2019.12.008
- E. Jung, H. Shin, B. Lee, Y. Sung, T. Hyeon et al., Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 19, 436–442 (2020). https://doi.org/10.1038/s41563-019-0571-5
- Q. Zhang, X. Tan, N. Bedford, X. Lu, L. Thomsen et al., Direct insights into the role of epoxy groups on cobalt sites for acidic H2O2 production. Nat. Commun. 11, 4181–4191 (2020). https://doi.org/10.1038/s41467-020-17782-5
- C. Tang, Y. Jiao, B. Shi, Q. Zhang, S. Qiao et al., Coordination tunes selectivity: two-electron oxygen reduction on high-loading molybdenum single-atom catalysts. Angew. Chem. Int. Ed. 59, 9171–9176 (2020). https://doi.org/10.1002/anie.202003842
- S. Chen, T. Luo, K. Chen, H. Li, M. Zhu et al., Chemical identification of catalytically active sites on oxygen-doped carbon nanosheet to decipher the high activity for electro-synthesis hydrogen peroxide. Angew. Chem. Int. Ed. 60, 16607–16614 (2021). https://doi.org/10.1002/anie.202104480
- W. Zhou, L. Xie, J. Gao, G. Zhao, J. Ma et al., Selective H2O2 electrosynthesis by O-doped and transition-metal-O-doped carbon cathodes via O2 electroreduction: a critical review. Chem. Eng. J. 410, 128368–128383 (2021). https://doi.org/10.1016/j.cej.2020.128368
- C. Ye, L. Xu, Recent advances in the design of a high performance metal–nitrogen–carbon catalyst for the oxygen reduction reaction. J. Mater. Chem. A 9, 22218–22247 (2021). https://doi.org/10.1039/d1ta05605k
- Y. Hu, J. Zhang, T. Shen, D. Wang et al., Efficient electrochemicalproduction of H2O2 on hollow N-doped carbon nanospheres with abundant micropores. ACS Appl. Mater. Interfaces 13, 29551–29557 (2021). https://doi.org/10.1021/acsami.1c05353
- C. Zhang, J. Zhang, M. Song, X. Huang, W. Liu et al., Tuning coal into graphene-like nanocarbon for electrochemical H2O2 production with nearly 100% faraday efficiency. ACS Sustain. Chem. Eng. 9, 9369–9375 (2021). https://doi.org/10.1021/acssuschemeng.1c02357
- J. Zhang, F. He, J. Zhu, D. Wang, S. Mu et al., Defect and doping co-engineered non-metal nanocarbon ORR electrocatalyst. Nano-Micro Lett. 13, 65–94 (2021). https://doi.org/10.1007/s40820-020-00579-y
- C. Zhang, W. Liu, M. Song, J. Zhang, D. Wang et al., Pyranoid-O-dominated graphene-like nanocarbon for two-electron oxygen reduction reaction. Appl. Catal. B 307, 121173–121182 (2022). https://doi.org/10.1016/j.apcatb.2022.121173
- C. Niu, Y. Zhang, J. Dong, R. Yuan, W. Kou et al., 3D ordered macro-/mesoporous NixCo100-x alloys as high-performance bifunctional electrocatalysts for overall water splitting. Chin. Chem. Lett. 32, 2484–2488 (2021). https://doi.org/10.1016/j.cclet.2020.12.045
- Y. Liu, X. Quan, X. Fan, H. Wang, S. Chen, High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon. Angew. Chem. Int. Ed. 54, 6837–6841 (2015). https://doi.org/10.1002/anie.201502396
- J. Lim, J. Kim, J. Woo, Y. Sa, S. Joo et al., Designing highly active nanoporous carbon H2O2 production electrocatalysts through active site identification. Chem 7, 3114–3130 (2021). https://doi.org/10.1016/j.chempr.2021.08.007
- Y. Sa, J. Kim, S. Joo, Active edge-site-rich carbon nanocatalysts with enhanced electron transfer for efficient electrochemical hydrogen peroxide production. Angew. Chem. Int. Ed. 58, 1100–1105 (2019). https://doi.org/10.1002/anie.201812435
- K. Lee, J. Lim, M. Lee, J. Kang, S. Lee et al., Structure-controlled graphene electrocatalysts for high-performance H2O2 production. Energy Environ. Sci. 15, 2858–2866 (2022). https://doi.org/10.1039/d2ee00548d
- Y. Sun, I. Sinev, D. Bernsmeier, B. Paul, B. RoldanCuenya et al., Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts. ACS Catal. 8, 2844–2856 (2018). https://doi.org/10.1021/acscatal.7b03464
- J. Zhang, G. Zhang, H. Liu, J. Qu et al., Graphitic N in nitrogen-doped carbon promotes hydrogen peroxide synthesis from electrocatalytic oxygen reduction. Carbon 163, 154–161 (2020). https://doi.org/10.1016/j.carbon.2020.02.084
- Y. Zhao, L. Yang, S. Chen, W. Qian, Z. Hu et al., Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes? J. Am. Chem. Soc. 135, 1201–1204 (2013). https://doi.org/10.1021/ja310566z
- D. Iglesias, A. Giuliani, M. Melchionna, F. Vizza, M. Prato et al., N-doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2. Chem 4, 106–123 (2018). https://doi.org/10.1016/j.chempr.2017.10.013
- N. Jia, T. Yang, S. Shi, Y. Chen, S. Yin et al., N, F-codoped carbon nanocages: an efficient electrocatalyst for hydrogen peroxide electroproduction in alkaline and acidic solutions. ACS Sustain. Chem. Eng. 8, 2883–2891 (2020). https://doi.org/10.1021/acssuschemeng.9b07047
- K. Zhao, Y. Su, X. Quan, Y. Liu, S. Chen et al., Enhanced H2O2 production by selective electrochemical reduction of O2 on fluorine-doped hierarchically porous carbon. J. Catal. 357, 118–126 (2018). https://doi.org/10.1016/j.jcat.2017.11.008
- L. Li, C. Tang, Y. Zheng, H. Xu, S. Qiao et al., Tailoring selectivity of electrochemical hydrogen peroxide generation by tunable pyrrolic-nitrogen-carbon. Adv. Energy Mater. 10, 2000789–2000798 (2020). https://doi.org/10.1002/aenm.202000789
- Y. Xia, X. Zhao, C. Xia, Y. Liu, H. Wang et al., Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates. Nat. Commun. 12, 4225 (2021). https://doi.org/10.1038/s41467-021-24329-9
- H. Zhang, S. Yang, Y. Wang, P. Chen, R. Jia et al., Electrocatalyst derived from fungal hyphae and its excellent activity for electrochemical production of hydrogen peroxide. Electrochim. Acta 308, 74–82 (2019). https://doi.org/10.1016/j.electacta.2019.04.011
- J. Zhu, X. Xiao, K. Zheng, X. Wang, Y. Chen et al., KOH-treated reduced graphene oxide: 100% selectivity for H2O2 electroproduction. Carbon 153, 6–11 (2019). https://doi.org/10.1016/j.carbon.2019.07.009
- W. Zhu, X. Zhang, Y. Yin, Y. Qin, J. Zhang et al., In-situ electrochemical activation of carbon fiber paper for the highly efficient electroreduction of concentrated nitric acid. Electrochim. Acta 291, 328–334 (2018). https://doi.org/10.1016/j.electacta.2018.08.127
- Z. Lu, G. Chen, S. Siahrostami, T. Jaramillo, J. Nørskov et al., High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 1, 156–162 (2018). https://doi.org/10.1038/s41929-017-0017-x
- Z. Wang, Q. Li, C. Zhang, B. Yakobson, J. Tour et al., Hydrogen peroxide generation with 100% faradaic efficiency on metal-free carbon black. ACS Catal. 11, 2454–2459 (2021). https://doi.org/10.1021/acscatal.0c04735
- D. Zhang, C. Tsounis, Z. Ma, R. Amal, Z. Han et al., Highly selective metal-free electrochemical production of hydrogen peroxide on functionalized vertical graphene edges. Small 18, 2105082 (2022). https://doi.org/10.1002/smll.202105082
- H. Kim, M. Ross, N. Kornienko, L. Zhang, J. Guo et al., Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 1, 282–290 (2018). https://doi.org/10.1038/s41929-018-0044-2
- G. Han, F. Li, W. Zou, M. Karamad, S. Siahrostamik et al., Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2. Nat. Commun. 11, 2209 (2020). https://doi.org/10.1038/s41467-020-15782-z
- B. Li, C. Zhao, J. Liu, Q. Zhang, Electrosynthesis of hydrogen peroxide synergistically catalyzed by atomic Co-Nx-C sites and oxygen functional groups in noble-metal-free electrocatalysts. Adv. Mater. 31, 1808173 (2019). https://doi.org/10.1002/adma.201808173
- J. An, N. Li, Q. Zhao, X. Wang, Y. Feng et al., Highly efficient electro-generation of H2O2 by adjusting liquid-gas-solid three phase interfaces of porous carbonaceous cathode during oxygen reduction reaction. Water Res. 164, 114933 (2019). https://doi.org/10.1016/j.watres.2019.114933
- J. Wang, S. Li, Q. Qin, C. Peng, Sustainable and feasible reagent-free electro-Fenton via sequential dual-cathode electrocatalysis. Proc. Natl. Acad. Sci. USA 118, 2108573118 (2021). https://doi.org/10.1073/pnas.2108573118
- T. Murayama, I. Yamanaka, Electrosynthesis of neutral H2O2 solution from O2 and water at a mixed carbon cathode using an exposed solid-polymer-electrolyte electrolysis cell. J. Phy. Chem. C 115, 5792–5799 (2011). https://doi.org/10.1021/jp1109702
- I. Yamanaka, T. Murayama, Neutral H2O2 synthesis by electrolysis of water and O2. Angew. Chem. 120, 1926–1928 (2008). https://doi.org/10.1002/ange.200704431
- W. Zhou, X. Meng, J. Gao, F. Sun, G. Zhao, Janus graphite felt cathode dramatically enhance the H2O2 yield from O2 electroreduction by the hydrophilicity-hydrophobicity regulation. Chemosphere 278, 130382 (2021). https://doi.org/10.1016/j.chemosphere.2021.130382
- K. Dong, J. Liang, Y. Wang, Q. Asiri, D. Ma et al., Honeycomb carbon nanofibers: a superhydrophilic O2-entrapping electrocatalyst enables ultrahigh mass activity for the two-electron oxygen reduction reaction. Angew. Chem. Int. Ed. 60, 10583–10587 (2021). https://doi.org/10.1002/anie.202101880
- P. Su, M. Zhou, X. Lu, W. Yang, G. Ren et al., Electrochemical catalytic mechanism of N-doped graphene for enhanced H2O2 yield and in-situ degradation of organic pollutant. Appl. Catal. B 245, 583–595 (2019). https://doi.org/10.1016/j.apcatb.2018.12.075
- Y. Wang, W. Zhou, J. Gao, Y. Ding, K. Kou, Oxidative modification of graphite felts for efficient H2O2 electrogeneration: enhancement mechanism and long-term stability. J. Electroanal. Chem. 833, 258–268 (2019). https://doi.org/10.1016/j.jelechem.2018.11.051
- Q. Zhang, M. Zhou, G. Ren, Y. Li, Y. Li et al., Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion. Nat. Commun. 11, 1731 (2020). https://doi.org/10.1038/s41467-020-15597-y
- W. Xu, Z. Liang, S. Gong, T. Kallio, Z. Lu et al., Fast and stable electrochemical production of H2O2 by electrode architecture engineering. ACS Sustain. Chem. Eng. 9, 7120–7129 (2021). https://doi.org/10.1021/acssuschemeng.1c01468
- Q. Zhao, J. An, C. Wang, X. Wang, N. Li et al., Superhydrophobic air-breathing cathode for efficient hydrogen peroxide generation through two-electron pathway oxygen reduction reaction. ACS Appl. Mater. Interfaces 11, 35410–35419 (2019). https://doi.org/10.1021/acsami.9b09942
- L. Wan, Z. Xu, Q. Cao, Y. Liao, B. Wang et al., Nanoemulsion-coated Ni-Fe hydroxide self-supported electrode as an air-breathing cathode for high-performance zinc-air batteries. Nano Lett. 22, 4535–4543 (2022). https://doi.org/10.1021/acs.nanolett.2c01388
- Z. Li, G. Jiang, Y. Hu, S. Wang, Z. Chen et al., Deep-breathing honeycomb-like Co-Nx-C nanopolyhedron bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. iScience 23, 101404 (2020). https://doi.org/10.1016/j.isci.2020.101404
- W. Sun, B. Peppley, K. Karan, Modeling the influence of GDL and flow-field plate parameters on the reaction distribution in the PEMFC cathode catalyst layer. J. Power Sources 144, 42–53 (2005). https://doi.org/10.1016/j.jpowsour.2004.11.035
- P. Hamilton, B. Pollet, Polymer electrolyte membrane fuel cell (PEMFC) flow field plate: design, materials and characterisation. Fuel Cells 10, 489–509 (2010). https://doi.org/10.1002/fuce.201000033
- R. Rosli, A. Sulong, W. Daud, E. Majlan, M. Haque et al., A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system. Int. J. Hydrogen Energy 42, 9293–9314 (2017). https://doi.org/10.1016/j.ijhydene.2016.06.211
- N. Aukland, A. Boudina, D. Eddy, J. Mantese, M. Thompson et al., Alloys that form conductive and passivating oxides for proton exchange membrane fuel cell bipolar plates. J. Mater. Res. 19, 1723–1729 (2011). https://doi.org/10.1557/jmr.2004.0216
- Z. Chen, S. Chen, S. Siahrostami, J. Nørskov, Z. Bao et al., Development of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H2O2. React. Chem. Eng. 2, 239–245 (2017). https://doi.org/10.1039/c6re00195e
- T. Pérez, G. Coria, I. Sirés, J. Nava, A. Uribe, Electrosynthesis of hydrogen peroxide in a filter-press flow cell using graphite felt as air-diffusion cathode. J. Electroanal. Chem. 812, 54–58 (2018). https://doi.org/10.1016/j.jelechem.2018.01.054
- C. Xia, Y. Xia, P. Zhu, L. Fan, H. Wang, Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Sci. Technol. Weld. Join. 366, 226–231 (2019). https://doi.org/10.1126/science.aay1844
- S. Jayashree, E. Choban, A. Primak, D. Natarajan, K. Larry et al., Air-breathing laminar flow-based microfluidic fuel cell. J. Am. Chem. Soc. 127, 16758–16759 (2005). https://doi.org/10.1021/ja054599k
- R. Jayashree, S. Yoon, F. Brushett, L. Markoski, P. Kenis, On the performance of membraneless laminar flow-based fuel cells. J. Power Sources 195, 3569–3578 (2010). https://doi.org/10.1016/j.jpowsour.2009.12.029
- C. Xia, S. Back, S. Ringe, K. Chan, H. Wang et al., Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide. Nat. Catal. 3, 125–134 (2020). https://doi.org/10.1038/s41929-019-0402-8
- L. Tang, M. Xia, S. Cao, L. Zhang, L. Yu et al., Operando identification of active sites in Co-Cr oxyhydroxide oxygen evolution electrocatalysts. Nano Energy 101, 107562–107568 (2022). https://doi.org/10.1016/j.nanoen.2022.107562
- F. Haase, A. Bergmann, T. Jones, C. Rettenmaier, B. Cuenya et al., Size effects and active state formation of cobalt oxide nanops during the oxygen evolution reaction. Nat. Energy 7, 765–773 (2022). https://doi.org/10.1038/s41560-022-01083-w
- S. Cheng, H. Zheng, C. Shen, B. Jiang, F. Liu et al., Hierarchical iron phosphides composite confined in ultrathin carbon layer as effective heterogeneous electro-Fenton catalyst with prominent stability and catalytic activity. Adv. Funct. Mater. 31, 2106311 (2021). https://doi.org/10.1002/adfm.202106311
- F. Yu, M. Zhou, L. Zhou, R. Peng, A novel electro-Fenton process with H2O2 generation in a rotating disk reactor for organic pollutant degradation. Environ. Sci. Technol. Lett. 1, 320–324 (2014). https://doi.org/10.1021/ez500178p
- Q. Zhao, Y. Wang, W. Lai, F. Xiao, Y. Lyu et al., Approaching a high-rate and sustainable production of hydrogen peroxide: oxygen reduction on Co–N–C single-atom electrocatalysts in simulated seawater. Energy Environ. Sci. 14, 5444–5456 (2021). https://doi.org/10.1039/d1ee00878a
- S. Luo, W. Chen, Y. Cheng, Q. Yang, K. Deng et al., Trimetallic synergy in intermetallic PtSnBi nanoplates boosts formic acid oxidation. Adv. Mater. 31, 1903683 (2019). https://doi.org/10.1002/adma.201903683
- A. Poerwoprajitno, L. Gloag, J. Watt, W. Schuhmann, R. Tilley et al., A single-Pt-atom-on-Ru-nanop electrocatalyst for CO-resilient methanol oxidation. Nat. Catal. 5, 231–237 (2022). https://doi.org/10.1038/s41929-022-00756-9
References
S.C. Perry, D. Pangotra, L. Vieira, L.I. Csepei, V. Sieber et al., Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 3, 442–458 (2019). https://doi.org/10.1038/s41570-019-0110-6
S. Anantharaj, S. Pitchaimuthu, S. Noda, A review on recent developments in electrochemical hydrogen peroxide synthesis with a critical assessment of perspectives and strategies. Adv. Colloid Interface Sci. 287, 102331 (2021). https://doi.org/10.1016/j.cis.2020.102331
Y. Jiang, P. Ni, C. Chen, Y. Lu, P. Yang et al., Selective electrochemical H2O2 production through two-electron oxygen electrochemistry. Adv. Energy Mater. 8, 1801909–1801933 (2018). https://doi.org/10.1002/aenm.201801909
X. Wang, J. Jing, M. Zhou, R. Dewil, Recent advances in H2O2-based advanced oxidation processes for removal of antibiotics from wastewater. Chin. Chem. Lett. (2022). https://doi.org/10.1016/j.cclet.2022.06.044
J. Campos-Martin, G. Blanco-Brieva, J. Fierro, Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew. Chem. Int. Ed. 45, 6962–6984 (2006). https://doi.org/10.1002/anie.200503779
T. Nishimi, T. Kamachi, K. Kato, T. Kato, K. Yoshizawa, Mechanistic study on the production of hydrogen peroxide in the anthraquinone process. Eur. J. Org. Chem. 2011, 4113–4120 (2011). https://doi.org/10.1002/ejoc.201100300
S. Yang, A. Verdaguer-Casadevall, L. Arnarson, J. Rossmeisl, I. Chorkendorff, I. Stephens et al., Toward the decentralized electrochemical production of H2O2: a focus on the catalysis. ACS Catal. 8, 4064–4081 (2018). https://doi.org/10.1021/acscatal.8b00217
C. Martinez-Huitle, S. Ferro, Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem. Soc. Rev. 35, 1324–1340 (2006). https://doi.org/10.1039/b517632h
F. He, J. Zhang, Y. Chen, J. Zhang, D. Wang, Recent progress on carbon-based catalysts for electrochemical synthesis of H2O2 via oxygen reduction reaction. Energy Storage Sci. Tech. 10, 192–202 (2021). https://doi.org/10.19799/j.cnki.2095-4239.2021.0122
Q. Zeng, S. Chang, Z. Xiong, B. Zhou, Y. Liu et al., Highly-active, metal-free, carbon-based ORR cathode for efficient organics removal and electricity generation in a PFC system. Chin. Chem. Lett. 32, 2212–2216 (2021). https://doi.org/10.1016/j.cclet.2020.12.062
S. Siahrostami, M. Karamad, D. Deiana, P. Malacrida, B. Wickman, J. Rossmeisl et al., Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 12, 1137–1143 (2013). https://doi.org/10.1038/nmat3795
T. Ricciardulli, S. Gorthy, C. Thompson, M. Neurock, D. Flaherty et al., Effect of Pd coordination and isolation on the catalytic reduction of O2 to H2O2 over PdAu bimetallic nanops. J. Am. Chem. Soc. 143, 5445–5464 (2021). https://doi.org/10.1021/jacs.1c00539
L. Chen, J. Medlin, H. Grönbeck, On the reaction mechanism of direct H2O2 formation over Pd catalysts. ACS Catal. 11, 2735–2745 (2021). https://doi.org/10.1021/acscatal.0c05548
J. Edwards, E. Ntainjua, A. Carley, C. Kiely, G. Hutchings et al., Direct synthesis of H(2)O(2) from H(2) and O(2) over gold, palladium, and gold-palladium catalysts supported on acid-pretreated TiO(2). Angew. Chem. Int. Ed. 48, 8512–8515 (2009). https://doi.org/10.1002/anie.200904115
Q. Simon, J. Freakley, H. Harrhy, L. Lu, J. Hutchings et al., Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity. Science 351, 965–968 (2016). https://doi.org/10.1126/science.aad5705
Y. Cheng, H. Song, J. Yu, J.W. Chang, S.Y. Lu et al., Carbon dots-derived carbon nanoflowers decorated with cobalt single atoms and nanops as efficient electrocatalysts for oxygen reduction. Chin. J. Catal. 43, 2443–2452 (2022). https://doi.org/10.1016/S1872-2067(22)64146-9
T. Zhang, Y. Wang, Q. Ding, Y. Dang, L. Duan, J. Liu et al., Charge state modulation on boron site by carbon and nitrogen localized bonding microenvironment for two-electron electrocatalytic H2O2 production. Chin. Chem. Lett. (2022). https://doi.org/10.1016/j.cclet.2022.06.019
Y. Ding, W. Zhou, J. Gao, F. Sun, G. Zhao, H2O2 electrogeneration from O2 electroreduction by N-doped carbon materials: a mini-review on preparation methods, selectivity of N sites, and prospects. Adv. Mater. Interfaces 8, 2002091 (2021). https://doi.org/10.1002/admi.202002091
R. Goyal, O. Singh, A. Agrawal, C. Samanta, B. Sarkar, Advantages and limitations of catalytic oxidation with hydrogen peroxide: from bulk chemicals to lab scale process. Catal. Rev. 64, 229–285 (2020). https://doi.org/10.1080/01614940.2020.1796190
Y. Wen, T. Zhang, J. Wang, H. Yamashita, X. Qian, Y. Zhao et al., Electrochemical reactors for continuous decentralized H2O2 production. Angew. Chem. Int. Ed. 61, 202205972 (2022). https://doi.org/10.1002/anie.202205972
K. Jiang, S. Back, C. Xia, D. Schaak, E. Stavitski, H. Wang et al., Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat. Commun. 10, 3997 (2019). https://doi.org/10.1038/s41467-019-11992-2
W. Shang, W. Yu, Y. Ma, M. Ni, P. Tan et al., Constructing the triple-phase boundaries of integrated air electrodes for high-performance Zn–air batteries. Adv. Mater. Interfaces 8, 2101256 (2021). https://doi.org/10.1002/admi.202101256
E. Berl, A new cathode process for the production of H2O2. Trans. Electrochem. Soc. 76, 359–370 (1939). https://doi.org/10.1149/1.3500291
H. Olvera-Vargas, N. Gore-Datar, O. Garcia-Rodriguez, S. Mutnuri, O. Lefebvre, Electro-Fenton treatment of real pharmaceutical wastewater paired with a BDD anode: reaction mechanisms and respective contribution of homogeneous and heterogeneous OH. Chem. Eng. J. 404, 126524 (2021). https://doi.org/10.1016/j.cej.2020.126524
C. Trellu, H. OlveraVargas, E. Mousset, N. Oturan, M. Oturan, Electrochemical technologies for the treatment of pesticides. Curr. Opin. Electrochem. 26, 100677 (2021). https://doi.org/10.1016/j.coelec.2020.100677
Z. Wei, H. Xu, Z. Lei, X. Yi, C. Feng et al., A binder-free electrode for efficient H2O2 formation and Fe2+ regeneration and its application to an electro-Fenton process for removing organics in iron-laden acid wastewater. Chin. Chem. Lett. (2021). https://doi.org/10.1016/j.cclet.2021.07.006
E. Jung, H. Shin, W. HoochAntink, Y. Sung, T. Hyeon, Recent advances in electrochemical oxygen reduction to H2O2: catalyst and cell design. ACS Energy Lett. 5, 1881–1892 (2020). https://doi.org/10.1021/acsenergylett.0c00812
X. Guo, S. Lin, J. Gu, S. Zhang, Z. Chen, S. Huang, Simultaneously achieving high activity and selectivity toward two-electron O2 electroreduction: the power of single-atom catalysts. ACS Catal. 9, 11042–11054 (2019). https://doi.org/10.1021/acscatal.9b02778
N. Ramaswamy, S. Mukerjee, Influence of inner- and outer-sphere electron transfer mechanisms during electrocatalysis of oxygen reduction in alkaline media. J. Phy. Chem. C 115, 18015–18026 (2011). https://doi.org/10.1021/jp204680p
A. Gómez-Marín, J. Feliu, T. Edson, Reaction mechanism for oxygen reduction on platinum: existence of a fast initial chemical step and a soluble species different from H2O2. ACS Catal. 8, 7931–7943 (2018). https://doi.org/10.1021/acscatal.8b01291
J. Zhang, C. Xia, H. Wang, C. Tang, Recent advances in electrocatalytic oxygen reduction for on-site hydrogen peroxide synthesis in acidic media. J. Energy Chem. 67, 432–450 (2022). https://doi.org/10.1016/j.jechem.2021.10.013
D. Nocera, Proton-coupled electron transfer: the engine of energy conversion and storage. J. Am. Chem. Soc. 144, 1069–1081 (2022). https://doi.org/10.1021/jacs.1c10444
J. Warren, T. Tronic, J. Mayer, Thermochemistry of proton-coupled electron transfer reagents and its implications. Chem. Rev. 122, 1482–1515 (2022). https://doi.org/10.1021/acs.chemrev.1c00791
S. Cobb, Z. Ayres, M. Newton, J. Macpherson, Deconvoluting surface-bound quinone proton coupled electron transfer in unbuffered solutions: toward a universal voltammetric pH electrode. J. Am. Chem. Soc. 141, 1035–1044 (2019). https://doi.org/10.1021/jacs.8b11518
J. Zhang, H. Zhang, M. Cheng, Q. Lu, Tailoring the electrochemical production of H2O2: strategies for the rational design of high-performance electrocatalysts. Small 16, 1902845 (2020). https://doi.org/10.1002/smll.201902845
X. Zhang, Y. Xia, C. Xia, H. Wang, Insights into practical-scale electrochemical H2O2 synthesis. Trends Chem. 2, 942–953 (2020). https://doi.org/10.1016/j.trechm.2020.07.007
G. Zhang, Q. Wei, X. Yang, A. Tavares, S. Sun, RRDE experiments on noble-metal and noble-metal-free catalysts: impact of loading on the activity and selectivity of oxygen reduction reaction in alkaline solution. Appl. Catal. B 206, 115–126 (2017). https://doi.org/10.1016/j.apcatb.2017.01.001
D. Wang, H. Xin, R. Hovden, Y. Yu, H.D. Abruna et al., Structurally ordered intermetallic platinum-cobalt core-shell nanops with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 12, 81–87 (2013). https://doi.org/10.1038/nmat3458
L. Huang, H. Xu, B. Jing, Q. Li, W. Yi et al., Progress of Pt-based catalysts in proton-exchange membrane fuel cells: a review. J. Electrochem. 28, 2108061–2108077 (2022). https://doi.org/10.13208/j.electrochem.210806
Y. Hu, S. Wang, T. Shen, Y. Zhu, D. Wang, Recent progress in confined noble-metal electrocatalysts for oxygen reduction reaction. Energy Storage Sci. Tech. 11, 1264–1277 (2022). https://doi.org/10.19799/j.cnki.2095-4239.2022.0108
J. Lee, S.W. Choi, S. Back, H. Jang, Y.J. Sa, Pd17Se15-Pd3B nanocoral electrocatalyst for selective oxygen reduction to hydrogen peroxide in near-neutral electrolyte. Appl. Catal. B Environ. 309, 121265–121272 (2022). https://doi.org/10.1016/j.apcatb.2022.121265
M. Gong, T. Zhao, X. Liu, T. Shen, H. Xin et al., Structure evolution of PtCu nanoframes from disordered to ordered for the oxygen reduction reaction. Appl. Catal. B Environ. 282, 119617–119624 (2021). https://doi.org/10.1016/j.apcatb.2020.119617
C.M. He, Z.L. Ma, Q. Wu, Y.Z. Cai, H.Q. Wang et al., Promoting the ORR catalysis of Pt-Fe intermetallic catalysts by increasing atomic utilization and electronic regulation. Electrochim. Acta 330, 135119–135129 (2020). https://doi.org/10.1016/j.electacta.2019.135119
J. Zhang, C. Zhang, Y. Zhao, H. Zhou, Y. Tang et al., Three dimensional few-layer porous carbon nanosheets towards oxygen reduction. Appl. Catal. B 211, 148–156 (2017). https://doi.org/10.1016/j.apcatb.2017.04.038
X. Huang, W. Zhang, W. Liu, M. Song, C. Zhang et al., Nb2CT MXenes functionalized Co−NC enhancing electrochemical H2O2 production for organics degradation. Appl. Catal. B 317, 121737–121745 (2022). https://doi.org/10.1016/j.apcatb.2022.121737
A. Carlos, M. Snchez-Sa´, Hydrogen peroxide production in the oxygen reduction reaction at different electrocatalystsas quantified by scanning electrochemical microscopy. Anal. Chem. 81, 8094–8100 (2009). https://doi.org/10.1021/ac901291v
J. Park, W. Dong, S. Jung, Y. Kim, J. Lee, Oxygen reduction reaction of vertically-aligned nanoporous Ag nanowires. Appl. Catal. B 298, 120586–120593 (2021). https://doi.org/10.1016/j.apcatb.2021.120586
J. Linge, H. Erikson, A. Kasikov, M. Rähn, V. Sammelselg et al., Oxygen reduction reaction on thin-film Ag electrodes in alkaline solution. Electrochim. Acta 325, 134922–134929 (2019). https://doi.org/10.1016/j.electacta.2019.134922
C. Bard, Hydrogen peroxide production in the oxygen reduction reaction at different electrocatalystsas quantified by scanning electrochemical microscopy. Anal. Chem. 81, 8094–8100 (2009). https://doi.org/10.1021/ac901291v
Y. Lu, W. Chen, Size effect of silver nanoclusters on their catalytic activity for oxygen electro-reduction. J. Power Sources 197, 107–110 (2012). https://doi.org/10.1016/j.jpowsour.2011.09.033
D. Mei, Z. He, Y. Zheng, D. Jiang, Y. Chen, Mechanistic and kinetic implications on the ORR on a Au(100) electrode: pH, temperature and H-D kinetic isotope effects. Phys. Chem. Chem. Phys. 16, 13762–13773 (2014). https://doi.org/10.1039/c4cp00257a
Y. Lu, Y. Jiang, X. Gao, W. Chen, Charge state-dependent catalytic activity of [Au(25)(SC(12)H(25))18] nanoclusters for the two-electron reduction of dioxygen to hydrogen peroxide. Chem. Commun. 50, 8464–8467 (2014). https://doi.org/10.1039/c4cc01841a
D. Kauffman, D. Alfonso, C. Matranga, H. Qian, R. Jin, Experimental and computational investigation of Au25 clusters and CO2: a unique interaction and enhanced electrocatalytic activity. J. Am. Chem. Soc. 134, 10237–10243 (2012). https://doi.org/10.1021/ja303259q
I. Jakub, S. Jirkovsky, E. Ahlberg, M. Halasa, S. Romani et al., Effect of electronic structures of Au clusters stabilized by poly(N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. J. Am. Chem. Soc. 131, 7086–7093 (2009). https://doi.org/10.1021/ja810045y
X. Ding, Z. Li, J. Yang, J. Hou, Q. Zhu et al., Adsorption energies of molecular oxygen on Au clusters. J. Chem. Phys. 120, 9594–9600 (2004). https://doi.org/10.1063/1.1665323
J. Jirkovsky, I. Panas, E. Ahlberg, M. Halasa, S. Romani et al., Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production. J. Am. Chem. Soc. 133, 19432–19441 (2011). https://doi.org/10.1021/ja206477z
X. Zhao, H. Yang, J. Xu, T. Cheng, Y. Li et al., Bimetallic PdAu nanoframes for electrochemical H2O2 production in acids. ACS Mater. Lett. 3, 996–1002 (2021). https://doi.org/10.1021/acsmaterialslett.1c00263
S. Mondal, D. Bagchi, M. Riyaz, S. Sarkar, A. Singh et al., In situ mechanistic insights for the oxygen reduction reaction in chemically modulated ordered intermetallic catalyst promoting complete electron transfer. J. Am. Chem. Soc. 144, 11859–11869 (2022). https://doi.org/10.1021/jacs.2c04541
Z. Li, T. Shen, Y. Hu, K. Chen, Y. Lu et al., Progress on ordered intermetallic electrocatalysts for fuel cells application. Acta Phys. Chim. Sin. 37, 2010029 (2021). https://doi.org/10.3866/PKU.WHXB202010029
Z. Zheng, Y. Ng, D. Wang, R. Amal, Epitaxial growth of Au-Pt-Ni nanorods for direct high selectivity H2O2 production. Adv. Mater. 28, 9949–9955 (2016). https://doi.org/10.1002/adma.201603662
A. Verdaguer-Casadevall, D. Deiana, M. Karamad, I. Chorkendorff, I. Stephens et al., Trends in the electrochemical synthesis of H2O2: enhancing activity and selectivity by electrocatalytic site engineering. Nano Lett. 14, 1603–1608 (2014). https://doi.org/10.1021/nl500037x
C. Choi, H. Kwon, S. Yook, H. Shin, H. Kim et al., Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated Pt surface. J. Phys. Chem. C 118, 30063–30070 (2014). https://doi.org/10.1021/jp5113894
J. Zhang, J. Ma, D. Zhou, T. Zhang, B. Liu et al., Strong metal-support interaction boosts activity, selectivity, and stability in electrosynthesis of H2O2. J. Am. Chem. Soc. 144, 2255–2263 (2022). https://doi.org/10.1021/jacs.1c12157
H. Li, P. Wen, D. Itanze, C. Lu, Y. Qiu et al., Scalable neutral H2O2 electrosynthesis by platinum diphosphide nanocrystals by regulating oxygen reduction reaction pathways. Nat. Commun. 11, 3928 (2020). https://doi.org/10.1038/s41467-020-17584-9
H. Markovic, B. Grgur, P. Ross, Oxygen reduction reaction on Pt(111): effects of bromide. J. Electroanal. Chem. 467, 157−163 (1999). https://elsevier.com/retrieve/pii/S0022072899000200
N. Stamenkovic, P. Ross, Structure-relationships in electrocatalysis: oxygen reduction and hydrogen oxidation reactions on Pt(111) and Pt(100) in solutions containing chloride ions. J. Electroanal. Chem. 500, 44–51 (2001). https://doi.org/10.1016/S0022-0728(00)00352-1
E. Ciapina, P. Lopes, R. Subbaraman, E. Ticianelli, N. Markovic et al., Surface spectators and their role in relationships between activity and selectivity of the oxygen reduction reaction in acid environments. Electrochem. Commun. 60, 30–33 (2015). https://doi.org/10.1016/j.elecom.2015.07.020
D. He, L. Zhong, S. Gan, J. Xie, X. Yang et al., Hydrogen peroxide electrosynthesis via regulating the oxygen reduction reaction pathway on Pt noble metal with ion poisoning. Electrochim. Acta 371, 137721–173327 (2021). https://doi.org/10.1016/j.electacta.2021.137721
P. Rao, D. Wu, T. Wang, Y. Shen, Y. Chen et al., Single atomic cobalt electrocatalyst for efficient oxygen reduction reaction. eScience 2, 399–404 (2022). https://doi.org/10.1016/j.esci.2022.05.004
H. Su, M. Soldatov, V. Roldugin, Q. Liu, Platinum single-atom catalyst with self-adjustable valence state for large-current-density acidic water oxidation. eScience 2, 102–109 (2022). https://doi.org/10.1016/j.esci.2021.12.007
Q. Chang, P. Zhang, Y. Zhang, H. Xin, J. Chen et al., Promoting H2O2 production via 2-electron oxygen reduction by coordinating partially oxidized Pd with defect carbon. Nat. Commun. 11, 2178 (2020). https://doi.org/10.1038/s41467-020-15843-3
J. Liu, Z. Gong, M. Yan, G. He, H. Gong et al., Electronic structure regulation of singleatom catalysts for electrochemical oxygen reduction to H2O2. Small 18, 2103824 (2022). https://doi.org/10.1002/smll.202103824
Y. Shang, X. Xu, B. Gao, S. Wang, X. Duan, Single-atom catalysis in advanced oxidation processes for environmental remediation. Chem. Soc. Rev. 50, 5281–5322 (2021). https://doi.org/10.1039/d0cs01032d
J. Shen, Y. Wen, Y. Fan, B. Liu, C. Li et al., Identifying activity trends for the electrochemical production of H2O2 on M-N–C single-atom catalysts using theoretical kinetic computations. J. Phy. Chem. C 126, 10388–10398 (2022). https://doi.org/10.1021/acs.jpcc.2c02803
S. Yang, J. Kim, Y. Tak, A. Soon, H. Lee, Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew. Chem. Int. Ed. 55, 2058–2062 (2016). https://doi.org/10.1002/anie.201509241
S. Yang, Y. Tak, J. Kim, A. Soon, H. Lee, Support effects in single-atom platinum catalysts for electrochemical oxygen reduction. ACS Catal. 7, 1301–1307 (2017). https://doi.org/10.1021/acscatal.6b02899
R. Shen, W. Chen, Q. Peng, J. Zhang, C. Chen et al., High-concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solution. Chem 5, 2099–2110 (2019). https://doi.org/10.1016/j.chempr.2019.04.024
J. Xi, S. Yang, J. Rossmeisl, S. Bals, S. Wang et al., Highly active, selective, and stable Pd single-atom catalyst anchored on N-doped hollow carbon sphere for electrochemical H2O2 synthesis under acidic conditions. J. Catal. 393, 313–323 (2021). https://doi.org/10.1016/j.jcat.2020.11.020
C. Choi, M. Kim, S. Yun, H. Kim, M. Choi et al., Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 7, 10922 (2016). https://doi.org/10.1038/ncomms10922
J. Kim, D. Shin, J. Lee, H. Kim, S. Joo et al., A general strategy to atomically dispersed precious metal catalysts for unravelling their catalytic trends for oxygen reduction reaction. ACS Nano 14, 1990–2001 (2020). https://doi.org/10.1021/acsnano.9b08494
F.Z. Li, J.S. Li, Y.G. Tang, H.Y. Wang, Y. Tang et al., Significantly enhanced oxygen reduction activity of Cu/CuNxCy co-decorated ketjenblack catalyst for Al–air batteries. J. Energy Chem. 27, 419–425 (2018). https://doi.org/10.1016/j.jechem.2017.12.002
C. Liu, Y. Wu, H. Xiao, C. Chen, Y. Li et al., Constructing FeN4/graphitic nitrogen atomic interface for high-efficiency electrochemical CO2 reduction over a broad potential window. Chem 7, 1297–1307 (2021). https://doi.org/10.1016/j.chempr.2021.02.001
T. Patniboon, H. Hansen, Acid-stable and active M–N–C catalysts for the oxygen reduction reaction: the role of local structure. ACS Catal. 11, 13102–13118 (2021). https://doi.org/10.1021/acscatal.1c02941
C. Zhao, B. Li, J. Liu, Q. Zhang, Intrinsic electrocatalytic activity regulation of M-N-C single-atom catalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 60, 4448–4463 (2021). https://doi.org/10.1002/anie.202003917
Z.K. Wu, J.J. Zou, C.J. Zhang, Y. Li, C. Zhang, Amorphous nickel oxides supported on carbon nanosheets as high-performance catalysts for electrochemical synthesis of hydrogen peroxide. ACS Catal. 12, 5911–5920 (2022). https://doi.org/10.1021/acscatal.2c01829
R.D. Ross, H.Y. Sheng, A. Parihar, S. Jin et al., Compositionally tuned trimetallic thiospinel catalysts for enhanced electrosynthesis of hydrogen peroxide and built-In hydroxyl radical generation. ACS Catal. 11, 12643–12650 (2021). https://doi.org/10.1021/acscatal.1c03349
J. Wu, M. Hou, Z. Chen, W. Hao, X. Pan et al., Composition engineering of amorphous nickel boride nanoarchitectures enabling highly efficient electrosynthesis of hydrogen peroxide. Adv. Mater. 34, 2202995 (2022). https://doi.org/10.1002/adma.202202995
M. Elsby, R. Baker, Strategies and mechanisms of metal-ligand cooperativity in first-row transition metal complex catalysts. Chem. Soc. Rev. 49, 8933–8987 (2020). https://doi.org/10.1039/d0cs00509f
D. Kuznetsov, B. Han, Y. Román-Leshkov, Y. Shao-Horn, Tuning redox transitions via inductive effect in metal oxides and complexes, and implications in oxygen electrocatalysis. Joule 2, 225–244 (2018). https://doi.org/10.1016/j.joule.2017.11.014
M. Gil-Sepulcre, A. Llobet, Molecular water oxidation catalysts based on first-row transition metal complexes. Nat. Catal. 5, 79–82 (2022). https://doi.org/10.1038/s41929-022-00750-1
Z. Li, Z. Zhuang, F. Lv, W. Chen, L. Mai et al., The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe 3d electron delocalization matters. Adv. Mater. 30, 1803220 (2018). https://doi.org/10.1002/adma.201803220
X. Zhao, Q. Yin, X. Mao, C. Cheng, Y. Li et al., Theory-guided design of hydrogen-bonded cobaltoporphyrin frameworks for highly selective electrochemical H2O2 production in acid. Nat. Commun. 13, 2721 (2022). https://doi.org/10.1038/s41467-022-30523-0
I. Monte-Perez, S. Kundu, A. Chandra, N. Lehnert, K. Ray et al., Temperature dependence of the catalytic two-versus four-electron reduction of dioxygen by a hexanuclear cobalt complex. J. Am. Chem. Soc. 139, 15033–15042 (2017). https://doi.org/10.1021/jacs.7b07127
Y. Wang, M. Pegis, J. Mayer, S. Stahl, Molecular cobalt catalysts for O2 reduction: low-overpotential production of H2O2 and comparison with iron-based catalysts. J. Am. Chem. Soc. 139, 16458–16461 (2017). https://doi.org/10.1021/jacs.7b09089
X. Wan, Q. Liu, J. Shang, R. Yu, J. Shui et al., Iron atom-cluster interactions increase activity and improve durability in Fe-N-C fuel cells. Nat. Commun. 13, 2963 (2022). https://doi.org/10.1038/s41467-022-30702-z
S. Yin, S. Yang, G. Li, Y. Jiang, S. Sun et al., Seizing gaseous Fe2+ to densify O2-accessible Fe–N4 sites for high-performance proton exchange membrane fuel cells. Energy Environ. Sci. 15, 3033–3040 (2022). https://doi.org/10.1039/d2ee00061j
S. Fukuzumi, Y. Lee, W. Nam, Mechanisms of two-electron versus four-electron reduction of dioxygen catalyzed by earth-abundant metal complexes. ChemCatChem 10, 9–28 (2018). https://doi.org/10.1002/cctc.201701064
H. Sheng, E. Hermes, X. Yang, J. Schmidt, S. Jin et al., Electrocatalytic production of H2O2 by selective oxygen reduction using earthabundant cobalt pyrite (CoS2). ACS Catal. 9, 8433–8442 (2019). https://doi.org/10.1021/acscatal.9b02546
H. Sheng, A. Janes, R. Ross, J. Schmidt, S. Jin et al., Stable and selective electrosynthesis of hydrogen peroxide and the electro-Fenton process on CoSe2 polymorph catalysts. Energy Environ. Sci. 13, 4189–4203 (2020). https://doi.org/10.1039/d0ee01925a
Z. Zhou, Y. Kong, H. Tan, W. Yan, S. Zhao et al., Cation-vacancy-enriched nickel phosphide for efficient electrosynthesis of hydrogen peroxides. Adv. Mater. 34, 2106541 (2022). https://doi.org/10.1002/adma.202106541
R. Gao, L. Pan, Z. Li, C. Shi, Y. Yao et al., Engineering facets and oxygen vacancies over hematite single crystal for intensified electrocatalytic H2O2 production. Adv. Funct. Mater. 30, 1910539–1910546 (2020). https://doi.org/10.1002/adfm.201910539
M. Assumpção, R. De Souza, R. Reis, M. Lanza, M. Santos, Low tungsten content of nanostructured material supported on carbon for the degradation of phenol. Appl. Catal. B 142–143, 479–486 (2013). https://doi.org/10.1016/j.apcatb.2013.05.024
R. Li, S. Yang, Y. Zhang, D. Rao, X. Hong et al., Short-range order in amorphous nickel oxide nanosheets enables selective and efficient electrochemical hydrogen peroxide production. Cell Rep. Phys. Sci. 3, 100788–100798 (2022). https://doi.org/10.1016/j.xcrp.2022.100788
F. Xia, B. Li, Y. Liu, T. Marks, Y. Cheng et al., Carbon free and noble metal free Ni2Mo6S8 electrocatalyst for selective electrosynthesis of H2O2. Adv. Funct. Mater. 31, 2104716–2104722 (2021). https://doi.org/10.1002/adfm.202104716
B. Wang, X. Cui, J. Huang, R. Cao, Q. Zhang, Recent advances in energy chemistry of precious-metal-free catalysts for oxygen electrocatalysis. Chin. Chem. Lett. 29, 1757–1767 (2018). https://doi.org/10.1016/j.cclet.2018.11.021
Y. He, S. Liu, C. Priest, Q. Shi, G. Wu, Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement. Chem. Soc. Rev. 49, 3484–3524 (2020). https://doi.org/10.1039/c9cs00903e
R. Jasinski, A new fuel cell cathode catalyst. Nature 201, 1212–1213 (1964). https://nature.com/s/2011212a0
Y. Yuan, H. Li, Z. Jiang, Z. Lin, Y. Tang et al., Deciphering the selectivity descriptors of heterogeneous metal phthalocyanine electrocatalysts for hydrogen peroxide production. Chem. Sci. 13, 11260–11265 (2022). https://doi.org/10.1039/d2sc03714a
I. Amiinu, X. Liu, Z. Pu, H. Zhang, S. Mu et al., From 3D ZIF nanocrystals to Co-Nx/C nanorod array electrocatalysts for ORR, OER, and Zn-air batteries. Adv. Funct. Mater. 28, 1704638–1704646 (2018). https://doi.org/10.1002/adfm.201704638
J. Li, W. Xia, J. Tang, Y. Gao, J. He et al., Metal-organic framework-derived graphene mesh: a robust scaffold for highly exposed Fe-N4 active sites toward an excellent oxygen reduction catalyst in acid media. J. Am. Chem. Soc. 144, 9280–9291 (2022). https://doi.org/10.1021/jacs.2c00719
S. Liu, C. Li, H. Meyer, D. Cullen, S. Litster et al., Atomically dispersed iron sites with a nitrogen–carbon coating as highly active and durable oxygen reduction catalysts for fuel cells. Nat. Energy 7, 652–663 (2022). https://doi.org/10.1038/s41560-022-01062-1
H. Yang, Y. Liu, P. Kruger, S. Telfer, S. Ma et al., Large-scale synthesis of N-doped carbon capsules supporting atomically dispersed iron for efficient oxygen reduction reaction electrocatalysis. eScience 2, 227–234 (2022). https://doi.org/10.1016/j.esci.2022.02.005
Z. Lin, Q. Zhang, J. Pan, C. Tsounis, R. Amal et al., Atomic Co decorated free-standing graphene electrode assembly for efficient hydrogen peroxide production in acid. Energy Environ. Sci. 15, 1172–1182 (2022). https://doi.org/10.1039/d1ee02884g
C. Tang, L. Chen, H. Li, K. Davey, S. Qiao, Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J. Am. Chem. Soc. 143, 7819–7827 (2021). https://doi.org/10.1021/jacs.1c03135
F. Dong, M. Wu, Z. Chen, J. Qiao, S. Sun et al., Atomically dispersed transition metal-nitrogen-carbon bifunctional oxygen electrocatalysts for Zinc-air batteries: recent advances and future perspectives. Nano-Micro Lett. 14, 36–60 (2022). https://doi.org/10.1007/s40820-021-00768-3
H. Gong, Z. Wei, Z. Gong, G. He, S. Zhao et al., Low-coordinated CoNC on oxygenated graphene for efficient electrocatalytic H2O2 production. Adv. Funct. Mater. 32, 2106886–2106895 (2021). https://doi.org/10.1002/adfm.202106886
J. Xu, X. Zheng, Z. Feng, J. Chen, W. Mitch et al., High-efficiency oxygen reduction to hydrogen peroxide catalyzed by nickel singleatom catalysts with tetradentate N2O2 coordination in a three-phase flow cell. Angew. Chem. Int. Ed. 59, 13057–13062 (2020). https://doi.org/10.1002/anie.202004841
Y. Sun, L. Silvioli, N. Sahraie, F. Jaouen, P. Strasser et al., Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts. J. Am. Chem. Soc. 141, 12372–12381 (2019). https://doi.org/10.1021/jacs.9b05576
J. Gao, H. Chen, X. Yang, Y. Huang, T. Zhang et al., Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst. Chem 6, 658–674 (2020). https://doi.org/10.1016/j.chempr.2019.12.008
E. Jung, H. Shin, B. Lee, Y. Sung, T. Hyeon et al., Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 19, 436–442 (2020). https://doi.org/10.1038/s41563-019-0571-5
Q. Zhang, X. Tan, N. Bedford, X. Lu, L. Thomsen et al., Direct insights into the role of epoxy groups on cobalt sites for acidic H2O2 production. Nat. Commun. 11, 4181–4191 (2020). https://doi.org/10.1038/s41467-020-17782-5
C. Tang, Y. Jiao, B. Shi, Q. Zhang, S. Qiao et al., Coordination tunes selectivity: two-electron oxygen reduction on high-loading molybdenum single-atom catalysts. Angew. Chem. Int. Ed. 59, 9171–9176 (2020). https://doi.org/10.1002/anie.202003842
S. Chen, T. Luo, K. Chen, H. Li, M. Zhu et al., Chemical identification of catalytically active sites on oxygen-doped carbon nanosheet to decipher the high activity for electro-synthesis hydrogen peroxide. Angew. Chem. Int. Ed. 60, 16607–16614 (2021). https://doi.org/10.1002/anie.202104480
W. Zhou, L. Xie, J. Gao, G. Zhao, J. Ma et al., Selective H2O2 electrosynthesis by O-doped and transition-metal-O-doped carbon cathodes via O2 electroreduction: a critical review. Chem. Eng. J. 410, 128368–128383 (2021). https://doi.org/10.1016/j.cej.2020.128368
C. Ye, L. Xu, Recent advances in the design of a high performance metal–nitrogen–carbon catalyst for the oxygen reduction reaction. J. Mater. Chem. A 9, 22218–22247 (2021). https://doi.org/10.1039/d1ta05605k
Y. Hu, J. Zhang, T. Shen, D. Wang et al., Efficient electrochemicalproduction of H2O2 on hollow N-doped carbon nanospheres with abundant micropores. ACS Appl. Mater. Interfaces 13, 29551–29557 (2021). https://doi.org/10.1021/acsami.1c05353
C. Zhang, J. Zhang, M. Song, X. Huang, W. Liu et al., Tuning coal into graphene-like nanocarbon for electrochemical H2O2 production with nearly 100% faraday efficiency. ACS Sustain. Chem. Eng. 9, 9369–9375 (2021). https://doi.org/10.1021/acssuschemeng.1c02357
J. Zhang, F. He, J. Zhu, D. Wang, S. Mu et al., Defect and doping co-engineered non-metal nanocarbon ORR electrocatalyst. Nano-Micro Lett. 13, 65–94 (2021). https://doi.org/10.1007/s40820-020-00579-y
C. Zhang, W. Liu, M. Song, J. Zhang, D. Wang et al., Pyranoid-O-dominated graphene-like nanocarbon for two-electron oxygen reduction reaction. Appl. Catal. B 307, 121173–121182 (2022). https://doi.org/10.1016/j.apcatb.2022.121173
C. Niu, Y. Zhang, J. Dong, R. Yuan, W. Kou et al., 3D ordered macro-/mesoporous NixCo100-x alloys as high-performance bifunctional electrocatalysts for overall water splitting. Chin. Chem. Lett. 32, 2484–2488 (2021). https://doi.org/10.1016/j.cclet.2020.12.045
Y. Liu, X. Quan, X. Fan, H. Wang, S. Chen, High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon. Angew. Chem. Int. Ed. 54, 6837–6841 (2015). https://doi.org/10.1002/anie.201502396
J. Lim, J. Kim, J. Woo, Y. Sa, S. Joo et al., Designing highly active nanoporous carbon H2O2 production electrocatalysts through active site identification. Chem 7, 3114–3130 (2021). https://doi.org/10.1016/j.chempr.2021.08.007
Y. Sa, J. Kim, S. Joo, Active edge-site-rich carbon nanocatalysts with enhanced electron transfer for efficient electrochemical hydrogen peroxide production. Angew. Chem. Int. Ed. 58, 1100–1105 (2019). https://doi.org/10.1002/anie.201812435
K. Lee, J. Lim, M. Lee, J. Kang, S. Lee et al., Structure-controlled graphene electrocatalysts for high-performance H2O2 production. Energy Environ. Sci. 15, 2858–2866 (2022). https://doi.org/10.1039/d2ee00548d
Y. Sun, I. Sinev, D. Bernsmeier, B. Paul, B. RoldanCuenya et al., Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts. ACS Catal. 8, 2844–2856 (2018). https://doi.org/10.1021/acscatal.7b03464
J. Zhang, G. Zhang, H. Liu, J. Qu et al., Graphitic N in nitrogen-doped carbon promotes hydrogen peroxide synthesis from electrocatalytic oxygen reduction. Carbon 163, 154–161 (2020). https://doi.org/10.1016/j.carbon.2020.02.084
Y. Zhao, L. Yang, S. Chen, W. Qian, Z. Hu et al., Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes? J. Am. Chem. Soc. 135, 1201–1204 (2013). https://doi.org/10.1021/ja310566z
D. Iglesias, A. Giuliani, M. Melchionna, F. Vizza, M. Prato et al., N-doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2. Chem 4, 106–123 (2018). https://doi.org/10.1016/j.chempr.2017.10.013
N. Jia, T. Yang, S. Shi, Y. Chen, S. Yin et al., N, F-codoped carbon nanocages: an efficient electrocatalyst for hydrogen peroxide electroproduction in alkaline and acidic solutions. ACS Sustain. Chem. Eng. 8, 2883–2891 (2020). https://doi.org/10.1021/acssuschemeng.9b07047
K. Zhao, Y. Su, X. Quan, Y. Liu, S. Chen et al., Enhanced H2O2 production by selective electrochemical reduction of O2 on fluorine-doped hierarchically porous carbon. J. Catal. 357, 118–126 (2018). https://doi.org/10.1016/j.jcat.2017.11.008
L. Li, C. Tang, Y. Zheng, H. Xu, S. Qiao et al., Tailoring selectivity of electrochemical hydrogen peroxide generation by tunable pyrrolic-nitrogen-carbon. Adv. Energy Mater. 10, 2000789–2000798 (2020). https://doi.org/10.1002/aenm.202000789
Y. Xia, X. Zhao, C. Xia, Y. Liu, H. Wang et al., Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates. Nat. Commun. 12, 4225 (2021). https://doi.org/10.1038/s41467-021-24329-9
H. Zhang, S. Yang, Y. Wang, P. Chen, R. Jia et al., Electrocatalyst derived from fungal hyphae and its excellent activity for electrochemical production of hydrogen peroxide. Electrochim. Acta 308, 74–82 (2019). https://doi.org/10.1016/j.electacta.2019.04.011
J. Zhu, X. Xiao, K. Zheng, X. Wang, Y. Chen et al., KOH-treated reduced graphene oxide: 100% selectivity for H2O2 electroproduction. Carbon 153, 6–11 (2019). https://doi.org/10.1016/j.carbon.2019.07.009
W. Zhu, X. Zhang, Y. Yin, Y. Qin, J. Zhang et al., In-situ electrochemical activation of carbon fiber paper for the highly efficient electroreduction of concentrated nitric acid. Electrochim. Acta 291, 328–334 (2018). https://doi.org/10.1016/j.electacta.2018.08.127
Z. Lu, G. Chen, S. Siahrostami, T. Jaramillo, J. Nørskov et al., High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 1, 156–162 (2018). https://doi.org/10.1038/s41929-017-0017-x
Z. Wang, Q. Li, C. Zhang, B. Yakobson, J. Tour et al., Hydrogen peroxide generation with 100% faradaic efficiency on metal-free carbon black. ACS Catal. 11, 2454–2459 (2021). https://doi.org/10.1021/acscatal.0c04735
D. Zhang, C. Tsounis, Z. Ma, R. Amal, Z. Han et al., Highly selective metal-free electrochemical production of hydrogen peroxide on functionalized vertical graphene edges. Small 18, 2105082 (2022). https://doi.org/10.1002/smll.202105082
H. Kim, M. Ross, N. Kornienko, L. Zhang, J. Guo et al., Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 1, 282–290 (2018). https://doi.org/10.1038/s41929-018-0044-2
G. Han, F. Li, W. Zou, M. Karamad, S. Siahrostamik et al., Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2. Nat. Commun. 11, 2209 (2020). https://doi.org/10.1038/s41467-020-15782-z
B. Li, C. Zhao, J. Liu, Q. Zhang, Electrosynthesis of hydrogen peroxide synergistically catalyzed by atomic Co-Nx-C sites and oxygen functional groups in noble-metal-free electrocatalysts. Adv. Mater. 31, 1808173 (2019). https://doi.org/10.1002/adma.201808173
J. An, N. Li, Q. Zhao, X. Wang, Y. Feng et al., Highly efficient electro-generation of H2O2 by adjusting liquid-gas-solid three phase interfaces of porous carbonaceous cathode during oxygen reduction reaction. Water Res. 164, 114933 (2019). https://doi.org/10.1016/j.watres.2019.114933
J. Wang, S. Li, Q. Qin, C. Peng, Sustainable and feasible reagent-free electro-Fenton via sequential dual-cathode electrocatalysis. Proc. Natl. Acad. Sci. USA 118, 2108573118 (2021). https://doi.org/10.1073/pnas.2108573118
T. Murayama, I. Yamanaka, Electrosynthesis of neutral H2O2 solution from O2 and water at a mixed carbon cathode using an exposed solid-polymer-electrolyte electrolysis cell. J. Phy. Chem. C 115, 5792–5799 (2011). https://doi.org/10.1021/jp1109702
I. Yamanaka, T. Murayama, Neutral H2O2 synthesis by electrolysis of water and O2. Angew. Chem. 120, 1926–1928 (2008). https://doi.org/10.1002/ange.200704431
W. Zhou, X. Meng, J. Gao, F. Sun, G. Zhao, Janus graphite felt cathode dramatically enhance the H2O2 yield from O2 electroreduction by the hydrophilicity-hydrophobicity regulation. Chemosphere 278, 130382 (2021). https://doi.org/10.1016/j.chemosphere.2021.130382
K. Dong, J. Liang, Y. Wang, Q. Asiri, D. Ma et al., Honeycomb carbon nanofibers: a superhydrophilic O2-entrapping electrocatalyst enables ultrahigh mass activity for the two-electron oxygen reduction reaction. Angew. Chem. Int. Ed. 60, 10583–10587 (2021). https://doi.org/10.1002/anie.202101880
P. Su, M. Zhou, X. Lu, W. Yang, G. Ren et al., Electrochemical catalytic mechanism of N-doped graphene for enhanced H2O2 yield and in-situ degradation of organic pollutant. Appl. Catal. B 245, 583–595 (2019). https://doi.org/10.1016/j.apcatb.2018.12.075
Y. Wang, W. Zhou, J. Gao, Y. Ding, K. Kou, Oxidative modification of graphite felts for efficient H2O2 electrogeneration: enhancement mechanism and long-term stability. J. Electroanal. Chem. 833, 258–268 (2019). https://doi.org/10.1016/j.jelechem.2018.11.051
Q. Zhang, M. Zhou, G. Ren, Y. Li, Y. Li et al., Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion. Nat. Commun. 11, 1731 (2020). https://doi.org/10.1038/s41467-020-15597-y
W. Xu, Z. Liang, S. Gong, T. Kallio, Z. Lu et al., Fast and stable electrochemical production of H2O2 by electrode architecture engineering. ACS Sustain. Chem. Eng. 9, 7120–7129 (2021). https://doi.org/10.1021/acssuschemeng.1c01468
Q. Zhao, J. An, C. Wang, X. Wang, N. Li et al., Superhydrophobic air-breathing cathode for efficient hydrogen peroxide generation through two-electron pathway oxygen reduction reaction. ACS Appl. Mater. Interfaces 11, 35410–35419 (2019). https://doi.org/10.1021/acsami.9b09942
L. Wan, Z. Xu, Q. Cao, Y. Liao, B. Wang et al., Nanoemulsion-coated Ni-Fe hydroxide self-supported electrode as an air-breathing cathode for high-performance zinc-air batteries. Nano Lett. 22, 4535–4543 (2022). https://doi.org/10.1021/acs.nanolett.2c01388
Z. Li, G. Jiang, Y. Hu, S. Wang, Z. Chen et al., Deep-breathing honeycomb-like Co-Nx-C nanopolyhedron bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. iScience 23, 101404 (2020). https://doi.org/10.1016/j.isci.2020.101404
W. Sun, B. Peppley, K. Karan, Modeling the influence of GDL and flow-field plate parameters on the reaction distribution in the PEMFC cathode catalyst layer. J. Power Sources 144, 42–53 (2005). https://doi.org/10.1016/j.jpowsour.2004.11.035
P. Hamilton, B. Pollet, Polymer electrolyte membrane fuel cell (PEMFC) flow field plate: design, materials and characterisation. Fuel Cells 10, 489–509 (2010). https://doi.org/10.1002/fuce.201000033
R. Rosli, A. Sulong, W. Daud, E. Majlan, M. Haque et al., A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system. Int. J. Hydrogen Energy 42, 9293–9314 (2017). https://doi.org/10.1016/j.ijhydene.2016.06.211
N. Aukland, A. Boudina, D. Eddy, J. Mantese, M. Thompson et al., Alloys that form conductive and passivating oxides for proton exchange membrane fuel cell bipolar plates. J. Mater. Res. 19, 1723–1729 (2011). https://doi.org/10.1557/jmr.2004.0216
Z. Chen, S. Chen, S. Siahrostami, J. Nørskov, Z. Bao et al., Development of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H2O2. React. Chem. Eng. 2, 239–245 (2017). https://doi.org/10.1039/c6re00195e
T. Pérez, G. Coria, I. Sirés, J. Nava, A. Uribe, Electrosynthesis of hydrogen peroxide in a filter-press flow cell using graphite felt as air-diffusion cathode. J. Electroanal. Chem. 812, 54–58 (2018). https://doi.org/10.1016/j.jelechem.2018.01.054
C. Xia, Y. Xia, P. Zhu, L. Fan, H. Wang, Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Sci. Technol. Weld. Join. 366, 226–231 (2019). https://doi.org/10.1126/science.aay1844
S. Jayashree, E. Choban, A. Primak, D. Natarajan, K. Larry et al., Air-breathing laminar flow-based microfluidic fuel cell. J. Am. Chem. Soc. 127, 16758–16759 (2005). https://doi.org/10.1021/ja054599k
R. Jayashree, S. Yoon, F. Brushett, L. Markoski, P. Kenis, On the performance of membraneless laminar flow-based fuel cells. J. Power Sources 195, 3569–3578 (2010). https://doi.org/10.1016/j.jpowsour.2009.12.029
C. Xia, S. Back, S. Ringe, K. Chan, H. Wang et al., Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide. Nat. Catal. 3, 125–134 (2020). https://doi.org/10.1038/s41929-019-0402-8
L. Tang, M. Xia, S. Cao, L. Zhang, L. Yu et al., Operando identification of active sites in Co-Cr oxyhydroxide oxygen evolution electrocatalysts. Nano Energy 101, 107562–107568 (2022). https://doi.org/10.1016/j.nanoen.2022.107562
F. Haase, A. Bergmann, T. Jones, C. Rettenmaier, B. Cuenya et al., Size effects and active state formation of cobalt oxide nanops during the oxygen evolution reaction. Nat. Energy 7, 765–773 (2022). https://doi.org/10.1038/s41560-022-01083-w
S. Cheng, H. Zheng, C. Shen, B. Jiang, F. Liu et al., Hierarchical iron phosphides composite confined in ultrathin carbon layer as effective heterogeneous electro-Fenton catalyst with prominent stability and catalytic activity. Adv. Funct. Mater. 31, 2106311 (2021). https://doi.org/10.1002/adfm.202106311
F. Yu, M. Zhou, L. Zhou, R. Peng, A novel electro-Fenton process with H2O2 generation in a rotating disk reactor for organic pollutant degradation. Environ. Sci. Technol. Lett. 1, 320–324 (2014). https://doi.org/10.1021/ez500178p
Q. Zhao, Y. Wang, W. Lai, F. Xiao, Y. Lyu et al., Approaching a high-rate and sustainable production of hydrogen peroxide: oxygen reduction on Co–N–C single-atom electrocatalysts in simulated seawater. Energy Environ. Sci. 14, 5444–5456 (2021). https://doi.org/10.1039/d1ee00878a
S. Luo, W. Chen, Y. Cheng, Q. Yang, K. Deng et al., Trimetallic synergy in intermetallic PtSnBi nanoplates boosts formic acid oxidation. Adv. Mater. 31, 1903683 (2019). https://doi.org/10.1002/adma.201903683
A. Poerwoprajitno, L. Gloag, J. Watt, W. Schuhmann, R. Tilley et al., A single-Pt-atom-on-Ru-nanop electrocatalyst for CO-resilient methanol oxidation. Nat. Catal. 5, 231–237 (2022). https://doi.org/10.1038/s41929-022-00756-9